
Problems and exams of the Course
Condensed Matter Physics II

Università di Trieste

The problems here belong to three distinct classes

(i) problems given to the students for the final exam or for an intermediate exam are
denoted with a * in the list;

(ii) Problem solved during tutorials;

(iii) Longer problems for homework.

A typical exam requires solving two problems in three hours
The student should give all the details of calculation, as well as motivating the route
chosen to solve the problem.
Problems (questions in a problem) for which only the final results is given are normally
not counted in establishing the score.
Numerical evaluations should be given with 3 significant figures if not otherwise indicated.
Other exercises may be found on the N. Ashcroft e N. D. Mermin, Solid State Physics,
Saunders-College (1976) [AM] and on the C. Kittel, Introduction to Solid State Physics,
Wiley (1996).
Another book with problems is L. Mihály e M. C. Martin, Solid State Physics: Problems
and Solutions (Wiley, 1996).
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1 Density-density response function for a gas of non-

interacting electrons

Consider a set of N non-interacting electrons in a volume V = Ld in d-dimensions,
with periodic boundary conditions (PBC). Applying an external potential U(r) =∫ dq

(2π)d
U(q)eiq·r the electron density changes from n(r) = n0 ≡ N

V
to n(r) = n0+n1(r)+· · ·,

n1 being linear in U .

1. Compute the density-density linear response function χ(q), which links the Fourier
transform of the first-order density change n1(r) to the Fourier components of U ,

n1(q) = χ(q)U(q).

To this end, proceed as suggested below:

(a) Use (static) perturbation theory to compute the first-order change ψ1
k(r) of the

non-interacting electrons

ψk(r) = ψ0
k(r) + ψ1

k(r) + · · · .
By definition ψ1

k(r) is linear in U .

(b) Compute the density change n1(r) induced by the potential U using

n(r) =
∑
k

fkψk(r)2 = n0 + n1(r) + · · · ,

fk being the occupation number of the orbital k.

(c) Compute the Fourier transform of n1(r), obtained at the previous point and
obtain from it

χ(q) = V −1
∑
k

fk(
1

εk − εk+q

+
1

εk − εk−q
)

= V −1
∑
k

fk−q/2 − fk+q/2

εk−q/2 − εk+q/2

. (1)

(d) In doing all the algebraic manipulations in the previous points do bear in mind
that ψ0

k = 1√
V
eiq·r. εk is the energy of the orbital ψ0

k.

2. Specialize the treatment at the case d = 2 and compute explicitly χ(q) for
unpolarized electrons (fk = 2 for k ≤ kF ) [Stern function] proceeding as follows:

(a) Use the relation 1 and rewrite the sum over the discrete k compatible with the
PBC as an integral in polar coordinates.

(b) First compute the angular integral.

(c) Then compute the radial integral [i.e., the integral in k].

(d) You should obtain:

χ(q) = − m

πh̄2
, q < 2qF

χ(q) = − m

πh̄2
[1−

√
1− 4q2F/q

2], q > 2qF

Note: you need to be able to integrate the functions
∫
dt/(1 + t2) and

∫
dt/(1− t2).

3



2 * Local Density Approximation (LDA) and re-

sponse function in 2D.

Consider a noninteracting spin unpolarized electron gas in 2 dimension at T = 0.

1. Give the kinetic energy per particle t(n) as function of the areal density n = N/A.

2. Apply a weak external potential v(r) to such a system, which makes the one-body
density inhomogeneous, and write the total kinetic energy of the inhomogeneous
system in LDA, using the answer to the previous point.

3. Minimize the total energy with respect to n(r) [at given v(r) ], to obtain the
equilibrium density n(r).

4. Use the definition χ(r, r′) = [δn(r)/δv(r′)]v=0 to calculate the linear response
function of the system.

5. Calculate the Fourier transform of the response function.

6. What’s the relation between the result obtained above for the response function in
LDA and the exact result (for noninteracting electrons in 2D)

χ0(q) = − m

πh̄2

1− θ(q − 2qF )

√√√√1−
(

2qF
q

)2
 (2)

and why?
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3 * Response function in 1D.

Consider a non interacting electron un gas in one dimensione. The static linear response
function is define to be (in q space)

χ0(q) =
2

L

∑
k

f(k)

[
1

ε(k)− ε(k + q)
+

1

ε(k)− ε(k − q)

]
,

with ε(k) the energy levels of the non interacting electrons, and f(k) = θ(kF − |k|) the
Fermi occupation a T = 0.

1. Calculate χ0(q), giving all relevant details of the calculation.

2. Sketch χ0(q) as function o Q = q/kF , per Q ≥ 0. Comment on the behavior of χ0(q)
for q < 0 without drawing any figure.

3. The kinetic energy of the homogeneous electron gas in 1D is t(n0) = Cn2
0, with

C = (h̄2π2)/(24m). Write TLDA[n], the kinetic energy functional in the local density
approximation.

4. Consider the electron gas under the action of an external potential so that th cos̀ı
che total energy becomes E[n] = T [n]+

∫
dxn(x)v(x); write the extremum condition

obeyed by the functional at given external potential and solve for n(x). Beware th
Attenzione: la variation must be taken with the constraint that

∫
dxn(x) = N .

This requires using a Lagrange multiplier that we shall denote with , the chemical
potential.

5. Using the definition of response function in an homogeneous fluid,

χ0(x− y) =

[
δn(x)

δv(y)

]
v=0

,

calculate the response function in LDA and take its Fourier transform:χ(q) =∫∞
−∞ dzχ(z)eiqz.

6. Compare the previous result with that of point 1, on the graph of point 2, and
comment on the relation between the LDA and the exact results.
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4 * 1D electron gas in an external potential: LDA

Consider non interacting electrons (at T = 0), moving in 1 dimension. Use atomic units
(h̄ = e = me = 1) throughout the exercise.

1. Consider first the homogeneous electron gas (in 1D !) and give the relation between
the density n and the Fermi wavevector for spin unpolarized electrons (n↑ = n↓ =
n/2).

2. Knowing that in 1D for the homogeneous electron gas the kinetic energy per particle
is t = T/N = εF/3, write (for an inhomogeneous electron gas) the total kinetic
energy functional T [n] in the local density approximation (LDA).

3. Consider now the electron gas under the action of an external potential, so that
the total energy functional E[n] = T [n] +

∫
dxn(x)v(x) and write the extremum

condition obeyed by this functional (at fixed external potential). Beware: the
variation must be made with the constrain that

∫
dxn(x) = N . This requires

consideration of a Lagrange multiplier that we shall denote by µ and call chemical
potential.

4. Solve for n(x) as function of v(x) and µ

5. if v(x) = V0cos(x), with V0 = π/44, what is the condition that µ must satisfy?
Obtain the simplest possible expression for n(x) whenµ = π/4 and

6. Give a sketch of n(x) in the particular case considered above (V0 = µ = π/4) for
0 ≤ x ≤ 4π.
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5 * Properties of a two-dimensional semiconductor.

Consider a two-dimensional semiconductor. The conduction band has minimum with
an inverse mass tensor whose elements (in units of m−1e ) are (M−1)11 = (M−1)22 = 3
and (M−1)12 = (M−1)21 = 2. The valence band has a maximum with an inverse
mass tensor whose elements (in units of m−1e ) are (M−1)11 = (M−1)22 = 1 and
(M−1)12 = (M−1)21 = 0. The energy gap is Eg = 2.15eV.

1. Calculate the eigenvalue of M−1 for the conduction band.

2. Give the eigenvalue of M for the conduction band.

3. Calculate the energy density of states (per unit area) for the conduction band around
its minimum. [I suggest that you start from the definition of density of states in
terms of an integral over wavevectors of a Dirac delta, using for wavectors the normal
axes– those that make the mass tensor diagonal].

4. In the nondegenerate regime, calculate the concentration of electrons in the
conduction band as function of T, µ, εc, with obvious notation.

5. In the nondegenerate regime, calculate the concentration of holes in the valence
band as function of T, µ, εv,with obvious notation.

6. Obtain an expression for (i) the intrinsic carrier density as well as (ii) for the intrinsic
chemical potential and (iii) evaluate them numerically at T = 300oK.
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6 * Effective masses in a semiconductor

The experimental analysis of a certain semiconductor shows that the density of states in
energy of a specific band has, close to the band edge k∗ of that band, the expected square
root behaviour g(ε) = C

√
ε, where ε = |E − E∗| and C = 6.90 × 1020 cm−3/eV 3/2. In

what follows we shall assume that the laboratory coordinate system coincides with the
principal axes system (x̂1, x̂2, x̂3) of the mass tensor at k∗.

1. How much is the determinant of the mass tensor in units of m3
e?

2. Performing experiments in a magnetic field one finds that rotating H around the x̂3
axis the cyclotron effective mass does not change. How many different eigenvalues has,
at most, the mass tensor? Argue your answer in full details.
3. Knowing that for a magnetic field orthogonal to the x̂3 axis the cyclotron mass is
m∗(H) = 0.358me compute the eigenvalues of the mass tensor (in units of me).
4. Do you have an idea on which semiconductor could it be?
5. What is the shape of the orbits for a magnetic field lying along the x̂3 axis?
6. And for a magnetic field lying along the x̂1 axis?
7. What will be the measured cyclotron frequency (in cm−1 ) for a magnetic field with
Ĥ = (1/

√
2, 0, 1/

√
2)?
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7 * Divalent impurities

Consider a semiconductor with a dielectric constant ε = 12.5 and conduction effective mass
m = 0.067me, doped with few divalent donors, that can thus be regarded as independent.
Remember that the total binding energy of the He atom is E = 5.81Ry.

1. Write the expression and the numerical value (in eV) of the binding energy ε1,
respect to the conduction band for a single electron on the donor.

2. Write the expression and the numerical value (in eV) of the binding energy ε2, after
the addition of a second electron to the donor.

3. Estimate the effective Bohr radius (in Å) of the impurity with one electron and
judge if the “hydrogenic” approximation is reasonable. Do you expect that with
two electrons the approximation gets better or worse?

4. Compute the average occupation of these (independent) donor centers computing a
suitable average. How much is it at T = 0?

5. Determine the position of the chemical potential at T → 0, in the hypothesis that
only the mentioned donors are there.

6. IfNd is the density of the donor dopants and one adds (monovalent) acceptor dopants
as well with density Na = Nd, where will the chemical potential will go as T → 0?
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8 * Impurity-induced conductivity

Consider the crystalline semiconductor GaAs (gallium arsenide). This is a direct-gap
semiconductor (Eg ' 1.52 eV at room T : neglect the dependence of Eg on T ). The
conduction band has a measured effective mass of mc = 0.068me and the valence band of
mv = 0.41me. The measured dielectric constant is ε = 14.6.
Assume that the semiconductor is doped with donor and assume that one can describe
the state of the excess electrons thus introduced using the hydrogenic model.

1. Compute the binding energy Ed (in eV) of the excess electrons with respect to the
conduction band.
2. Compute the effective Bohr radius a∗B (in Å) of such electrons, assuming that each one
is in the hydrogenic ground state centered on a donor.
3. Is the value computed for a∗B compatible with the hydrogenic model used?
4. Assume that when the average distance between the donor centres becomes comparable
with a∗B the electrons screen each other, ceasing to be bound and ending up in the
conduction band. For which critical value ncr of the donor (electron) density will this
happen? Compute ncr in cm−3.
[Hint: write the average donor/electron density as nd = [(4π/3)a3]−1 and take a as a
measure of the average distance between donors. Other possible methods to estimate ncr
are not, however, discouraged.]
5. Estimate the carrier density (nc+pv, in cm−3) at T = 10Ko in the intrinsic (undoped)
semiconductor using the data provided in the introduction.
6. Compare the carrier densities obtained at point 4 and 5 and write whether at
T = 100Ko and for nd > ncr the doped semiconductor is in the extrinsic (dopant-
dominated) or intrinsic regime.
7. At T = 0 and for a donor density nd > ncr, is doped GaAs an insulator, a
semiconductor or a metal? Why?
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9 * Electrons in GaAs/AlGaAs-based quantum wells

It is possible to make in the laboratory GaAs/AlGaAs-based heterostructures in which
an (almost) 2D electron gas can be created.
It is known that the dielectric constant of these systems is ε = 12.5. Moreover,
cyclotron resonance experiments using a field B = 104gauss reveal a cyclotron frequency
ωc = 1.76× 1011s−1 for the electrons.
One can assume that the said electrons move in a dielectric continuum.

1. Compute the electron effective mass m∗ in units of the electron mass me.
2. How much is the energy per electron ε and the Fermi energy EF (in eV) for such a 2D
electron gas if the density is n = 3.18× 109cm−2?
3. How much is TF in K?
4. Draw a qualitative plot of the Fermi function as a function of the energy for
0 ≤ E ≤ 0.1eV , plotting f(E) as a function of E/EF .
5. The importance of electron interaction can be measured via the ratio γ between (i)

the potential energy of two electrons at the typical average distance a =
√

1/(πn) and (ii)
the Fermi energy EF . How much is γ in this electron gas?
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10 * Charge transfer in coupled quantum wells

Consider two strictly 2D symmetrical quantum wells at a distance d.
[Each quantum well traps electrons forcing them to move exclusively on a plane. The
first well (A) can be modeled as the plane perpendicular to the z-axis an passing through
z = 0, the second (B) is parallel to the first and passes through z = d. Initially each plane
is electrically neutral with an electron (number) areal density N/A = ρ neutralized by a
uniform positive background with charge areal density eρ. Note that the substrates are
fixed, while the electrons are free to transfer from a plane to the other.]
Without any loss of generality we shall consider the possibility that electron transfer from
B to A. The electron charge distributions remain always uniform in each plane.

1. Write the variation of the electrostatic energy per unit area EH(n, d) caused by the
transfer of n ≤ ρ electron (per unit area) from B to A. [Hint: the charge transfer leads to
a net charge density −en on plane A and +en on plane B. Consider the energy per unit
area accumulated in the electric field, or equivalently the work per unit area needed to
separate the two charged planes from distance 0 to a distance d.]
2. In the Hartree-Fock scheme the electrons in each plane interact with each other with
an energy per unit area of the form EI(ρI) = Cρ2I − Dρ

3/2
I , I=A, B, with C = e2πaB/2

and D = e2(4/3)
√

2/π; evidently ρB = ρ− n and ρA = ρ+ n. Write the energies per unit

area due to the interactions in the two planes EA(ρ+ n) and EB(ρ− n).
3. Write the total energy per unit area ET (ρ, n, d) = EA + EB + EH
4. Write (i) the change in total energy corresponding to a charge transfer from B to A
∆(ρ, n, d) = ET (ρ, n, d)−ET (ρ, 0, d) and (ii) consider specifically the case of total transfer
n = ρ, namely compute ∆t = ∆(ρ, ρ, d).
5. Are there, at a fixed distance d, situations where the total transfer is energetically
favourable (i.e., ∆t < 0)? If so, write the condition that must be satisfied by the density
ρ.
6. In case of an affirmative answer at the previous point, consider the special case in
which d = 200Å and the effective Bohr radius aB = 100Å, and estimate the maximum
density ρ∗ (in cm−2) at which the transfer can be observed.
7. How much is the radius r∗s of the Wigner disk corresponding to the density of the
previous point? [π(r∗saB)2 = ρ∗−1]
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11 * Properties of molecules with a triplet excited

state.

Consider molecules with a triplet excited state at an energy superior of ∆ with respect
to the singlet ground state. Both states have zero orbital angular momentum. All other
excited states can be neglected at the temperatures of interest. Imagine a non-interacting
gas of such molecules at temperature T .

1. Write the Helmholtz free energy per molecule of such a gas in the presence of a
magnetic field B = Bẑ.

2. Compute the average magnetization per molecule.

3. Calculate the molecular magnetic susceptibility.

4. Write the limiting expression for the magnetic susceptibility when (i) β∆� 1 and
(ii) β∆� 1.

5. Compute the entropy per molecule at B = 0 and try to draw a qualitative plot of
it as a function of KBT/∆.

6. Compute the molecular specific heat and draw a qualitative plot of it as a function
of KBT/∆.
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12 * Magnetism of the electron gas and Stoner

condition.

A 3D homogeneous electron gas is subject to a magnetic field B pointing in the z direction.
Consider a stat in which N+ electrons have positive spin component (along z) and N−
negative and define the spin polarization ζ = (N+ − N−)/N with N = N+ + N−. The
energy of each spin component (σ = ±) is made up by three contributions: (i) kinetic
energy Nσ(3/5)(h̄2K2

F,σ)/(2m), (ii) exchange energy Nσ(3e2KF,σ)/(4π), and the coupling
energy between the spin magnetic moments and B; clearly KF,σ is the Fermi wavevector
of the spin component with projection σ.

1. Write the energy of the spin-up electrons.

2. Write the energy of the spin-down electrons.

3. Write the total energy and write down the condition that determines the equilibrium
polarization at constant N and V .

4. Specialize the condition found at the previous point to the case ζ � 1 and give an
explicit formula the equilibrium ζ.

5. Find for which values of rs, considering B of about 104 gauss, the value of ζ found
at the previous point is indeed small.

6. What is the condition for which the state with ζ = 0 becomes unstable (a maximum
for the energy!).
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13 Specific heat in a Heisenberg ferromagnet.

Consider a 3D Heisenberg ferromagnet, in the absence of external magnetic fields. Assume
that the spins have magnitude S and lie on a BCC lattice with lattice parameter aL. Also
assume only nearest-neighbours exchange interactions, with exchange coupling constant
J .

1. Consider excitations from the ground state in the form of spin waves. Find the
dispersion relations of the excitation energies for small values of the wave vector
k, writing explicitly the excitation energy ε(k) of the spin wave as a function of
S, aL, J, k.

2. Consider the specific heat per unit volume, at constant volume, cMv , due to the
magnetic excitations, in the limit of low temperatures, assuming that the low-energy
excitations are due to spin waves and have the form found in the previous point.
Express cMv in terms of S, aL, J,KB, T . [Note: the problem is very similar to that
of the low-temperature specific heat due to lattice vibrations, where one considers
spin waves (or magnons) in place of phonons.]

3. Taken as known the lattice specific heat cLv at low T [in terms of KB, T, h̄, c, with c
a suitable average of the speed of sound].
Assuming that the crystal considered here is an insulator and thus that the total
specific heat cv = cMv + cLv comes only from the lattice and magnetic contributions,
estimate at which temperature T ∗ [written in terms of KB, h̄, c, S, aL, J ] one has
cMv = cLv .

4. With reference to point 3, write down the condition that must be obeyed by the
temperature so that the magnetic specific heat dominates on the lattice specific heat
and thus is easily observable.

Note: The Riemann zeta function, ζ(s) =
∑

1,∞ n
−s, n an integer, can be found tabulated

in the book: Jahnke-Emde-Lösche, Tables of higher functions, McGraw-Hill, NY 1960.
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14 * Peierls instability in a 1D conductor.

Consider a system of ions and electrons forced to move along a line. The ions have unit
charge and there is one electron per ion, so that the system is globally neutral. Assume
that the ions lie in the positions X0

n = na ant that the electron energy levelsε0(q) are
known. As a simplification we shall assume ε0(q) = h̄2q2/2m. In the ground state all and
only the levels with |q| ≤ qF are occupied, with qF = π/2a and the energy per electron
turns out to be E0

e = εF/3.
Consider a lattice deformation

Xn = X0
n + u(n),

u(n) = ∆ cos(2qFna) = ∆ cos(πn)

where ∆ is a parameter.

1. What is the periodicity of the deformed lattice?
2. Compute the variation of the ion-ion energy (per ion) Ea, describing the interionic
interaction as due to springs having an elastic constant C (and rest length a), connecting
each ion to its first neighbors.
3. The lattice deformation induces an additional electron-ion potential of the form

Uei = 2A∆cos(2qFx) = A∆(ei2qF x + e−i2qF x).

Uei couples states with wavevectors differing by 2qF ≡ G1, with an amplitude UG1 = A∆.
In the two-level scheme, each eigenvalue ε0(q) originates two perturbed levels. Clearly
at each q the electrons occupy the lowest level ε(q) ≡ ε−(q). Compute the energy per
electron in the deformed lattice

Ee =
1

qF

∫ qF

0
dq ε(q).

(In order to compute the integral easily it is suggested to change the integration variable
to y = qF − q).
4. Compute the equilibrium ∆∗ by minimizing the total energy E(∆) = Ea + Ee with
respect to ∆, namely by imposing that

dE(∆)

d∆
= 0.

5. Exploit the expression for ∆∗ to show that E(∆∗) − E(0) < 0. This shows that the
deformed system has lower energy and hence is the equilibrium state. Is this deformed
system a metal or an insulator?
6. Simplify the expression of ∆∗ assuming that CεF/A

2 is much greater than one, so that
sinh(x) ≈ ex/2. Then rewrite CεF/A

2 as a function of the density of states in q at the
Fermi level, N0 = g(εF )/2, and of the effective electron-electron potential V0 = A2a/2C.
Does the expression found remind you of something?
Notes:
1. Remember that:

∫
dt
√

1 + t2 = (1/2)[t
√

1 + t2 + arcsinh(t)], and (d/dx)arcsinh(x) =
1/
√

1 + x2.
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2. Remember that in D dimensions the free-electron density of states is

g(ε) =
Dn

2εF

[
ε

εF

]D/2−1
,

n being the density.
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15 * Peierls instability.

Consider a 1D non-interacting electron gas. The definition of the (density-density) static
response function in Fourier transform space is

χ0(q) =
2

L

∑
k

[
f(k − q/2)− f(k + q/2)

ε(k − q/2)− ε(k + q/2)

]
,

ε(k) being the energy level of the non-interacting electrons, and f(k) = θ(kF − |k|) the
Fermi functions at T = 0.

1. Compute χ0(q) starting from the above formula, writing down all relevant passages.

2. Draw a semi-quantitative plot of χ0(q) as a function of Q = q/kF , Q ≥ 0. Comment
on the shape of the plot for Q ≤ 0, without drawing it.

3. The density response to an external energy field V is given by ρ(q) = χ0(q)V (q).
What do you expect it happens if one applies an arbitrarily small field with
V (2kF ) 6= 0? What will be the periodicity of the perturbed system? (Remember
that in 1D kF = πn0/2, n0 = N/L.)

4. The kinetic energy per electron of an homogeneous electron gas in 1D is t(n0) = Cn2
0,

C = (h̄2π2)/(24m). Write down ELDA[n], the total energy functional in the Local
Density Approximation (LDA) for an inhomogeneous system.

5. Using the following alternative definition for the response function of a homogeneous
1D fluid:

χ−10 (x, y) = −
[

δ2E[n]

δn(x)δn(y)

]
n(x)=n0

,

where χ−10 is such that ∫
dz χ0(x, z)χ

−1
0 (z, y) = δ(x, y),

compute the LDA response function in k-space.

6. Compare the result of the previous point with that of the first, on the plot done at
point 2, and identify in which limit the two results coincide and why.

Note: Remember that in a translationally invariant system χ0(x, y) = χ0(x− y).
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16 1D chain of rare-gas atoms

Consider a linear chain of Krypton atoms and assume that they interact with a pair force
of the Lennard-Jones form φ(|x|) = 4ε[(σ/x)12 − (σ/x)6].

1. Write the potential energy per particle u(a) when the particles lie regularly at a
spacing of a, i.e. when xn = na. Compute: (i) the equilibrium distance a0 as a
function of σ and (ii) the cohesive energy as a function of ε.

2. Compute the phonon dispersion relation [i.e. ω(q) as a function of q], under the
hypothesis that interactions beyond first-neighbours can be neglected. Express
explicitly the dispersion law as a function of ε, σ,M , where M is the mas of the
rare gas atom.

All the atoms have zero speed at t = 0. In symbols, if u(n, t) is the displacement at
time t of the n-th atom from the equilibrium position na0, we are using the initial
conditions

u(n, 0) = lδn,0,
u̇(n, 0) = 0,∀n.

A. Compute the time evolution of the chain at t > 0.

B. Compute at which time t1 > 0 [in seconds] the 0-th atoms is to be found again
in its equilibrium position [u(0, t1) = 0].

C. Compute the speed [in cm/s] which the 0-th atom has when it goes through
the equilibrium position at t = t1.

Hints:

• The parameters for the Lennard-Jones potential for the rare gases can be found on
Ashcroft-Mermin [AS].

• Numerical values of the Riemann zeta functions [ζ(s) =
∑∞
n=1 n

−s] can be found,
for instance, in the book [HMF]:Handbook of Mathematical Functions, Edited by M.
Abramowitz and I. A. Stegun (Dover, New York).

• Remember that the phonons are the normal modes of oscillation of the chain, in the
harmonic approximation. Hence any displacement of the atoms from the equilibrium
position [provided it is sufficiently small that the harmonic approximation still holds]
can be analyzed in terms of phonons. One has then to find the linear combination
of normal oscillations that satisfies the conditions listed in (1).

• Remember the identity
∑
q exp(iqna0) = Nδn,0 where the sum over q is on the 1st

BZ and one considers a chain of N atoms with periodic boundary conditions.

• Remember the definition of Bessel Function

Jn(z) =
1

π

∫ π

0
dx cos(nx− zsinx).

Zeros and other properties of the Bessel Functions can be found in the HMF book
above mentioned, or in other specific books.
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17 * Stability of monatomic crystals at T > 0

Consider a harmonic crystal with one atom per cell, in D dimensions (we are clearly
interested especially in D = 1, 2, 3.)

1. Show that the phonon density of states at low frequencies (ωs(k) = cs(k̂)k per ω < ωc)
has an g(ω) = AωD−1 behaviour.
[To be more precise one should find A = [DΩD]/[(2π)DcD], with ΩD the solid angle in D
dimensions and c a suitable average over angles and polarizations of a function of cs(k̂):
which one?]
2. Consider now the square mean displacement of the atoms from the equilibrium position,
defined as

u2 =
1

N

∑
R

〈u2(R)〉,

with 〈. . .〉 the average at a given temperature. Express u2 as a sum over the normal-modes
frequencies.
[We suggest to use the following:
(i) u(R) = (1/

√
N)

∑
k,s us(k)eik·R, with us(k) normal coordinates and k ∈ FBZ; (ii)

us(k) ∝ εs(k), and εs(k) = εs(−k); (iii) the mean value at a given temperature of the
potential energy of a normal oscillator is clearly equal to half of the average value of the
total energy h̄ωs(k)(ns(k) + 1/2).]
3. Rewrite u2 as an integral over the frequencies, introducing the density of states.
4. Specialize the previous formula to a finite system, simply by limiting the integral over
the frequencies to ω > ωt = 2πc/L, where the cutoff frequency ωt is L = N1/D/ρ1/D, with
ρ the atomic density and within adimensional constants of order 1.
5. Estimate, for T > 0, the dominating contribution to u2 due to the low-frequency
modes (ωt < ω < ωc), in the regime βh̄ω � 1 .
6. What happens to u2 for D = 2 when N →∞?
7. As above but for D = 1.
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18 * Stability of monatomic crystals at T > 0, new

version

Consider a harmonic crystal with one atom per cell, in D dimensions (we are clearly
interested especially in D = 1, 2, 3.)

1. Show that the phonon density of states at low frequencies (ωs(k) = cs(k̂)k per ω < ωc)
has an g(ω) = AωD−1 behaviour.
[To be more precise one should find A = [DΩD]/[(2π)DcD], with ΩD the solid angle in D
dimensions and c a suitable average over angles and polarizations of a function of cs(k̂):
which one?]
2. Consider now the square mean displacement of the atoms from the equilibrium position,
defined as

u2 =
1

N

∑
R

〈u2(R)〉,

with 〈. . .〉 the average at a given temperature. Express u2 as a sum over the normal-modes
frequencies.
[We suggest to use:

u(R) =
1√
N

∑
k,s

√
h̄

2Mωs(k)
(ak,s + a†−k,s)εs(k)eik·R,

where of course the k-sum is extended to the FBZ and simmetries appropriata to a Bravais
hold.]
3. Rewrite u2 as an integral over the frequencies, introducing the density of states.
4. Specialize the previous formula to a finite system, simply by limiting the integral over
the frequencies to ω > ωt = 2πc/L, where the cutoff frequency ωt is L = N1/D/ρ1/D, with
ρ the atomic density and within adimensional constants of order 1.
5. Estimate, for T > 0, the dominating contribution to u2 due to the low-frequency
modes (ωt < ω < ωc), in the regime βh̄ω � 1 .
6. What happens to u2 for D = 2 when N →∞?
7. As above but for D = 1.
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19 1D chains with long-range interactions: vibration

modes and stability

Consider a system of particles forced to move in 1D [for instance the x axis] interacting
via a pair potential φ(|xn − xm|; |n−m|).

1. Write the potential energy per particle u(a) when the particles are arranged in a
regular fashion spaced by a, that in when xn = na.

2. Consider small oscillations of the particles around the regular arrangement described
at point 1, that is xn = na+ δn with |δn| � a. Write then the total potential energy
in powers of the δn, up to the second order included. The zero-order term of course
coincides with Nu(a), if you consider a piece of the chain with N particles [and Born
- von Karman boundary conditions].

2.a) Show that the first-order term is always missing, so that the configuration
xn = na is always an extreme of the energy for each a.

2.b) Writhe the dynamical matrix D(|n−m|), determining the second order term,
as a function of the φ′′(|n|a; |n|), where the double prime denotes the second
derivative of φ with respect to its first argument.

2.c) Using the result of point 2.b) write the dispersion relation for the small
oscillations [harmonic vibrations] as a function of the φ′′(|n|a; |n|), assuming
that the particles mass is M ; that is, write explicitly ω2(k).

3. Consider a pair potential of the type

φ(|x|; |n|) =
C

|x|α
+
e2

|x|
(−1)n,

which includes both repulsive [C > 0 and let us consider for the time being α > 0 so
that we have a repulsion that declines with distance] and Coulombic interactions.

3.a) Write the dispersion relation in this specific case, using the notation: G =
α(α+ 1)C/aα+2, with G being a force constant, σ = e2/(Ga3) an adimensional
parameter measuring the relative importance of the Coulombic interaction with
the repulsive interaction, and ω2

0 = 4G/M . One should obtain

ω2(k)

ω2
0

=
∞∑
n=1

1

nα+2
sin2(

kna

2
) + σ

∞∑
n=1

(−1)n

n3
[1− cos(kna)]

.

3.b) Consider the relation obtained in 3.a) at the zone boundary, i.e. for k = π/a.
To this end introduce the Riemann Zeta function ζ(s) =

∑∞
n=1 n

−s. Bear also in
mind the identity

∑∞
n=1(−1)nn−s = −ζ(s)(1−21−s), easily provable separating

the sum in even and odd terms and by summing and subtracting once the even
terms.
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3.c) Using the result of 3.b) show that the square of the frequency becomes negative
for σ ≥ σπc = 4ζ(α+2)/(7ζ(3)). This indicates an instability of the 1D crystal.
That is, the configuration assumed as the equilibrium one is just an extremum
and is not a minimum.

3.d) Consider the dispersion for small k, i.e. for k → 0. Assuming that α > 1,
compute explicitly the speed of sound. Show that it becomes imaginary for
σ ≥ σ0

c = ζ(α)/(2ln2), drawing conclusions similar to the previous point.

4. Clearly for σ ≥ σπc one finds imaginary frequencies close to the zone boundary and
for σ ≥ σ0

c also at the zone center. This type of instability, anyway, concerns crystal
deformations at fixed density, that is at fixed a.

4.a) Try to study the stability with respect to the changes in a, considering the
equilibrium energy u(a) of point 1. Show that the requirement that u(a) is a
minumum yields an equilibrium parameter a0 = [αCζ(α)/(e2ln2)]1/(α−1), with
the additional condition α > 1. [Compare with the assumption at 3.d)].

4.b) Consider small oscillations around the equilibrium points obtained at (4.a).
Then, at a0 there will be one G0 and thus σ0 = ζ(α)/((α+ 1) ln 2). Show that
in this case the speed of sound is always a real quantity. With reference to
point 3.c, try to discuss what happens at the zone boundary for integer values
of α, with α > 1. [If one wishes to attack this last point it will be necessary to
compute numerically ζ(n), which can be found tabulated in the book Handbook
of Mathematical Functions, edit. M. Abramowitz and I. Stegun, (Dover, NY,
1972).]
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20 * Kohn anomaly

Consider a linear chain of identical atoms with a equilibrium spacing a. Let u(n)
be the displacement from the equilibrium position (na) of the n–th atom. There
are springs acting over all atoms, so that the force on the n–th atom is given by
F (n) =

∑
mCm[u(n+m)− u(na)].

1. Write th equation of motion of a generic atom.
2. Show that solutions of the form ei(qna−ωqt) satisfy the equations of motion, obtaining
an expression for ω2

q .
3. Assume that

Cm = C
sin(mk0a)

ma

and compute dω2
q/dq.

4. How much is dω2
q/dq at q = k0?

5. Draw a qualitative plot of ωq as a function of q around q = k0.
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21 * 1D chain with further-neighbours interactions

Consider the oscillation modes of a linear atomic chain having mass M , in the case in
which there exist interactions beyond first neighbours.

1. Write the energy of the chain denoting with u(na) the displacement from the
equilibrium position na of the n−th atom and with Cm the force constant of order m,
m ≥ 1.
Remember that the interaction energy between the n−th atom and its m−th neighbour
is (1/2)Cm [u(na)− u[(n+m)a]]2.
2. Write the dispersion relation ω(k).

3. Consider C1 = C, with Cm = 0 for m > 1, and plot ω̃(q) ≡ ω
√
M/C/2, where

q ≡ ka/2, for 0 ≤ q ≤ π/2.
4. Consider now C1 = C, C2 = C/4 with Cm = 0 for m > 2 and plot again ω̃(q). [It is
enough to concentrate on the differences from the case at the point 3 for small q and for
q = π/2.]
5. Consider now C1 = C, C2 = C/4, C3 = −C/5 with Cm = 0 for m > 3, and plot
again ω̃(q). [It is suggested to consider explicitly the behaviour at small q and the points
q = π/6, π/3, π/2.]
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22 * Square harmonic crystal

Consider a square crystal wit lattice parameter a. Each atom has mass M and is connected
to its first neighbors via springs having elastic constant Gx in the x direction and Gy in
the y direction.

1. Write the potential energy U of the crystal when the atoms perform small oscillations
around the lattice sites. [The springs have rest length a and the motion is strictly 2D.]
2. Write the equation of motion for a generic atom.
3. Solve the equation obtained in (2) using a plane wave ansatz and characterize the two
modes so obtained.
4. Here and in what follows take Gy = 4Gx. Plot the two modes: (i) along the path
(in units of π/a) (0,0) → (1,0) → (1,1) → (0,1) → (0,0) and (ii) along the path (again
in units of π/a) (0,0) → (1,1). [The paths are meant to be straight lines connecting the
given points.]

5. Write the dispersion relations for the two modes when
√
q2x + q2y a� 1.

6. Compute the phonon specific heat at low T , in a similar way to the way used in 3D
and considering that

∫∞
0 dx x/(ex − 1) = π2/6.

7. Write the dynamical matrix as a matrix respect to the Cartesian indexes (x,y) and
lattice indexes (m,n). [Note: the Bravais translations are R = (m,n)a].
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