Condensed Matter Physics II. – A.A. 2023-2024, April 17, 2024

(time 3 hours)

Solve the following two exercises.

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: Screening in a 2-dimensional electron gas at long wavelengths

Consider electrons in 2D on a rigid uniform neutralizing charge background in the presence of a potential energy field $\Phi_{ext}(\mathbf{r})$ due to external charges. The energy functional for the system is::

$$E[\rho] = T_0[\rho] + U_{xc}[\rho] + \frac{e^2}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \frac{\rho_Q(\mathbf{r})\rho_Q(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \int d\mathbf{r}\rho_Q(\mathbf{r})\Phi_{ext}(\mathbf{r}),$$

where $\rho(\mathbf{r})$ is the electron density and $\rho_Q(\mathbf{r}) = \rho(\mathbf{r}) - \rho_b$, with ρ_b the density of background charges. Use the LDA approximation for the first two terms in the functional above, setting

$$E_{LDA}[\rho] = \int d\mathbf{r}\rho(\mathbf{r})\varepsilon(\rho(\mathbf{r})) + \frac{e^2}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{\rho_Q(\mathbf{r})\rho_Q(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \int d\mathbf{r}\rho_Q(\mathbf{r})\Phi_{ext}(\mathbf{r}),$$

with $\varepsilon(\rho)$ the energy per particle of the homogeneous 2D electron gas, assumed known. This approximation should become accurate in the long wavelength limit.

- 1. Write the extremum condition for the above functional.
- 2. Rearrange the terms involving $\varepsilon(\rho(\mathbf{r}) \text{ and } d\varepsilon(\rho)/\rho|_{\rho(\mathbf{r})}$ so that $\mu(\rho(\mathbf{r}))$ appears.
- 3. Obtain the Lagrange multiplier introduced in the point 1 above (say λ) when $\Phi_{ext}(\mathbf{r}) = 0$ (homogeneous electron gas).
- 4. For $\Phi_{ext}(\mathbf{r})$ small we expect $\rho_Q(\mathbf{r})$ to be much smaller than ρ_b and therefore linearize in $\rho_Q(\mathbf{r})$ the extremum condition.
- 5. Obtain the linear proper response, i.e. the response $\tilde{\chi}(q)$ to the total potential energy field $\Phi(\mathbf{q})$,

$$\tilde{\chi}(q) = \frac{\rho_Q(\mathbf{q})}{\Phi(\mathbf{q})}$$

6. Knowing the response $\tilde{\chi}(q)$ you can immediately write down the dielectric function $\epsilon(q)$. Beware: the Fourier transform of the electron-electron interaction appears explicitly in $\epsilon(q)$ and it is different for different dimensions. In 2D the Fourier transform of 1/r is $2\pi/q$.

Exercise 2: Model semiconductor in the degenerate and intrinsic regime

Let's consider a model semiconductor in the degenerate, intrinsic regime: in other words, we consider a semiconductor for which it is **not** possibile to assume neither $\epsilon_c - \mu \gg K_B T$ nor $\mu - \epsilon_v \gg K_B T$. Moreover, we assume that the impurity concentration is negligible (intrinsic regime). The semiconductor density of states, however, satisfies: $g_v(\epsilon^* - \epsilon) = g_c(\epsilon^* + \epsilon)$, with $\epsilon^* = (\epsilon_c + \epsilon_v)/2$.

- 1. Assuming that the maximum of the conduction band is at $\epsilon_c + 2\Delta$, provide a qualitative sketch of $g_c(\epsilon)$, with the correct qualitative behavior at ϵ_c and $\epsilon_c + 2\Delta$: please indicate explicitly such qualitative behaviors. Here and in the following it is suggested to take ϵ^* as zero of energy.
- 2. Give a qualitative sketch (on the same graph) of $g_v(\epsilon)$ and $g_c(\epsilon)$.
- 3. Write down the condition that determines the chemical potential, keeping in mind that the Fermi distribution cannot be approximated in any way, due to the degenerate regime: in othe words, impose $n_c(T,\mu) = p_v(T,\mu)$, with obvious notation. It is suggested that you rearrange the two integrals providing the carrier concentrations in a form that allows the determination of μ by inspection. [Note, you do not need to perform any integral!].
- 4. Consider now a density of states $g_c(\epsilon) = A\sqrt{(\epsilon \epsilon_c)(2\Delta \epsilon + \epsilon_c)}$. Determine A as function of ρ_L and Δ , knowing that the system is a Bravais with one atom/site, that the density of states results from just one band and that ρ_L is the density of lattice sites in space.
- 5. Express the effective mass at the bottom of the conduction band in terms of ρ_L and Δ .
- 6. Knowing that $\rho_L = 5.00 \times 10^{22} cm^{-3}$ and $\Delta = 27.7 eV$ evaluate m_c/m_e with 3 significant figures.