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In recent years Neural Networks (NN) have been having a wide spread of 

applications in many different fields. In the actuarial practice, Lowe and Pryor 

(1996) have reported on the application of supervised NN in underwriting, since 

this type of NN is specifically designed to deal with models representing a set of 

information from which some sort of predictions are derived. 

This paper is concerned with unsupervised neural networks. As the supervised NN 

are connected to statistical models for predictions, the unsupervised NN are 

connected to cluster analysis techniques. Giulini, Pelessoni and Picech (1997) have 

applied some types of unsupervised NN to collect the values (basic classes) of one 

tariff variable into tariff classes; it has been showed how these techniques allow 

implementing partitioning methods of cluster analysis, taking also account of 
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different exposure of the basic classes and producing appreciable results in 

comparison with the traditional actuarial methods. 

In this paper, we still deal with the problem of collecting the basic classes of one 

tariff variable in clusters. In particular we investigate the possibility of taking 

advantage of a topological property of Kohonen Self-Organising Maps in order to 

build tariff classes containing contiguous values of the tariff variables. 

An outline of the paper is the following. 

In Section 2 the problem of determining tariff classes in rate making is delineated. 

In Section 3 we briefly describe two neural network algorithms frequently used in 

clustering problems: Simple Competitive Learning and Kohonen Self-Organising 

Map. 

Sections 4 is devoted to an application of the algorithms described in Section 3 to 

collect in clusters the values of the tariff variable “age of the insured” in a motor 

vehicle insurance portfolio. 

In Section 5 the topology preservation property of the Self-Organising Maps is 

exploited to collect the basic classes described by the age of the insured in a motor 

insurance portfolio in clusters formed by contiguous values of the tariff variable. A 

heuristic procedure is introduced and it is described throughout a numerical 

example. 

2. 7KH�GHWHUPLQDWLRQ�RI�WDULII�FODVVHV�LQ�JHQHUDO�LQVXUDQFH�UDWH�PDNLQJ 

In general insurance, the premiums for insurance covers are often determined by 

means of tariffs. A tariff defines the insurance premium as a function of some 

observable variables describing the risk. For instance, in motor vehicle liability 

insurance the premium can be determined as a function of the power of the vehicle, 

of the geographical area where the insured lives, of the age of the insured, etc. 

These observable variables are called tariff variables. In rate making, we use 

statistical methods, mathematical algorithms and practical reasoning to build the 

tariff structure; in this way the statistical information on the claim experience is 

combined with the observation on the tariff variables. The premium for a new risk 

can then be determined as a function of the observed values of the tariff variables. 

Many tariff methods require the values of the tariff variables to be collected in 

classes and, even if this is not necessary, commercial reasons often suggest making 
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use of a low number of tariff classes. For instance, the values of the tariff variable 

“age of the insured” in a motor vehicle insurance tariff can be grouped into the age 

classes 18-26, 27-35, 36-43, 44-60 and over 60. Obviously, a question arises: 

which values of the tariff variable should be grouped together and which not, and 

also how many classes should be formed. 

In the actuarial literature some cluster analysis techniques have been applied to 

collect the values of one tariff variable (the so called basic classes) in clusters, that 

is to say in homogenous groups, according to one or more characteristic variables 

describing the claim experience (see van Eeghen, Greup and Nijssen (1983) for a 

review). Turning back to the tariff variable “age of the insured”, the claim 

experience can be described, for instance, by the claim frequency and ages with 

“quite similar” claim frequency have to be allocated in the same cluster. 

The basic classes can then be seen as objects that have to be joined together, 

building the tariff classes, in accordance with the observed values of the 

characteristic variable; from this point of view the problem of determining the tariff 

classes can be seen as a clustering problem. However, the observed values of the 

characteristic variable in each basic class arise from observations on risks with 

different exposures (e.g. the number of observed policy-years in a motor vehicle 

insurance). Therefore, these values are not immediately comparable by means of 

the similarity or dissimilarity measures considered in traditional clustering 

procedures. For this reason, in the actuarial literature some clustering techniques 

have been implemented in order to take account of the exposures of the basic 

classes as well. 

For instance, the method proposed by Loimaranta, Jacobsson and Lonka (1980) is a 

non-hierarchical method of mixtures in which it is assumed that the basic classes 

belong to a fixed number . of clusters and that the characteristic variables are 

independent random variables with probability distribution a mixture of . 

distributions, one for each cluster. In this method, the different exposures are dealt 

by means of the definition of these probability distributions. After the parameters 

of the distributions have been estimated by the maximum likelihood method, the 

posterior probabilities for each basic class to belong to the different clusters can be 

estimated and the allocation of the basic classes to the clusters is done according to 



 4

these posterior probability distributions. 

Another method has been proposed by Dickmann (1978). It is a hierarchical 

agglomerative clustering method in which, at the beginning, each basic class is 

viewed as a group containing one object and, at each stage, the merging of two 

groups is done if it minimises the increase of the total within-cluster variance. The 

procedure is repeated until all basic classes are located in one cluster.  

For a short description of the algorithm, let us consider a single stage with the basic 

classes joined together in . clusters. Let 

�6  be the set of basic classes located in cluster M; 
�[ � be the observation of the characteristic variable with respect to the L-th 

basic class; 

�W � be the value which reflects the exposure of the L-th basic class (e.g. the 

number of observed policy-years); 

Ê�=
�����
�	 WQ  be the total exposure in cluster M. 

Define the total within-cluster variance with . clusters as: 
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It is important to note how the definition of within-cluster variance allows taking 

account of the different exposures of the basic classes. We pass from . to .���
clusters by merging two of the existing clusters so that the increase of the within-

clusters variance 2)(2)1(  ! !
ss -"

 is minimum. 

Another important class of cluster analysis techniques is known as partitioning 

methods (among which the well-known k-means algorithms). In these methods the 

number of the clusters . is fixed in advance or, in some variants, determined 

through the procedure. Moreover, unlike the hierarchical techniques, they allow the 
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relocation of the objects. In this way, bad initial partitions can be improved later. 

Most of these techniques consist of two distinct procedures: 

- the determination of an initial allocation of the objects into the clusters; 

- the relocation of some or all of the objects in the clusters. 

An essential feature of these methods is the calculation of the centroids of the 

clusters. Many clustering algorithms have been proposed; among them those 

proposed by Forgy, by MacQueen� and a variant of the latter method (see 

Anderberg (1973)) are reported in Giulini, Pelessoni and Picech (1997). 

Loimaranta HW�DO. (1980) stated that, in their opinion, as far as the determination of 

tariff classes is concerned, a method that searches for the optimal partition could be 

preferred to a hierarchical clustering technique. However, partitioning methods 

face the difficulty of considering the exposures of the basic classes. In Section 2, 

we will see how, in a NN framework, some partitioning algorithms can be 

implemented in a more flexible environment, allowing the exposures to be 

managed as well. 

3. 6HOI�2UJDQLVLQJ�0DS6�and Simple Competitive Learning 

The Self-Organising Map (SOM) algorithm was introduced by Kohonen (1984). 

The algorithm is implemented by means of a network (the SOM) whose vertices 

(units or neurons) are disposed in a lattice (generally a one- or two-dimensional 

array of units). 

Denote by S a set of  N vectors of 
#§  (input space). Data are randomly chosen 

from S and we will denote with [�W� the input vector drawn at time W ( 0�W ). An Q-

dimensional weight vector $P  is associated to each unit of the network, so that the 

state of the network at time W will be represented by ))(,),(()( 1 WPWPWP %K= , 

where . is the number of units and )(WP &  denotes the weight vector of unit M at 

time W. 
If we present a vector of data 6[³  to the network, it can be compared with all the 

weight vectors. We call winner unit, )([FF = , the unit satisfying the condition 

 .MP[GP[G '( ,...,1 ),(),( ="�  
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where d is a distance in §  (usually euclidean). 

Let d’ be a distance in the lattice and )l  be a family of positive non-increasing real 

functions defined on 
*§ , with W+ "=  1)0(l . 

The SOM algorithm (Kohonen (1995)) is carried out by adapting the weight 

vectors of the network by means of an unsupervised learning process. The 

algorithm consists of the following steps. 

Self-Organising  Map algorithm 

Step 1: SXW�W� ��DQG�LQLWLDOLVH�WKH�YHFWRUV m, (0)   ),,1( .M K= ; 

Step 2: FKRRVH�DQ�LQSXW�YHFWRU 6W[ ³)( ; 

Step 3: ILQG�WKH�ZLQQHU�XQLW c=c(x(t)); 

Step 4: XSGDWH�WKH�ZHLJKW�YHFWRUV�DFFRUGLQJ�WR�WKH�UXOH�
))()(()),(()()()1( WPW[MFGWWPWP -.-- -�+=+ la   ),,1( .M K=  ZLWK�

0)( >Wa ; 

Step 5: stop if the stopping rule is satisfied; 

otherwise replace W  with 1+W , go back to Step 2 and repeat for the next 

input vector. 

Several methods of initialisation of the weight vectors have been proposed in 

literature. A typical one is the so-called “ random guess method” , in which the 

initial values are chosen randomly in the “ right”  domain, according to the values of 

the input vectors. Note also that a convenient stopping rule has to be fixed. The 

most common one consists in fixing in advance a “ sufficiently”  large number of 

iterations.  

Usually, the term )(Wa  (learning rate factor) is a positive non-increasing function 

of W and )0(a  is chosen not too far from 1 (typically 0.8). Also /l  is a non-

increasing function and, as a consequence, the weights of the units of the lattice 

close to the winner unit and those of the winner unit itself are changed 

significantly. On the other hand, weights of units placed further away from the 

winner unit are not updated appreciably. 

At the end of the learning process the network can be used as a vector classifier. 
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Input vectors that make winner the same unit j are assigned to the same cluster 06  

and the corresponding weight vector 1P  can be chosen as "representative" of the 

cluster itself. Clearly, different runs of the algorithm can produce different results. 

The choice of the functions /l  is crucial for another important feature of the SOM 

algorithm, namely the property of topology preservation. Essentially, at the end of 

the learning process and with a right choice of the parameters of the algorithm, the 

neighbourhood relations are conserved, so that input vectors that are close in the 

input space are assigned to clusters represented by weight vectors of units which 

are close in the lattice. 

A well-known expression for the function /l , widely used in the applications, is 

the gaussian function: 

ÜÜÝ
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where s  is a decreasing function and )0(s  is large enough. 

In the very specific case when 

ÓÒ
Ñ
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that is if, at each time W, only the weight vector of the winner unit is updated, the 

so-called Simple Competitive Learning (SCL) algorithm is implemented. It is 

important to note that in this case the topology preservation property is no more in 

force. A thorough discussion on SCL can be found in the book by Hertz, Krogh 

and Palmer (1991), where also the strong relationship between SCL and k-means is 

pointed out. 

In the SCL algorithm, the training is continuous, since the weights are updated 

after the presentation of each pattern (see Step 4 of the SOM algorithm). 

Nevertheless, there exists also a batch version of the same algorithm, proposed by 

Linde, Buzo and Gray (1980) and known as Linde-Buzo-Gray (LBG) algorithm of 

Vector Quantisation, where the weights are updated after all patterns have been 

presented. 
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Linde, Buzo and Gray proved that, if we denote by ),...,1( 1LS 4 =  a probability 

distribution over the input space 6  and the input vectors are selected according to 

this probability distribution, the LBG algorithm converges to a local minimum of 

the quantity (average distortion) 

(3.1) Ê Ê5�6=
7

8 9:
;8;

<=
SP[G'

1

2),(  

(see also Black (1992) and Luttrell (1990)). Note that, from an essentially practical 

point of view, continuous training is frequently preferred to batch training, because 

the random presentation order of the input vectors can help to avoid poor local 

minima (see Hassoun (1995) at page 168). Moreover, de Bodt HW�DO. (1997, 1999) 

observed that often, in practical applications of SOMs, only the weight vector of 

the winner unit is updated in the final iterations of the algorithm and that the 

Kohonen algorithm can be considered an efficient initialisation procedure of SCL. 

It must be noted that, despite the extensive use of SOMs, the mathematical theory 

of Kohonen’s algorithm is so far unsatisfactory. A review on main mathematical 

results on the convergence of the algorithm and on the property of topology 

preservation has been reported by Cottrell, Fort and Pagès (1998). See also Bishop 

(1995) and Ripley (1996) for a wide investigation of the connections between 

neural networks and pattern recognition. 

It is well-known that these unsupervised NN implement partitioning methods of 

cluster analysis. Comparing (2.1) and (3.1), Giulini, Pelessoni and Picech (1997) 

emphasised how a suitable definition of the probability distribution )1( �����1L�S > =  

over the input space S of the basic classes allows implementing, by means of these 

algorithms, a partitioning method of cluster analysis which takes account of the 

different exposures of the basic classes. This can be done by defining the 

probability distribution as the relative exposure 

(3.2) �����1��L
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where W C  is the exposure of the basic class L� 
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In this Section we present the results obtained by applying the SOM and the SCL 

algorithms to the data in Table 4.1, where the claim frequencies in a motor vehicle 

insurance portfolio are reported (see also Figure 1, where the data are shown in a 

graph). In this example, our aim is to collect the ages of the policyholders (basic 

classes) in clusters, according to their claim frequencies. To perform the 

experiments, we used Matlab and the Neural Network Toolbox, even though the 

original programs have been substantially modified to implement our applications. 

In the SCL procedure, as suggested by Kohonen (1995), an individual learning rate 

was assigned to each weight vector, by means of the recursive formula  

 ),...,1(

)( if       )( 
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where )(WEa  is the learning rate assigned to unit j at time t and c(t) is the winner 

unit at the same time. In this way, in every training cycle, only the learning rate 

corresponding to the winner unit is updated. 

In the SOM experiments a network with a one-dimensional array of units and the 

euclidean distance was considered; the gaussian function was used in Step 4 of the 

algorithm. Besides, a  and s were defined as suggested by Ritter and Schulten (see 

the book by Hassoun (1995) at page 114): 

max
max
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where maxW  is the maximum value for t (fixed in advance) and 0a , 
max
Ja , 0s , 

max
Js  

are the fixed initial and final values of a  and s  respectively ( 8.00 =a , 

01.0
max

=Ka , 75.00 =s , 25.0
max

=Ls  in our experiments). 

In Table 4.3 are reported the subdivisions in clusters showing the lowest value of 

distortion, obtained by means of the SCL and the SOM algorithm for different 

numbers of units. To simplify the description of the clusters, the basic classes and 

the claim frequencies, ordered by the latter, are reported in Table 4.2. 
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Table 4.1: Policy-years (exposure) and relative and absolute claim frequencies in 
automobile insurance for different policyholder’s ages. 

Age 
No. of 
Claims 

Exposure 
Claim 

Frequency 
Age 

No. of 
Claims 

Exposure 
Claim 

Frequency 
18 23 91,01 0,252706 57 219 2073,21 0,105633 
19 113 593,24 0,190480 58 187 1746,44 0,107075 
20 263 1266,33 0,207686 59 174 1714,64 0,101479 
21 306 1939,81 0,157748 60 168 1637,98 0,102565 
22 376 2156,65 0,174345 61 132 1498,30 0,088100 
23 362 2566,41 0,141053 62 146 1450,78 0,100636 
24 391 2724,07 0,143535 63 133 1442,04 0,092230 
25 365 2832,83 0,128847 64 111 1390,82 0,079809 
26 384 2974,93 0,129078 65 122 1329,39 0,091771 
27 339 3132,37 0,108225 66 107 1135,92 0,094197 
28 343 3177,86 0,107934 67 98 1035,29 0,094660 
29 334 3311,80 0,100851 68 89 990,80 0,089827 
30 327 3431,88 0,095283 69 80 922,72 0,086700 
31 307 3418,68 0,089801 70 82 838,55 0,097787 
32 302 3317,40 0,091035 71 82 787,63 0,104110 
33 280 3087,49 0,090688 72 64 690,74 0,092655 
34 300 3168,45 0,094683 73 60 590,56 0,101599 
35 241 3016,52 0,079893 74 57 539,82 0,105591 
36 254 2968,79 0,085557 75 44 434,87 0,101179 
37 244 2860,14 0,085311 76 24 234,06 0,102537 
38 225 2794,10 0,080527 77 15 177,68 0,084421 
39 235 2831,11 0,083006 78 15 150,75 0,099502 
40 229 2727,02 0,083974 79 16 171,77 0,093149 
41 227 2819,13 0,080521 80 15 160,90 0,093229 
42 245 2772,79 0,088359 81 10 122,52 0,081620 
43 207 2582,16 0,080166 82 14 89,25 0,156859 
44 263 2605,99 0,100921 83 8 66,34 0,120589 
45 291 2737,60 0,106297 84 6 57,26 0,104794 
46 247 2660,50 0,092840 85 1 44,51 0,022465 
47 272 2764,65 0,098385 86 5 21,96 0,227728 
48 264 2656,79 0,099368 87 3 22,47 0,133523 
49 309 2728,08 0,113267 88 0 12,52 0,000000 
50 199 2099,79 0,094771 89 1 12,71 0,078647 
51 211 2103,36 0,100316 90 1 11,26 0,088826 
52 250 2171,34 0,115136 91 0 7,00 0,000000 
53 222 2068,38 0,107331 92 1 4,84 0,206782 
54 215 2056,44 0,104550 93 0 2,90 0,000000 
55 230 2221,64 0,103527 94 0 6,86 0,000000 
56 203 2183,59 0,092966 95 3 33,14 0,090528 

(Data provided by an Italian Insurance Company) 
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Table 4.2: Policyholder’s ages and relative claim frequencies (ordered by claim 
frequencies). 

Age 
Claim 

Frequency 
Age Claim 

Frequency 
Age Claim 

Frequency 
Age Claim 

Frequency 
18 0,252706 45 0,106297 30 0,095283 69 0,086700 
86 0,227728 57 0,105633 50 0,094771 36 0,085557 
20 0,207686 74 0,105591 34 0,094683 37 0,085311 
92 0,206782 84 0,104794 67 0,094660 77 0,084421 
19 0,190480 54 0,104550 66 0,094197 40 0,083974 
22 0,174345 71 0,104110 80 0,093229 39 0,083006 
21 0,157748 55 0,103527 79 0,093149 81 0,081620 
82 0,156859 60 0,102565 56 0,092966 38 0,080527 
24 0,143535 76 0,102537 46 0,092840 41 0,080521 
23 0,141053 73 0,101599 72 0,092655 43 0,080166 
87 0,133523 59 0,101479 63 0,092230 35 0,079893 
26 0,129078 75 0,101179 65 0,091771 64 0,079809 
25 0,128847 44 0,100921 32 0,091035 89 0,078647 
83 0,120589 29 0,100851 33 0,090688 85 0,022465 
52 0,115136 62 0,100636 95 0,090528 88 0,000000 
49 0,113267 51 0,100316 68 0,089827 91 0,000000 
27 0,108225 78 0,099502 31 0,089801 93 0,000000 
28 0,107934 48 0,099368 90 0,088826 94 0,000000 
53 0,107331 47 0,098385 42 0,088359   
58 0,107075 70 0,097787 61 0,088100   
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The description of the subdivisions refers to the order in the data: e.g. (5  3   6  26  

33   5) in Table 4.3 characterises the subdivision where the first cluster contains 

the first five elements in Table 4.2 (ages: 18, 86, 20, 92 and 19), the second cluster 

contains the next three elements (ages: 22, 21 and 82), etc. 

We note that the distortions of the subdivisions obtained with the two algorithms 

(for the same number of clusters) are quite close and, except the subdivision into 6 

clusters, the SCL clusters could appear preferable. 

Analogously to the traditional partitioning methods of cluster analysis (e.g. k-

means) we obtain different partitions of the basic classes depending on the stated 

number of clusters (units) .. Therefore, a problem arises: a criterion to decide how 

many clusters should be considered. Pelessoni and Picech (1997) applied, for this 

purpose, the method proposed by Schmitter and Straub (1975) to find the “ best”  

subdivision of an insurance portfolio in tariff classes. They assumed the existence 

of a “ natural subdivision”  and derived two statistics to single out this subdivision, 

or possibly the “ closest”  one from a set of “ admissible subdivisions”  (the 

"admissible subdivisions" are a subset of all the subdivisions of the portfolio, 

which can be actually considered for practical and commercial reasons). We do not 

discuss here this criterion, but mention that, according to it, the subdivisions in 7 

clusters seem to be the most preferable. The details of these subdivisions are 

reported in Table 4.4 and 4.5. 

However, if we look at the resulting groups of basic classes (Tables 4.4 and 4.5), 

we realise that these subdivisions could be unsatisfactory for actual rate making 

purposes. In particular, the basic classes are not contiguously grouped and this fact 

is clearly unsatisfactory from a commercial point of view: e.g. (see Table 4.4) a 42-

year-old insured should pay a premium different from that paid by a 41- or a 43-

year-old. Moreover, in this procedure the information “ age of insured”  is not taken 

Table 4.3: Best subdivisions in clusters obtained by SCL and SOM. 

No. of  
clusters 

Clusters obtained 
by SCL 

' x 10-5 Clusters obtained 
by SOM 

' x 10-5 

8 4  1  3  5  16  26  18  5 1.9423 6  4  4  9  17  17  9  12 2.0020 
7 5  3  6  24  22  13  5 1.9692 6  4  4  9  17  20  18 2.1489 
6 5  3  6  26  33  5 3.1042 6  7  10  17  20  18 2.9643 
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in any account. Observe also that the basic classes characterised by low exposures 

are anyhow classified according to their claim frequencies. For instance, the basic 

class “ age 85”  is classified in the 7th cluster, whereas the basic classes “ age 84”  and 

“ age 86”  are classified in the 4th and in the 1st cluster respectively, since these basic 

classes show very different claim experiences (see Table 4.1), even though their 

exposures are very low. 

 

Table 4.5: Details on a subdivision in 7 clusters obtained by SOM. 

Cluster No. of 
elements 

Policyholder’s ages Weights Centroids Exposures 

1 6 18 19 20 22 86 92 0.1880 0.1889 4134.02 
2 4 21 23 24 82 0.1464 0.1466 7319.55 
3 4 25 26 83 87 0.1288 0.1289 5896.57 
4 9 27 28 45 49 52 53 

57 58 74 
0.1088 0.1088 20375.10 

5 17 29 44 47 48 51 54 
55 59 60 62 70 71 
73 75 76 78 84 

0.1012 0.1011 25617.76 

6 20 30-34 42 46 50 56 
61 63 65-68 72 79 
80 90 95 

0.0922 0.0921 34640.12 

7 18 35-41 43 64 69 77 
81 85 88 89 91 93 
94 

0.0827 0.0822 25299.19 

 

Table 4.4: Details on a subdivision in 7 clusters obtained by SCL. 

Cluster No. of 
elements 

Policyholder’s ages Weights Centroids Exposures 

1 5 18 19 20 86 92 0.2048 0.2048 1977.38 
2 3 21 22 82 0.1662 0.1663 4185.70 
3 6 23-26 83 87 0.1351 0.1353 11187.06 
4 24 27-29 44 45 48 49 

51-55 57-60 62 71 
73-76 78 84 

0.1050 0.1051 42389.66 

5 22 30-34 42 46 47 50 
56 61 63 65-68 70 
72 79 80 90 95 

0.0928 0.0927 38243.33 

6 13 35-41 43 64 69 77 
81 89 

0.0824 0.0824 25225.41 

7 5 85 88 91 93 94 0.0205 0.0136 73.78 
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This inconvenience could be avoided if, when grouping the basic classes, the 

information “ age of the insured”  would be considered as a substantial information 

and not only as a label attached to the basic classes just to identify them. An 

example of a procedure in which also the values labelling data are directly 

employed as source of information in clustering has been proposed by Jain and 

Farrokhnia (1991). 

���&OXVWHULQJ�XQGHU�D�FRQVWUDLQW�RI�FRQWLJXRXV�JURXSLQJ�
It would clearly be possible to take account of the actual value “ age of the insured” , 

in addition to the observed claim frequency, by applying the clustering techniques 

to the basic classes described by the couple of characteristic variables claim 

frequency and age of the insured. Therefore, since in this case the objects to be 

collected in clusters are two-dimensional vectors, a suitable distance in 2§  should 

be considered. The importance attached to the information “ age”  with respect to 

the observed claim frequency is determined by this distance. Nevertheless, this 

distance should also have the appreciable property of increasing this importance 

when the exposure (that is to say the number of observations) of the basic class 

“ age of insured”  is very low. 

In this Section a different approach is presented. We develop a procedure in which 

the basic classes “ age of the insured”  are collected in classes under a sort of 

constraint of contiguous grouping. More precisely, successive applications of 

Kohonen SOMs are carried out and the property of topology preservation is 

exploited in order to induce the contiguous grouping in a natural way.  

The procedure develops in two stages and it is illustrated by means of a numerical 

example in which the basic classes are actually described by the two characteristic 

variables “ age of the insured”  and “ claim frequency” . 

I Stage 

In the first stage two SOMs are trained: one concerns, as objects to be collected in 

clusters, the “ ages of the insured”  relative to the basic classes and the other the 

“ claim frequencies” . As a result we obtain classes of “ ages”  and classes of “ claim 

frequencies” . Thanks to the topology preservation property both the classes of ages 

and the classes of claim frequencies are ordered by age and by claim frequency 
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respectively. 

II Stage 

In this stage we consider as initial basic classes the objects described by the two 

characteristic variables “ age of the insured”  and “ claim frequency”  and associate 

them the corresponding indexes of age class and of claim-frequency class obtained 

in the first stage. In this way, the new basic classes are described by two 

characteristic variables, the index of age class and the index of claim frequency 

class, and they are considered as the input space of another SOM. More precisely, 

the input space of this SOM is now a subset of 2§  whose elements are the couples 

(index of age class, index of claim frequency class) to which at least one initial 

basic class has been associated. Both the characteristic variables are now indexes 

of clusters resulting from the first stage and we consider the usual euclidean 

distance to compare the objects. Moreover, we assume as probability distribution 

over the input space the total amount of the relative exposures of the initial basic 

classes associated to each couple of indexes. 

In the following, we report the results of an application of this procedure to the data 

in Table 4.1. We used the SOM algorithm by setting the parameters of the Ritter 

and Schulten formulas to the values 5.10 =a , 1.0
max

=La , 20 =s , 5.0
max

=Ms . 

In the first stage one SOM is trained to collect the objects “ age of the insured”  into 

20 clusters. The input space consists of the ages reported in Table 4.1 and the 

probability distribution has been defined by means of the relative exposures as in 

(3.2). Therefore, only the age values are considered, without any reference to the 

claim frequency. The resulting subdivision in clusters is reported in Table 5.1. 

Owing to the topology preservation property of the SOM algorithm, the indexes of 

the clusters are ordered according to the order in the input space. Moreover, the 

relative exposures of the resulting clusters are quite flat. 

At the same stage the objects “ claim frequencies”  are collected into 9 clusters by 

another SOM. In this case the input space is the set of claim-frequency values from 

Table 4.1 and the probability distribution is defined again as the relative exposures 

as in (3.2). The resulting clusters are reported in Table 5.2 and also in this case the 

topology preservation property of the SOM algorithm makes their indexes ordered 
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according to the claim-frequency values (cf. Table 4.2). In Table 5.2 are reported 

the labels “ age of the insured” , to identify the objects collected in the same cluster. 

In the Second Stage one SOM is trained to collect objects described by the couple 

of indexes (age index, claim-frequency index) into 7 clusters, which, in our 

example, give an interesting result. The elements of the input space are represented 

in Figure 2. The results are reported in Table 5.3, where we note that the final 

groups contain age values that are actually contiguous. 

 

To appreciate the features of the resulting groups we compare in Figure 3 the 

original claim frequencies with the centroids of the clusters. 

Table 5.1: I stage- Clusters of 
ages. 

Age 
index 

Ages Relative 
exposures 

1  18 - 22 0.049050 
2  23 - 25 0.065892 
3  26 - 27 0.049539 
4  28 - 29 0.052641 
5  30 - 31 0.055568 
6  32 - 33 0.051953 
7  34 - 35 0.050169 
8  36 - 38 0.069945 
9  39 - 40  0.045085 

10  41 - 42 0.045359 
11  43 - 45 0.064289 
12  46 - 47 0.044006 
13  48 - 50 0.060712 
14  51 - 53 0.051452 
15  54 - 56 0.052414 
16  57 - 59 0.044891 
17  60 - 62 0.037208 
18  63 - 66 0.042976 
19  67 - 71 0.037110 
20  72 - 0.029742 

 

Table 5.2: I stage – Clusters of claim 
frequencies. 

Claim-
freq. 
index 

Ages Centroids 
Relative 

exposures 

1 35-41 43 
64 77 81 
85 88 89 
91 93 94 

0.082046 0.197729 

2 31-33 42 
61 68 69 
90 95 

0.089643 0.130210 

3 30 34 46 
50 56 63 
65-67 72 
79 80 

0.093848 0.158257 

4 29 44 47 
48 51 59 
60 62 70 
73 75 76 
78 

0.100367 0.166243 

5 27 28 45 
53-55 57 
58 71 74 
84 

0.106366 0.167085 

6 49 52 83  0.114182 0.040280 
7 23-26 87 0.135333 0.090205 
8 21 82 0.157709 0.016459 
9 18-20 22 

86 92 
0.188920 0.033533 
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Incidentally, observe that young drivers show a quite high risk level and in fact the 

claim frequency progressively decreases in clusters 2, 3 and 4, whereas clusters 5 

and 6 show a higher risk level again. This is a well-known phenomenon present in 

the Italian market and it is explained by the fact that in the age classes of insured 

44-59 we find the insured whose young sons or daughters get their driving licence 

and begin to drive their parents’car. 

As far as the goodness of the clustering is concerned, in this case the distortion 

cannot be considered an acceptable criterion to choose among different groupings. 

In fact, in this application the distortion calculated from the centroids of the 

clusters is 1.2026 x 10-4, an extremely high level when compared with distortion 

values of the subdivisions in 7 clusters obtained in Section 4. Clearly, the 

continuity of the elements in the groups is a valuable result but it cannot be 

Table 5.3: II stage – Clusters of ages of the insured. 

Cluster Ages 
Claim-frequency 

centroids 
Relative 
exposure 

1 18 - 26 0.1507 0.139073 
2 27 - 29 0.1056 0.078049 
3 30 - 35 0.0904 0.157690 
4 36 - 43 0.0835 0.181334 
5 44 - 50 0.1011 0.148062 
6 51 - 59 0.1042 0.148756 
7 60 - 0.0945 0.147036 
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evaluated by means of this traditional measure. 
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