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where &k denotes dk,dk,dk,. In this formula ¢y = | ¢(r)e™**dV. Applying the Laplace
operator to both sides of (51.2), we obtain
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'so that the Fourier component of the expression A¢ is

(AP = K¢y

On the other hand, we can find (A¢), by taking Fourier components of both sides of
equation (51.1),

(Apl =- J‘ 4ed(r)e ® TdV = — 4re.

Equating the two expressions obtained for (A¢),, we find
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This formula solves our problem.
Just as for the potential ¢, we can expand the field
d’k
E= | Ege*r 514
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With the aid of (51.2), we have
_d*k v Jikr_dk
E = - grad J‘(bke T on )3 =— J‘lk(bkek r(27'c)3 .
Comparing with (51.4), we obtain
. 4mek
Ek = —'lk¢k = - kz (51.5)

From this we see that the field of the waves, into which we have resolved the Coulomb field,
is directed along the wave vector. Therefore these waves can be said to be longitudinal.

§ 52. Characteristic vibrations of the field

We consider an electromagnetic field (in the absence of charges) in some finite volume of
space. To simplify further calculations we assume that this volume has the form of a rectangular
parallelepiped with sides A, B, C, respectively. Then we can expand all quantities characterizing
the field in this parallelepiped in a triple Fourier series (for the three coordinates). This
expansion can be written (e.g. for the vector potential) in the form:
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A= % Agekr (52.1)

explicitly indicating that A is real. The summation extends here over all possible values of
the vector k whose components run through the values

2nn 27mn 2
e 5 k=T (52.2)
where n,, ny, n, are positive or negative integers. Since A is real, the coefficients in the
expansion (52.1) are related by the equations Ay = Ay. From the equation div A = 0 it
follows that for each k,

ky

k-A,=0, (52.3)

i.e., the complex vectors A, are “perpendicular” to the corresponding wave vectors k. The
vectors Ay are, of course, functions of the time; from the wave equation (46.7), they satisfy
the equation

Ay +c2k2A, =0. (52.4)

If the dimensions A, B, C of the volume are sufficiently large, then neighbouring values
of k,, k,, k. (for which n,, ny, n_ differ by unity) are very close to one another. In this case we
may speak of the number of possible values of ky, ky, k, in the small intervals Ak,, Ak,, Ak,.

Since to neighbouring values of, say, k,, there correspond values of n, differing by unity,
the number An, of possible values of k, in the interval Ak, is equal simply to the number of
values of n, in the corresponding interval. Thus, we obtain

- A - B - C
An, = 7 Ak, , An, = o7 Ak, An_. = o Ak, .
The total number An of possible values of the vector k with components in the intervals Ak,,
Ak,, Ak, is equal to the product An, Any An,, that is,

Y Ak, Ak, AR, (52.5)

Q)
where V = ABC is the volume of the field. It is easy to determine from this the number of
possible values of the wave vector having absolute values in the interval Ak, and directed
into the element of solid angle Ao. To get this we need only transform to polar coordinates
in the “k space” and write in place of Ak, Ak, Ak, the element of volume in these coordinates,

Thus

__V
Q)
Replacing Ao by 47, we find the number of possible values of k with absolute value in the
interval Ak and pointing in all directions: An = (V/212)K’Ak.
We calculate the total energy

An k2 AkAo. (52.6)
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of the field, expressing it in terms of the quantities Ay. For the electric and magnetic fields
we have

E= ~‘1—A = —lz Akeik'r,
c CcCk
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H=cur1A=i)l;(kxAk)e“‘". (52.7)

When calculating the squares of these sums, we must keep in mind that all products of terms
with wave vectors k and k” such that k # k’ give zero on integration over the whole volume.
In fact, such terms contain factors of the form ¢ ¥ and the integral, e.g. of

1 i~2£nx
je A dx,
0

with integer n, different from zero, gives zero. In those terms with k” = —k, the exponentials
drop out and integration over dV gives just the volume V.
As a result, we obtain

o= T Au AL+ doxan - (oxapl
From (52.3), we have

(k< Ay) - (kX Ay) = K2A, - A},
so that

#=—Y_F (A, - A} +k2?A, - A} (52.8)
8nc” k

Each term of this sum corresponds to one of the terms of the expansion (52.1).

Because of (52.4), the vectors A, are harmonic functions of the time with frequencies @y
= ck, depending only on the absolute value of the wave vector. Depending on the choice of
these functions, the terms in the expansion (52.1) can represent standing or running plane
waves. We shall write the expansion so that its terms describe running waves. To do this we
write it in the form

A= % (age™ T +age 1) (52.9)

which explicitly exhibits that A is real, and each of the vectors a, depends on the time
according to the law

ag "’e_iwk’, Wy = ck. (52.10)

Then each individual term in the sum (52.9) will be a function only of the difference
k - r — ayt, which corresponds to a wave propagating in the k direction.

Comparing the expansions (52.9 ) and (52.1), we find that their coefficients are related by
the formulas

Ay =a, +a’y,
and from (52.10) the time derivatives are related by
Ak = —iCk(ak - aik ).

Substituting in (52.8), we express the field energy in terms of the coefficients of the expansion
(52.9). Terms with products of the form ay- a_, or ay - a’y cancel one another; also noting
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that the sums Xa, - ay and Xa_,a’, differ only in the labelling of the summation index,
and therefore cojncide, we finally obtain: :

2
#=Tth, &= "2—”" a, -al. (52.11)

Thus the total energy of the field is expressed as a sum of the energies &, associated with
each of the plane waves individually.

In a completely analogous fashion, we can calculate the total momentum of the field,
L | 'sav=-L | ExHav,
(;2 drc

for which we obtain

&

P

=~

)k: (52.12)
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This result could have been anticipated in view of the relation between the energy and
momentum of a plane wave (see § 47).

The expansion (52.9) succeeds in expressing the field in terms of a series of discrete
parameters (the vectors ay), in place of the description in terms of a continuous series of
parameters, which is essentially what is done when we give the potential A(x, y, z, 7) at all
points of space. We now make a transformation of the variables a,, which has the result that
the equations of the field take on a form similar to the canonical equations (Hamilton
equations) of mechanics.

We introduce the real “canonical variables” Q, and Py according to the relations

2 ‘22 (ay +ay), (52.13)

Py = -iow, /# (ag —ay) = Qk-

The Hamiltonian of the field is obtained by substituting these expressions in the energy
(52.11):

H= X = 2 3P + 0} Q}). (52.14)

Then the Hamilton equation J #/0Py = Qk coincide with P, = Qk , which is thus a
consequence of the equations of motion. (This was achieved by an appropriate choice of the
coefficient in (52.13).) The equations of motion, 0#/9Qy = — Pk, become the equations

Q, + 02 Qy =0, (52.15)

that is, they are identical with the equations of the field.

Each of the vectors Q, and Py is perpendicular to the wave vector k, i.e. has two independent
components. The direction of these vectors determines the direction of polarization of the
corresponding travelling wave. Denoting the two components of the vector Qy (in the plane
perpendicular to k) by Qy;, j = 1, 2, we have

Qi =0},
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and similarly for Py. Then
_ : e _ 1(p2 22
H= ij%kj, ;= 5 (B + 0; Ok;)- (52.16)
We see that the Hamiltonian splits into a sum of independent terms #;, each of which
contains only one pair of the quantities Qy;, Py;. Each such term corresponds to a travelling
wave with a definite wave vector and polarization. The quantity 7 ; has the form of the
Hamiltonian of a one-dimensional “oscillator”, performing a simple harmonic vibration. For
this reason, one sometimes refers to this result as the expansion of the field in terms of
oscillators.

We give the formulas which express the field explicitly in terms of the variables Py, Q.
From (52.13), we have

=L@ i000, ai=-L[E@ i) G217
Substituting these expressions in (52.1), we obtain for the vector potential of the field:
A=2 \/% ) %(cka cosk - r — P, sink- r). (52.18)
For the electric and magnetic fields, we find

E=-2/% Y(ckQ, sink-r+ P, cosk-r),
V 'k

H= —2@ % %{ck(k x Q)sink-r+ (kx P )cosk-r}. (52.19)



