Preprints
- Polaronic Dressing of bound States. LAP Ardila and A. Camacho.
arXiv:2412.06520 (2024).
- Polarons and bipolarons in Rydberg-dressed extended Bose-Hubbard model. G. A. Domíınguez-Castro, L. Santos and LAP Ardila.
arXiv:2411.06275 (2024).
- Impurities and polarons in bosonic quantum gases: a review on recent progress. Fabian Grusdt, N. Mostaan, Eugene Demler and LAP Ardila.
arXiv:2410.09413 (2024).
Publications
-
Charged impurities in a Bose-Einstein condensate: Many-body bound states and induced interactions.
Grigory E. Astrakharchik and LAP Ardila, Krzysztof Jachymski & Antonio Negretti.
Nat Commun. 14, 1647 (2023).
https://doi.org/10.1038/s41467-023-37153-0
-
Catalyzation of supersolidity in binary dipolar condensates.
D. Scheiermann, LAP Ardila, T. Bland, R. N. Bisset, and L. Santos.
Phys. Rev. A (Letter) 107, L021302 (2023).
https://doi.org/10.1103/PhysRevA.107.L021302
-
Domain supersolids in binary dipolar condensates.
T. Bland, E. Poli, LAP Ardila, L. Santos, F. Ferlaino, and R. N. Bisset.
Phys. Rev. A 106, 053322 (2022).
https://doi.org/10.1103/PhysRevA.106.053322
-
Universal Properties of Anisotropic Dipolar Bosons in Two Dimensions.
J. Sánchez-Baena, LAP Ardila, G. Astrakharchik, F. Mazzanti.
SciPost Phys. 13, 031 (2022).
https://scipost.org/10.21468/SciPostPhys.13.2.031
-
Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures.
D. Edler, LAP Ardila, C. Cabrera and L. Santos.
Phys. Rev. Research 4, 033017 (2022)
https://doi.org/10.1103/PhysRevResearch.4.033017
-
Monte Carlo methods for impurity physics in ultracold Bose quantum gases.
LAP Ardila. Nat Rev Phys , 4, 214-Tools of Trade (2022).
https://doi.org/10.1038/s42254-022-00443-5
-
Ultra-Dilute Gas of Polarons in a Bose–Einstein Condensates.
LAP Ardila. Atoms 10 (29) (2022).
https://doi.org/10.3390/atoms10010029
-
Finite range effects in the unitary Fermi polaron.
Renato Pessoa, S. A. Vitiello, and LAP Ardila.
Phys. Rev. A 104, 043313 (2021).
https://doi.org/10.1103/PhysRevA.104.043313
-
Quantum Behavior of a Heavy Impurity Strongly Coupled to a Bose Gas.
Jesper Levinsen, LAP Ardila, Shuhei M. Yoshida, and Meera M. Parish.
Phys. Rev. Lett 127, 033401 (2021) - Editors’ suggestion.
https://doi.org/10.1103/PhysRevLett.127.033401
-
Dynamical formation of polarons in a Bose-Einstein condensate: A variational approach.
LAP Ardila. Phys. Rev. A 103, 033323 (2021).
https://doi.org/10.1103/PhysRevA.103.033323
-
Quantum Droplets of Dipolar Mixtures.
R. N. Bisset, LAP Ardila, and L. Santos.
Phys. Rev. Lett 126, 025301 (2021).
https://doi.org/10.1103/PhysRevLett.126.025301
-
Ionic polaron in a Bose-Einstein condensate.
Grigory E. Astrakharchik and LAP Ardila, Richard Schmidt, Krzysztof Jachymski & Antonio Negretti.
Communications Physics (Springer Nature) 4, Article number: 94 (2021).
https://doi.org/10.1038/s42005-021-00597-1
-
Strong coupling Bose polarons in a two-dimensional gas.
LAP Ardila, G. E. Astrakharchik, and S. Giorgini.
Phys. Rev. Research 2, 023405 (2020).
https://doi.org/10.1103/PhysRevResearch.2.023405
-
Analyzing the Bose polaron Across Resonant interactions.
LAP Ardila, N. B. Jørgensen, T. Pohl, S. Giorgini, G. M. Bruun and J. J. Arlt.
Phys. Rev. A 99. 063607 (2019).
https://doi.org/10.1103/PhysRevA.99.063607
-
Ground-state properties of the Dipolar Bose-Polaron.
LAP Ardila and Thomas Pohl.
J. Phys. B: At. Mol. Opt. Phys. 52 (2019).
https://doi.org/10.1088/1361-6455/aaf35e
-
Critical slowdown of non-equilibrium polaron dynamics.
K Knakkergaard, LAP Ardila, G. M. Bruun and Thomas Pohl.
New J. Phys, 21 043014 (2019).
https://doi.org/10.1088/1367-2630/ab0a81
-
Measuring the single-particle density matrix for fermions and hard-core bosons in an optical lattice.
LAP Ardila, Markus Heyl, André Eckardt.
Phys. Rev. Lett 121, 260401 (2018).
https://doi.org/10.1103/PhysRevLett.121.260401
-
Bipolarons in a Bose-Einstein Condensate.
A. Camacho-Guardian, LAP Ardila, T. Pohl, and G. M. Bruun.
Phys. Rev. Lett. 121, 013401 (2018).
https://doi.org/10.1103/PhysRevLett.121.013401
-
Bose Polaron Problem: effect of mass imbalance on binding energy.
LAP Ardila, S. Giorgini.
Phys. Rev. A. 94. 063640 (2016)
https://doi.org/10.1103/PhysRevA.94.063640
-
Impurity in a Bose-Einstein condensate: study of the attractive and repulsive branch using quantum Monte-Carlo methods.
LAP Ardila and S. Giorgini.
Phys. Rev. A 92. 033612 (2015).
https://doi.org/10.1103/PhysRevA.92.033612
-
Elastic constants of hcp 4He: path integral Monte-Carlo results vs. experiment.
LAP Ardila, Silvio A. Vitiello & Maurice de Koning.
Phys. Rev. B 84, 094119 (2011).
https://doi.org/10.1103/PhysRevB.84.094119