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1. Introduction.

The problem of verifying the coherence of a probabilistic assignment on a finite set
of conditional events has been recently examined by several authors ([6, 7, 10, 11, 25]).
The algorithms proposed are substantially very similar and they all require to solve a
sequence of systems of linear inequalities, such that the number of rows of each of these
systems is determined by the solution found for the previous one. In the sequel, we shall
examine how the concept of strictly complementary solution of a linear program (LP)
can be applied in this framework to reduce the number and the size of the systems to be
solved. We shall refer to the procedure proposed in [25], but the technique described can
be employed in the other variants of the algorithm as well. Besides, we will see that the
strict complementarity can be also applied, for the same purposes, to the algorithm for
extending coherent probabilities proposed in [26].

The definition of strictly complementary solution of a LP dates back to the beginning
of linear programming. Nevertheless, the importance of the strict complementarity and of
the correlated concept of optimal partition have turned out only recently, especially as a
tool for sensitivity analysis and parametric programming ([2, 17]). H.J. Greenberg ([14])
presents other examples of applications that draw advantage from an analysis performed
by means of the strict complementarity.

The rediscovery of the strict complementarity is probably motivated by the fairly
recent development of the interior point methods for solving linear programs, most of
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which converge to a strictly complementary solution. Indeed, these methods have received
an increasing attention after the proposal of the algorithm of Karmarkar ([19]). For a long
time the simplex has represented the principal and more used algorithm in the resolution
of linear programming problems, owing to its practicalness and efficiency, though it is not
a polynomial-time algorithm ([24]). On the contrary, most of the interior point methods
have a polynomial resolution time and the good results they provide, in particular when
large scale linear programs have to be faced, make them really competitive with the simplex
algorithm. A unifying presentation of the principles underlying most of these methods and
an analysis of their computational complexity is presented in [23, 27]. E.D. Andersen et
al. ([1]) present an overview of the issues concerning the implementation of these methods
and a comparison with the simplex.

The paper is organised as follows. In Section 2 the notation used in the sequel is intro-
duced. Section 3 recalls some classical results of linear programming. Besides, a technique
that determines a strictly complementary solution of a LP by means of a (basic) solution
of a particular linear programming problem is presented. Section 4 illustrates some results
that link the strict complementarity and the concept of implied equality in a system of
linear inequalities. In Section 5 we show the use of the strict complementarity in imple-
menting the algorithm for checking the coherence of a conditional probabilistic assessment
proposed in [25]. Then, we also examine the application of the strict complementarity to
the algorithm for extending a coherent probability described in [26]. We conclude with an
example in Section 6.

2. Notations.

AT will denote the transpose of a matrix A. Given a vector x ∈ <p, σ(x) will indicate
the set of indexes of the positive components of x. With e we shall denote the vector of
all one, whose dimension will be inferred by the context in which it is used.

Given x, y ∈ <p we set xT y =
∑p

i=1 xiyi. Besides, x ≤ y (x < y) will indicate that
xi ≤ yi (xi < yi) ∀i = 1, . . . , p. Analogously, x ≥ 0 (x > 0) means xi ≥ 0 (xi > 0) ∀i =
1, . . . , p.

If b is a vector of <q and A a real matrix of q rows and p columns, Ax ≤ b will
denote a system of q linear inequalities. The generic i-th inequality of the system will be
represented by aix ≤ bi. Similarly, we shall indicate with Ax < b a system with only strict
inequalities.
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We will use a logical notation for operations and relations involving events. Symbols
’∧’,’∨’ and ’⇒’ will be used to indicate the logical product, sum and implication of events
respectively. Given an event E, E indicates its negation, while Ω and φ represent the sure
event and the impossible one respectively. If E and F are events, we set δ(E ⇒ F ) equal
to one if it is E ⇒ F , to zero otherwise. |E| denotes the random number equal to 1 if E

is true, to zero otherwise.
Given a partition Π of Ω and an event K 6= φ, we will denote with Π|K the conditional

partition formed by the atoms of Π conditioned on K, that is the atoms of Π|K are formed
by the atoms of Π still possible after conditioning on K. With AL(Π) (AL(Π|K)) we will
indicate the set of events logically dependent from Π (Π|K), that is the set of events
which are logical sums of atoms of Π (Π|K). We also set Aφ

L(Π) = AL(Π) − {φ} and
AL(Π)|Aφ

L(Π) = {E|H : E ∈ AL(Π),H ∈ Aφ
L(Π)}.

3. Optimal partition and strict complementarity.

Thms. 3.1, 3.2, 3.3 and Cor. 3.5 that follow summarise some known results of linear
programming. We refer to [24] for a detailed exposition and proof of them.

Let A be a real matrix of q rows and p columns, b ∈ <q, c ∈ <p. Let P = {x ∈
<p : Ax ≤ b} and D = {y ∈ <q : AT y = c, y ≥ 0}. We indicate with (P ) the problem
max{cT x : x ∈ P} and with (D) the dual problem min{bT y : y ∈ D}.

Theorem 3.1 (Duality theorem of linear programming). (P ) has an optimal solu-

tion iff (D) has an optimal one and, in this case, it is max{cT x : x ∈ P} = min{bT y : y ∈
D}. If (P ) is infeasible, then (D) is either infeasible or unbounded. If (P ) is unbounded,

then (D) is infeasible.

If x is an optimal solution for (P ) and y is an optimal solution for (D), we will say
that (x, y) is an optimal pair for (P ) and (D). Given x0 ∈ P and y0 ∈ D, the non-negative
quantity (b−Ax0)T y0 is called duality gap.

Theorem 3.2 (Complementary slackness). Let x0 ∈ P and y0 ∈ D. Then the follow-

ing are equivalent

(1) (x0, y0) is an optimal pair for (P ) and (D);
(2) cT x0 = bT y0;

(3) (b−Ax0)T y0 = 0.

Thm. 3.2 states the vanishing property of the duality gap of an optimal pair, usu-
ally referred to as complementary slackness. If we set I = {1, ..., q}, B = {i ∈ I :
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∃ x0 optimal for (P ) : aix0 < bi} and N = {i ∈ I : ∃ y0 optimal for (D) : y0i > 0}, it
easily follows that it is B ∩N = ∅. Thm. 3.3 guarantees that it is also B ∪N = I.

Theorem 3.3 (Strict complementarity). Let (P ) and (D) be feasible. Then, for each

inequality aix ≤ bi of the system Ax ≤ b exactly one of the following holds

(1) there exists an optimal solution of (P ) x0 such that aix0 < bi;

(2) there exists an optimal solution of (D) y0 such that y0i > 0.

Therefore, B and N form a partition of I, called optimal partition of the couple of
primal-dual linear programs (P ) and (D).

Definition 3.4. An optimal pair (x, y) for (P ) and (D) is said to be a pair of strictly

complementary optimal solutions iff it is b−Ax + y > 0.

Let x, y be feasible solutions of (P ) and (D) respectively. Then, (x, y) is a pair of
strictly complementary optimal solutions iff, for every i = 1, . . . , q, exactly one between
bi − aix and yi is positive, while the other is null.

Consider for every i ∈ B an optimal solution xi of (P ) such that aix
i < bi and for

every j ∈ N an optimal solution yj of (D) such that yj
j > 0. By considering convex

combinations with positive coefficients of these xi and yj respectively, we obtain a strictly
complementary optimal pair. Therefore, we have the following corollary of Thm. 3.3.

Corollary 3.5 (Existence of a strictly complementary optimal solution). Let

(P ) and (D) be feasible. Then there exists a pair (x, y) of strictly complementary optimal

solutions of (P ) and (D). Besides, for every other optimal pair (x0, y0) it is σ(b−Ax0) ⊆
σ(b−Ax) and σ(y0) ⊆ σ(y).

The problem of determining the optimal partition of a couple of primal-dual linear
programs can be faced examining the optimal basic solutions, but this technique can re-
quire a remarkable computational effort ([13]). Observe that, if (x, y) is a pair of strictly
complementary optimal solutions of (P ) and (D), then B = σ(b − Ax) and N = σ(y).
Thus, the determining of a pair of strictly complementary optimal solutions or, clearly, of
just one of them as well, allows to single out the optimal partition. Therefore, interior point
methods for linear programming, most of which are characterised by the property of pro-
viding a strictly complementary optimal solution, are considered suitable to this purpose.
A discussion about the identification of the optimal partition by means of several interior
point algorithms can be found in [20]. See also [8] for an analysis of some computational
aspects.
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Observe that the simplex algorithm does not generally provide a strictly complemen-
tary optimal pair. In fact, the simplex does not supply it except if the optimal primal-
dual solution is unique ([14]) and the uniqueness condition is seldom satisfied in practice.
Notwithstanding this, a pair of strictly complementary optimal solutions can be deter-
mined also by resorting to the simplex algorithm. This possibility enables us to face the
problem on the basis of the rich literature and of the well-tested techniques relative to this
method. A way is presented in the sequel. At first, observe that the strictly complementary
optimal solutions of (P) and (D) are the solutions of the system (Thm. 3.2 and Def. 3.4)



Ax ≤ b

AT y = c

y ≥ 0

cT x− bT y = 0

b−Ax + y > 0

Prop. 3.6 generalises a technique to determine a strictly complementary optimal pair,
employed by Freund in [9], that relies on the previous observation and on a well fit LP.

Proposition 3.6. Consider the LP

max
x,y,α,u

u

Ax ≤ bα

AT y = cα

y ≥ 0(LPSC)

cT x− bT y = 0

bα−Ax + y ≥ eu

u ≤ 1

α ≥ 1

If (P ) and (D) are feasible, then (LPSC) is feasible. If (LPSC) is feasible then it is

bounded and (P ) and (D) are feasible. Besides, if (x∗, y∗, α∗, u∗) is an optimal solution of

(LPSC), then ( x∗

α∗ , y∗

α∗ ) is a pair of strictly complementary optimal solutions of (P ) and

(D).
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Proof Let (P) and (D) be feasible. Then, by Cor. 3.5, there exists a pair of strictly
complementary optimal solutions (x, y) for them. By defining δ = min{1, bi − aix +
yi (i = 1, . . . , q)}, (x

δ , y
δ , 1

δ , 1) is a feasible (and optimal) solution for (LPSC) and the
maximum objective value is 1. Suppose now (LPSC) feasible. If (x0, y0, α0, u0) is a
feasible solution for (LPSC), then x0

α0
and y0

α0
are feasible (and optimal) solutions for (P )

and (D) respectively and (LPSC) is obviously bounded. Let (x∗, y∗, α∗, u∗) be an optimal
solution for (LPSC). Then, (P ) and (D) are feasible and we have previously seen that it
must be u∗ = 1. Therefore, b − A x∗

α∗ + y∗

α∗ ≥ e 1
α∗ > 0. Thus, ( x∗

α∗ , y∗

α∗ ) is a pair of strictly
complementary optimal solutions of (P ) and (D).

4. Some results about implied equalities.

The following definition introduces the concept of implied equality in a system of
linear inequalities ([15]).

Definition 4.1. A linear inequality aix ≤ bi of a system Ax ≤ b is an implied equality iff

the system is consistent and it is aix
∗ = bi for every solution x∗ of Ax ≤ b.

Following the notation used in [24], with A=x ≤ b= we shall denote the system of
implied equalities in Ax ≤ b and with A+ ≤ b+ the system formed by the other inequalities.
The next proposition follows easily.

Proposition 4.2. If system Ax ≤ b is consistent, then it has a solution x∗ such that

A=x∗ = b= and A+x∗ < b+.

Proof For every inequality aix ≤ bi of the system A+x ≤ b+ there is a solution xi such
that aix

i < bi. A convex combination with positive coefficients of these xi is the required
solution.

Let A′ be a real matrix of s rows and r columns and b′ ∈ <s. In Sect. 5 we will consider
a system in the form A′x = b′, x ≥ 0. It can be written as A′x ≤ b′,−A′x ≤ b′,−x′ ≤ 0
and the first 2s inequalities are obviously implied equalities if it is consistent. In this
hypothesis, by Prop. 4.2, there exists a solution x∗ of A′x = b′, x ≥ 0 such that x∗j = 0 iff
xj ≥ 0 is an implied equality (j = 1, . . . , r), that is {1, . . . , r} − σ(x∗) is the set of indexes
of the implied equalities among the xj ≥ 0 (j = 1, . . . , r). Prop. 4.3 shows how to single
out this set. It is sufficient to consider a strictly complementary solution of a LP whose
feasible set is determined by the system itself and whose objective function is quite simple.
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Proposition 4.3. Consider the following couple of primal-dual linear programming prob-

lems

max b′T y min 0
A′T y ≤ 0 (LP1) A′x = b′ (DLP1)

x ≥ 0

and suppose (DLP1) feasible. Let x be a strictly complementary optimal solution of

(DLP1). Then, xj ≥ 0 is an implied equality of A′x = b′, x ≥ 0 iff j /∈ σ(x) (j = 1, . . . , r).

Proof Observe that (LP1) is always feasible. Hence, by Cor. 3.5, there exists a pair
of strictly complementary optimal solutions (y, x) for the problems and it is σ(x0) ⊆
σ(x) for every optimal solution x0 of (DLP1). Because of the choice of the objective
function, the optimal solution set of (DLP1) coincides with the set of solutions of the
system A′x = b′, x ≥ 0. The result follows straightforward.

An examination of the role of the strict complementarity in discovering the implied
equalities of a system Ax ≤ b can be found in [9, 15]. Besides, [9] presents another technique
for determining the implied equalities. It relies on finding a solution, not necessarily strictly
complementary, of an appropriate LP. We report this result in a form adapted to examine
a system A′x = b′, x ≥ 0 and refer to the cited report for the general result.

Proposition 4.4. Given the system A′x = b′, x ≥ 0, consider the LP

max
x,y,u

eT y

A′x = b′u

y ≤ x(LP2)

0 ≤ y ≤ e

u ≥ 1

Then

- if the system A′x = b′, x ≥ 0 is consistent, (LP2) is feasible and bounded. Besides,

given an optimal solution of (LP2) (x, y, u), x
u is a solution of the system and ∀j =

1, . . . , r, xj ≥ 0 is an implied equality iff j /∈ σ(x
u );

- if the system A′x = b′, x′ ≥ 0 is inconsistent, then (LP2) is infeasible.
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5. Strict complementarity, checking coherence and extending coherent proba-

bilities.

Before analysing the use of the strict complementarity in implementing an algorithm
for checking the coherence of a probabilistic assignment on a finite set of conditional events,
we recall the definition of coherent probability to which we will refer in the sequel ([16]).

Definition 5.1. Let F be a set of conditional events. P (·|·) is a coherent conditional prob-

ability on F iff ∀m,∀Ei|Hi ∈ F ,∀si ∈ <, i = 1, . . . ,m, defining G =
∑m

i=1 si|Hi|(|Ei| −
P (Ei|Hi)) and H =

∨m
i=1 Hi, it is max G|H ≥ 0.

Let E = {E1|H1, . . . , En|Hn} be a finite set of conditional events and let P (Ei|Hi) =
pi (i = 1, . . . , n) be an assignment of real numbers on E . Let P be the partition formed by
the not impossible logical products obtained developing the expression ∧n

i=1[(Ei ∧ Hi) ∨
(Ei ∧ Hi) ∨ Hi]. Define I1 = {1, . . . , n}, K1 = ∨i∈I1Hi. If K1 6= φ, then K1 is an atom
of P. We will indicate with e1, e2, . . . , em the remaining atoms of the partition. We define
also J1 = {j : ej ⇒ K1} = {1, . . . ,m}.

The following algorithm ([25]) verifies the coherence of P .

1) Set h:=1.
2) Consider the following system

(Sh)


∑
j∈Jh

xjδ(ej ⇒ Ei ∧Hi)− pi

∑
j∈Jh

xjδ(ej ⇒ Hi) = 0 (i ∈ Ih)

∑
j∈Jh

xj = 1, xj ≥ 0 (j ∈ Jh)

If system (Sh) is inconsistent then the assigned probability is not coherent; stop.
3) Let (xj(h))j∈Jh

a solution of system (Sh).
4) Define

Ih+1 = {i ∈ Ih :
∑

j∈Jh
xj(h)δ(ej ⇒ Hi) = 0},

Kh+1 = ∨i∈Ih+1Hi,
Jh+1 = {j : ej ⇒ Kh+1}.

5) If Ih+1 = ∅ the assigned probability is coherent; stop.
6) Set h:=h+1.
7) Goto 2).

Observe that two major questions arise, when this algorithm is implemented. The first
one regards the efficient determination of the partition P. A procedure that determines
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it, taking account also of an assigned set of logical relations among the events to remove
the impossible atoms, has been proposed in [3]. However, the number of atoms grows
exponentially with the number of events considered, unless the set of known logical relations
among these events enable us to exclude a consistent part of them during the procedure.
Clearly, in the worst cases, it could be practically impossible to construct the matrix of
the system (Sh), even with a relatively small number of events. In the analysis of strictly
correlated problems, some authors ([18, 21]) have proposed to use a column generation
algorithm that does not require the previous knowledge of the complete matrix of the
problem to be solved.

The second question regards the technique to determine a solution of system (Sh).
It is well known that a solution of a system of linear inequalities can be found with a
polynomial-time algorithm. A proof of the polynomial equivalence between the resolution
of a system of linear inequalities and linear programming is presented in [24]. Indeed,
the usual technique employed is to maximise (or minimise) a suitable linear function with
constraints formed by the system to be solved or to resort to a suitable auxiliary LP
problem ([5]).

Nevertheless, by observing definitions of Ih+1 and Jh+1, we see that the number of
rows and columns of the system (Sh+1) depends on the solution found for (Sh). Let Sh

be the set of solutions of (Sh). If we wish to reduce the number of rows of the system
(Sh+1), we have to determine a solution (xj(h))j∈Jh

of (Sh) that reduces the number of
events Hi such that

∑
j∈Jh

xj(h)δ(ej ⇒ Hi) = 0. A technique that determines Ih+1 as the
set {i ∈ Ih : max

∑
j∈Jh

xj(h)δ(ej ⇒ Hi) = 0, (xj(h))j∈Jh
∈ Sh} is proposed in [4], but it

requires to solve generally more than one LP with feasible set Sh. The problem has been
also examined from a geometrical point of view in [12]. We will see that it is possible to
find a solution that minimises the number of elements of Ih+1 by solving only one LP.

Let nh be the number of elements of Ih and mh the number of elements of Jh. Then
system (Sh) has the form Dhx = dh, x ≥ 0, where Dh is a matrix of nh + 1 rows and mh

columns and dh a vector of <(nh+1) properly defined. We will indicate with (MNSh) the
linear programming problem of minimisation of the null function over Sh.

Let (Sh) be consistent and suppose we discover which indexes correspond to implied
equalities among the inequalities xj ≥ 0 (j ∈ Jh) of (Sh). We know from Prop. 4.2 that
there exists a solution x∗(h) of (Sh) such that {1, . . . ,mh} − σ(x∗(h)) is the set of such
indexes and we can resort to Prop. 4.3 or Prop. 4.4 to determine it (by setting A′ = Dh

and b′ = dh). Indeed, observe that both propositions let us to determine x∗(h) directly,
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but what really matters is σ(x∗(h)).
It is σ(x(h)) ⊆ σ(x∗(h)) for every solution x(h) of (Sh). Thus, if we choose the solution

x∗(h), we reduce the number of indexes contained in Ih+1 and the number of atoms of
Jh+1 as much as possible. Indeed, with this choice

i ∈ Ih+1 iff
∑
j∈Jh

xj(h)δ(ej ⇒ Hi) = 0 ∀(xj(h))j∈Jh
∈ Sh

and therefore it is

Ih+1 = {i ∈ Ih : max
∑
j∈Jh

xj(h)δ(ej ⇒ Hi) = 0, (xj(h))j∈Jh
∈ Sh},

so that only the systems that are strictly necessary to the algorithm have to be examined.
Observe that, by applying Prop. 4.3, it is necessary to determine a strictly complemen-

tary solution of (MNSh). For this purpose, as illustrated in Sect. 3, we can use an interior
point method or also, if we prefer, resort to Prop. 3.6 and use the simplex algorithm to
solve the corresponding problem (LPSC). In this case, if we detect the infeasibility of
(LPSC), we can deduce the inconsistency of (Sh) anyhow, because the primal in Prop. 4.3
is always feasible. On the other hand, Prop. 4.4 relies on a problem directly solvable by
means of the simplex algorithm, even if no one prevents us from solving it by resorting to
an interior point method.

Notice that, by applying Prop. 3.6 or Prop. 4.4, the number of rows and of columns of
the systems considered increases appreciably. This observation could suggest us to apply
Prop. 4.3 and an interior point method, when the size of the system (Sh) is large, because
of the very good performance generally attained by these methods when applied to large
scale linear programming problems.

Remarks Let P be coherent and denote with Q the set of the coherent probabilities
extending P to AL(P|K1). In this hypothesis, every probability P ′ of Q is determined by
setting, for every solution (xj(1))j∈J1 of (S1), P ′(ej |K1) = xj(1) and then P ′(E|K1) =∑

j∈J1
xj(1)δ(ej |K1 ⇒ E|K1) =

∑
j∈J1

xj(1)δ(ej ⇒ E) for every E|K1 ∈ AL(P|K1)
([25]). Let x∗(1) be a solution of (S1) (determined by means of Prop. 4.3 or Prop. 4.4)
such that xj ≥ 0 is an implied equality iff j /∈ σ(x∗(1)). Then, it is P ′(ej |K1) = 0 ∀P ′ ∈ Q
iff j /∈ σ(x∗(1)). Thus, {1, ...,mh} − σ(x∗(1)) is the set of indexes of the atoms of the
partition P|K1 that have null probability for each coherent extension of P to AL(P|K1).
Besides, by choosing x∗(1) as solution of (S1), it is I2 = {i : P ′(Hi|K1) = 0 ∀P ′ ∈ Q}.
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Therefore, we can identify the events Hi such that P ′(Hi|K1) = 0 for every P ′ extending
P to AL(P|K1) by solving one LP. Other procedures that require to solve generally more
linear programming problems for identifying these events are described in [11, 25].

Consider an event E|H /∈ E and suppose P coherent. It is well known that P can
be extended to a coherent probability P ∗ on E ∪ {E|H} ([16]). Besides, the set of ad-
missible values of P ∗(E|H) is a closed (non empty) interval [PL(E|H), PU (E|H)]. Strict
complementarity can be applied also in implementing the algorithm that determines the
endpoints of this interval proposed in [26].

Suppose E|H ∈ AL(P)|Aφ
L(P) (it can be shown that this assumption is not restric-

tive). We report the algorithm that calculates PL(E|H). The same algorithm can be used
to calculate PU (E|H), because it is PU (E|H) = 1− PL(E|H) (see [26]).

1) Set h:=1.
2) If E ∧H ∧Kh 6= φ then PL(E|H) = 0; stop
3) Consider the following linear programming problem (LPSh)

mh = min
∑
j∈Jh

xjδ(ej ⇒ H ∧Kh)

∑
j∈Jh

xjδ(ej ⇒ Ei ∧Hi)− pi

∑
j∈Jh

xjδ(ej ⇒ Hi) = 0 (i ∈ Ih)(Sh)

∑
j∈Jh

xj = 1, xj ≥ 0 (j ∈ Jh)

If mh > 0 then it is

PL(E|H) = min
∑
j∈Jh

xjδ(ej ⇒ E ∧H ∧Kh)

∑
j∈Jh

xjδ(ej ⇒ Ei ∧Hi)− pi

∑
j∈Jh

xjδ(ej ⇒ Hi) = 0 (i ∈ Ih)

∑
j∈Jh

xjδ(ej ⇒ H ∧Kh) = 1, xj ≥ 0 (j ∈ Jh)

stop.
4) Let (x(h))j∈Jh

be a solution of the problem (LPSh).
5) Define

Ih+1 = {i ∈ Ih :
∑

j∈Jh
xj(h)δ(ej ⇒ Hi) = 0},

Kh+1 = ∨i∈Ih+1Hi,
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Jh+1 = {j ∈ Jh : ej ⇒ Kh+1}.
6) Set h:=h+1.
7) Goto 2).

In this case Ih+1 and Jh+1 depend on the solution found for the linear programming
problem (LPSh). Observe that Sh is compact and it is non-empty, owing to the coherence
of P , so that in any case (LPSh) has solution. Let x∗(h) be a strictly complementary
solution of (LPSh). Then, by applying Cor. 3.5 with AT = Dh, c = dh and b = (δ(ej ⇒
H ∧ Kh))j∈Jh

, it is σ(x(h)) ⊆ σ(x∗(h)) for every solution x(h) of (LPSh). Thus, the
choice of x∗(h) among all the solutions of (LPSh) determines the smallest Ih+1 and Jh+1

possible. As above, we can find such a solution by means of an interior point method or,
if we prefer, by resorting to Prop. 3.6. We just observe that an analogue technique can be
applied also to the problem of determining the least-committal correction of an assigned
avoiding sure loss lower probability on a finite set of conditional events and refer to [22]
for a description of the corresponding algorithm.

6. An example.

In this section we exemplify the use of the strict complementarity in checking coher-
ence. In order to perform the calculation, we have realised a program. Given a finite set
of events and a probabilistic assignment on it, this program firstly determines the atoms
of the corresponding partition, by using the algorithm presented in [3] with some slight
modifications, and then checks the coherence of this assignment by means of the algo-
rithm previously recalled. The program language used is Maple V, owing of its capacity
of performing symbolic computation. In the numerical results that follow, only the first
six decimal significant digits are reported.

Let the set of events be

E = {E1 ∨ E2|H1, E1|H1, E2|H1, E1 ∧ E2|H2, E1 ∨ E2|H3, E2 ∨ E3|H2, E3|H1}

and suppose the following logical relations among the events are known

E1 ∧ E2 ∧H1 = φ H1 ∧H2 = φ E3 ∧ E1 = φ

E3 ∧ H2 = φ E3 ∧H1 = φ E3 ∧ E2 = φ

E3 ∧ H3 = φ E2 ∧H3 = φ

Let the following assessment on E be assigned:
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P (E1 ∨ E2|H1) = 0.7 P (E1|H1) = 0.6 P (E2|H1) = 0.3
P (E1 ∧ E2|H2) = 0.1 P (E1 ∨ E2|H3) = 0.7 P (E2 ∨ E3|H2) = 0.3
P (E3|H1) = 0.2

The atoms of partition P are the following

e1 = (E1 ∨ E2) ∧ H1 ∧ H2 ∧ H3 e2 = E1 ∧ E2 ∧ H1 ∧ H2 ∧ H3

e3 = E1 ∧ E2 ∧ E3 ∧H1 ∧H2 ∧H3 e4 = E1 ∧ E2 ∧ E3 ∧ H1 ∧ H2 ∧ H3

e5 = E1 ∧ E2 ∧ E3 ∧ H1 ∧ H2 ∧ H3 e6 = E1 ∧ E2 ∧ E3 ∧ H1 ∧ H2 ∧ H3

e7 = E2 ∧ E3 ∧ H1 ∧ H2 ∧ H3 e8 = ((E1 ∧ E2) ∨ (E1 ∧ E2)) ∧H1 ∧H2 ∧H3

e9 = E1 ∧ E2 ∧ E3 ∧H1 ∧H2 ∧H3 e10 = E1 ∧ E2 ∧ E3 ∧ H1 ∧ H2 ∧ H3

e11 = E1 ∧ E2 ∧ E3 ∧H1 ∧H2 ∧H3 e12 = E1 ∧ E2 ∧ E3 ∧ H1 ∧ H2 ∧ H3

e13 = E1 ∧ E2 ∧ E3 ∧H1 ∧H2 ∧H3

System (S1) is then



0.3x3 + 0.3x5 − 0.7x9 + 0.3x10 − 0.7x11 + 0.3x12 + 0.3x13 = 0

− 0.6x3 + 0.4x5 − 0.6x9 + 0.4x10 − 0.6x11 + 0.4x12 + 0.4x13 = 0

0.7x3 + 0.7x5 − 0.3x9 − 0.3x10 − 0.3x11 − 0.3x12 + 0.7x13 = 0

− 0.1x3 − 0.1x4 + 0.9x5 − 0.1x6 − 0.1x7 − 0.1x8 − 0.1x9 − 0.1x10 − 0.1x11+

− 0.1x12 + 0.9x13 = 0

0.3x1 − 0.7x2 + 0.3x3 − 0.7x4 + 0.3x5 + 0.3x6 + 0.3x8 − 0.7x9 − 0.3x10 + 0.3x13 = 0

0.7x3 − 0.3x4 + 0.7x5 − 0.3x6 − 0.3x7 + 0.7x8 − 0.3x9 − 0.3x10 − 0.3x11+

− 0.3x12 + 0.7x13 = 0

− 0.2x3 + 0.8x5 − 0.2x9 − 0.2x10 − 0.2x11 − 0.2x12 − 0.2x13 = 0

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 = 1

xj ≥ 0 (j = 1, . . . , 13)

By applying the simplex algorithm to MNS1, we have found the solution

x1 = 0.7, x2 = 0.3, xj = 0 (j = 3, . . . , 13).

So it is I2 = {1, 2, 3, 4, 6, 7} and J2 = {3, . . . , 13}. Then, the system (S2) is determined as
follows
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

0.3x3 + 0.3x5 − 0.7x9 + 0.3x10 − 0.7x11 + 0.3x12 + 0.3x13 = 0

− 0.6x3 + 0.4x5 − 0.6x9 + 0.4x10 − 0.6x11 + 0.4x12 + 0.4x13 = 0

0.7x3 + 0.7x5 − 0.3x9 − 0.3x10 − 0.3x11 − 0.3x12 + 0.7x13 = 0

− 0.1x3 − 0.1x4 + 0.9x5 − 0.1x6 − 0.1x7 − 0.1x8 − 0.1x9 − 0.1x10 − 0.1x11+

− 0.1x12 + 0.9x13 = 0

0.7x3 − 0.3x4 + 0.7x5 − 0.3x6 − 0.3x7 + 0.7x8 − 0.3x9 − 0.3x10 − 0.3x11+

− 0.3x12 + 0.7x13 = 0

− 0.2x3 + 0.8x5 − 0.2x9 − 0.2x10 − 0.2x11 − 0.2x12 − 0.2x13 = 0

x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 = 1

xj ≥ 0 (j = 3, . . . , 13)

With the simplex algorithm again, we have found the solution

x3 = 0.05, x4 = 0.35, x5 = 0.1, x8 = x11 = 0.15, x12 = 0.2, xj = 0 (j = 6, 7, 9, 10, 13).

It is I3 = ∅ and so P is coherent.
Therefore, in order to verify the coherence of P , we have examined two systems. Then,

as suggested by Prop. 4.3, we have determined a strictly complementary optimal solution
of (MNS1). By resorting to Prop. 3.6 and to the simplex algorithm, the solution found is

x4 = 0.123377, x7 = 0.149351, x8 = x10 = 0.136364, x5 = x11 = 0.090909, x13 = 0,

xj = 0.045455 (j = 1, 2, 3, 6, 9, 12).

This solution tells us x13 ≥ 0 is an implied equality, that is x13 = 0 ∀x solution of (S1).
Thus, we obtain I2 = ∅ and we can affirm directly that P is coherent. Besides, we know
that P ∗(e13|K1) = 0 for each coherent probability P ∗ extending P to AL(P|K1), where
K1 = H1 ∨H2 ∨H3.

We have also solved (MNS1) by means of an interior point method. Among the
various existing interior point algorithms, we have chosen the algorithm proposed in [28].
It is based on the construction of a homogeneous and self-dual artificial LP embedding
the problem to be examined and its corresponding dual. This algorithm is exempt from
some drawbacks present in other interior point algorithms proposed in literature (see [1]
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for a comment on its properties), but presents a deficiency with respect to the simplex:
it correctly detects the infeasibility for at least one between the primal and the dual, but
not necessarily for both. This shortcoming does not affect our application, because in
Prop. 4.3 the primal is always feasible. We have used the Matlab code freely provided by
Y.Ye at http://dollar.biz.uiowa.edu/col/ye/matlab.html. By applying this algorithm, we
have obtained the following solution of (S1)

x1 = 0.105226, x2 = 0.057058, x3 = 0.041886, x4 = 0.066557, x5 = 0.083772

x6 = 0.124274, x7 = 0.102369, x8 = 0.125657, x9 = 0.049821, x10 = 0.076131

x11 = 0.075836, x12 = 0.091412, x13 = 0

which confirms that I2 = ∅ and P is coherent.
We have seen that, by applying the strict complementarity, only one system has been

examined to verify the coherence of P . For the sake of completeness, we observe that, in
this example, by applying the simplex to (MNS1), it could happen to find a basic solution
such that I2 = ∅. For instance,

x1 = 0.464286, x3 = 0.026786, x4 = 0.1875, x5 = 0.053571, x8 = x9 = 0.080357

x12 = 0.107143, xj = 0 (j = 2, 6, 7, 10, 11, 13)

is also a basic solution of (MNS1). It does not determine the implied equalities of (S1),
but it enable us to conclude directly that I2 = ∅ and that P is coherent. However, in
general, as we have previously seen, a solution of (Sh) found directly by means of the
simplex does not guarantee us to minimise the number of the elements of Ih+1 and Jh+1,
whereas a strictly complementary solution of (MNSh) does.
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