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Abstract 

In this paper we introduce an operational 
procedure which, given an avoiding 
sure loss (ASL) imprecise probability 
assessment � on an arbitrary finite set of 
conditional events, determines its ‘least-
committal’ coherent correction, i.e. the 
coherent imprecise probability assessment 
which reduces the imprecision of � as little 
as possible, without ever increasing it. 
Besides, a new proof of the consistency of a 
known procedure, which checks the ASL 
condition, is supplied by introducing a 
technique employed also in the proof of the 
previous procedure. It is then shown that 
the two procedures can be ‘merged’ to 
obtain an algorithm to be used when it is 
not known a priori whether � is ASL. 

 

1 Introduction  

A basic problem in handling uncertainty in Expert 
Systems is that of verifying whether a probabilistic 
evaluation � which forms (part of) the knowledge 
base is consistent. 
In several common situations � is a precise or 
imprecise conditional probability assessment on a 
set ℑ of conditional events, which is finite but 
usually arbitrary (ℑ is not necessarily, for instance, 
an algebra); this makes it hard to apply ‘traditional’ 
definitions of (precise or imprecise) conditional 
probability to �, while concepts of consistency 
based on de Finetti’s coherence principle are well-

suited for such instances, since they do not impose 
any constraint on the domain of �. However, while a 
unique notion of (precise) coherent conditional 
probability is commonly used (although in various 
forms: see, for instance, [3], [8], [10]), different 
notions of coherence for imprecise probabilities 
have been proposed in literature ([2], [9], [11], [14], 
[15], [16]); they weaken in various ways the precise 
probability coherence condition. So, if P is a 
coherent lower probability (2.1.4), it does, for 
instance, not necessarily satisfy additivity and 
generally obeys only weak forms of the product rule 
like P(H)⋅P(E|H) ≤ P(E ∧ H). Besides, the avoiding 
sure loss (ASL) condition recalled in 2.1.3 is even 
weaker than 2.1.4 and does not necessarily preserve 
several important properties of coherent imprecise 
probabilities (among these, non-negativity, 
monotonicity, weak product rules). On the other 
hand, checking the ASL condition (an algorithm is 
given in [2], [6]; see also [7]) requires operationally 
fewer computations than checking coherence (an 
algorithm is given in [11]). Further, it is also often 
simpler for an Expert System user to elicit his/her 
opinions through an ASL rather than a coherent 
assessment. 
A practical problem which may arise is then that of 
correcting an ASL assessment on ℑ into a coherent 
one, without modifying ‘too much’ the initial 
assessment. The correction should not increase the 
imprecision of the probability assessment on any 
event of ℑ and at the same time should also reduce 
this imprecision as little as possible, just what 
suffices to achieve a coherent evaluation.  
This kind of correction is the least-committal 
imprecise probability defined by (1) in 2.1.7, where 
it is also shown that it always exists. 



The main aim of this paper is to introduce and 
demonstrate an algorithm which finds the least-
committal imprecise probability, starting from an 
ASL assessment on ℑ. 
The least-committal probability is also, from the 
viewpoint of the theory of imprecise probabilities 
developed by P. Walley in [14], [15], a special case 
of natural extension, so that the algorithm is a 
computational procedure to find the natural 
extension of � on ℑ. 
Section 2 recalls the known definitions and results 
from the theory of precise as well as imprecise 
probabilities which are needed in the sequel. 
A known algorithm for checking the ASL condition 
is concisely discussed in section 3. In particular, a 
proof of its consistency, different from the existing 
ones, is given in 3.4: this introduces some aspects of 
the technique which is then employed also for 
proving the consistency (4.3) of the algorithm 4.2 
for finding the least-committal probability (some 
details in the proofs are omitted: refer to [12] for an 
exhaustive exposition of similar techniques, applied 
to different problems). 
Operationally, all the algorithms quoted consist of a 
sequence of linear programming (LP) problems. As 
shown in 4.4 and in example 4.5, it is then possible 
to extend the algorithm 4.2 to handle the case where 
it is not known whether the assessment � is ASL, 
with the purpose of both checking this condition and 
finding the least-committal imprecise probability 
(this includes checking coherence as well) at the 
same time. 

2 Preliminaries 

2.1 Coherence for imprecise probabilities 

We shall consider in the sequel lower imprecise 
probabilities P(·|·). The algorithms in sections 3, 4 
can be easily modified to deal with upper 
probabilities P̄(·|·). A theoretical reason to refer to 
lower (or upper) probabilities only is the coniugacy 
relation )H|E(P1)H|E(P −= , which is often 
assumed to hold for various reasons ([11], [14]). 
After introducing some notations, we recall firstly a 
definition of coherence for precise conditional 
probabilities [10], outlining concise comments and 
comparisons among it and the notions of coherence 
for imprecise probabilities in 2.1.3 and 2.1.4. 

2.1.1 Notation 

Logical notation will be used for operations and 
relations involving events. Particularly, ‘∧’, ‘∨’ and 
‘�’ are used for logical product, sum and 
implication of events respectively. Ē (or ¬E), ∅, Ω 
indicate the negation of event E, the impossible 
event and the sure one respectively.  
|E| denotes the random number equal to 1 if the 
event E is true, to zero otherwise. 
In the sequel, we shall denote with � an arbitrary 
(finite or infinite) not empty set of conditional events. 

2.1.2 Definition 

P(·|·) is a coherent conditional probability on � iff, 
∀m, ∀Ei|Hi∈�, ∀si∈ℜ, i = 1,…,m, defining 

�=
=

m

1i
isG |Hi|(|Ei| − P(Ei|Hi)) and H = 

m
1i=∨ Hi, 

it is max G|H ≥ 0. 
 
Defs. 2.1.2, 2.1.3 and 2.1.4 all require a conditional 
random number G|H not to be strictly negative. G|H 
can be interpreted as the gain a subject can obtain 
from betting on an arbitrary finite number of events 
in �; the elementary bet on Ei|Hi whose gain is 
gi = |Hi|(|Ei| − P(Ei|Hi)) is called off iff |Hi| = 0. In this 
case, gi gives a null contribution to G, since the 
subject bets on Ei|Hi with the proviso that Hi is true. 
In 2.1.2 it is possible to bet both in favour (if si > 0) 
and against (if si < 0) any Ei|Hi. Defs. 2.1.3, 2.1.4 
modify this betting scheme allowing, respectively, 
no bet (2.1.3) or at most one elementary bet (2.1.4) 
against an event of �. Corresponding definitions for 
upper probabilities may be referred to modified 
betting schemes allowing no or at most one 
elementary bet in favour of an event of �. See also 
[1], [2], [3], [5], [10], [14] for further information on 
the notions of coherence for precise and imprecise 
probabilities, as well as for other concepts of 
imprecise probabilities. 

2.1.3 Definition 

P(·|·) is an avoiding sure loss (ASL) lower 
probability on � iff, ∀m, ∀Ei|Hi∈�, ∀si ≥ 0, 
i = 1,…,m, defining 

�=
=

m

1i
isG |Hi|(|Ei| − P(Ei|Hi)) and H = 

m
1i=∨ Hi, 

it is max G|H ≥ 0. 



2.1.4 Definition 

P(·|·) is a coherent lower probability on � iff, ∀m, 
∀Ei|Hi∈�, ∀si ≥ 0, i = 0,…,m, defining 

�=
=

m

1i
isG |Hi|(|Ei| − P(Ei|Hi)) − s0|H0|(|E0| − P(E0|H0)) 

and H = 
m

0i=∨ Hi, 

it is max G|H ≥ 0. 
 
Def. 2.1.3 is that of ‘avoiding uniform loss’ given in 
[14], [15], referring to lower conditional previsions. 
Def. 2.1.4 is given in [16] for upper conditional 
previsions. 
To adhere to the problems discussed in the paper, 
from now onwards (except for 2.2.5) we shall 
consider assessments given on a finite set of events 
ℑ = {E1|H1,…,En|Hn}. 
In this framework, 2.1.5 and 2.1.6, whose proofs can 
be found in [2] and in [11] or [16] respectively, state 
conditions equivalent to 2.1.3 and 2.1.4. A definition 
equivalent to 2.1.3, based on the dominance 
condition in 2.1.5, is given in [6]. 

2.1.5 Theorem 

P(·|·) is an ASL lower probability on ℑ iff there 
exists a coherent conditional probability P(·|·) 
dominating P(·|·) on ℑ, i.e. 
P(Ei|Hi) ≤ P(Ei|Hi) ∀Ei|Hi∈ℑ. 

2.1.6 Lower envelope theorem 

P(·|·) is a coherent lower probability on ℑ iff there 
exists a set � of coherent conditional probabilities 
on ℑ such that 

P(Ei|Hi) = 
�∈P

min {P(Ei|Hi)} ∀Ei|Hi∈ℑ. 

2.1.7 Proposition 

Let P(·|·) be an ASL lower probability on ℑ. Let � be 
the set of the coherent probabilities defined on ℑ and 
dominating P. Then, 

(1) P*(Ei|Hi) = 
�∈P

min {P(Ei|Hi)} ∀Ei|Hi∈ℑ 

is a coherent lower probability dominating P. 
Moreover, every coherent lower probability 
dominating P on ℑ dominates P*. 

Proof  P* is coherent by 2.1.6 and obviously 
dominates P. Let P' be a coherent lower probability 

dominating P on ℑ. By 2.1.6 there exists a set of 
coherent conditional probabilities � such that 
P'(Ei|Hi) = 

�∈P
min {P(Ei|Hi)} ∀Ei|Hi∈ℑ. Clearly, � ⊆ � 

and so P*(Ei|Hi) ≤ P'(Ei|Hi) ∀Ei|Hi∈ℑ.                     � 
 
Given an ASL lower probability P on ℑ, (1) defines 
the least-committal lower probability P* (see also 
[13] for other applications of the concept), which 
can be interpreted as the minimal coherent 
correction of P that dominates P on ℑ. Since the 
dominance condition is necessary to avoid 
increasing the degree of imprecision when 
modifying P, determining P* on ℑ is a natural way 
of correcting P. 
It can be seen that the least-committal lower 
probability P* is the natural extension on ℑ (as 
defined in [15]) of the ASL lower probability P. 

2.2 Some subjective probability results 

As appears from 2.1.5, 2.1.6, results on precise 
coherent probabilities may be relevant in problems 
concerning imprecise probabilities. In particular, a 
characterisation theorem for coherent conditional 
probabilities (introduced in [4]) is recalled in 2.2.4 
in a simplified version (proved in [5]).  

2.2.1 Definitions 

Symbol � is used to denote a partition of Ω. The not 
impossible events of � are called atoms. Given � 
and an event K ≠ ∅, the conditional partition �|K is 
formed by the events of � conditioned on K, i.e. the 
atoms of �|K are obtained by the atoms of � still 
possible after conditioning on K. 
We say that an event E (E|K) is logically dependent 
from � (�|K) if every atom of � (�|K) implies either 
E (E|K) or Ē (Ē|K). This happens iff E (E|K) is a 
logical sum of atoms of � (�|K). 

Given �, a partition �' is said coarser than � if 
every atom of �' is logically dependent from �. 

�(�) (�(�|K)) is the set of all events logically 
dependent from � (�|K). We set also 
��

∅(�) = �(�) − {∅}, ��

∅(�|K) = �(�|K) − {∅|K} and 
�(�)|��

∅(�) = {E|H : E∈�(�) , H∈��

∅(�)}. 

2.2.2 Definition 

Given a finite partition �, a triple (�',>,{πc(·)}c∈�') is 



a weight system on � if 

– �' is a partition coarser than �; 

– > is a total order on �'; 
– every πc(·) (weight function) is a positive real-

valued function defined, up to a constant factor, 
on the set of the atoms of � which imply C; πc(ei) 
is called weight of ei. 

2.2.3 Definitions 

Let (�',>,{πc(·)}c∈�') be a weight system on � and let 
ei, ej be atoms of �. Then, ei, ej have weights of the 
same order if they imply the same C∈�'. Instead, ei 
has weight of higher order than that of ej if ei � C, 
ej � D (C, D∈�') and C > D. If E∈��

∅(�), E* 
denotes the logical sum of the atoms of �, among 
those implying E, with weight of highest order.  
The sum function σ(E) is the sum of weights of the 
atoms implying E*. Obviously, it is σ(E) = σ(E*). 
Conventionally, σ(∅) = 0. 

2.2.4 Characterisation theorem 

Let � be a finite partition. P(·|·) is a coherent 
conditional probability on �(�)|��

∅(�) iff there 
exists a (unique) weight system on � such that 

)H(
*)HE(

)H|E(P
σ

∧σ=   ∀E∈�(�), ∀H∈��

∅(�). 

 
Finally, the following Thm. 2.2.5 [10] allows to 
extend any coherent conditional probability. 

2.2.5 Extension theorem  

Any coherent conditional probability on a not empty 
set � of conditional events can be extended to a 
coherent conditional probability on any superset of �. 

3 An algorithm for checking the ASL 
condition 

It is useful for understanding the final procedure in 
4.2 to discuss briefly a known algorithm for 
checking the ASL condition for an imprecise 
probability assessment. 

3.1 Definitions  

Let P be a lower probability assessment on 

ℑ = {E1|H1,…,En|Hn}, P(Ei|Hi) = ai, ℑh ⊂⊂⊂⊂ ℑ. 
Define then � (�h) as the set of all coherent 
conditional (precise) probabilities dominating P on 
ℑ (on ℑh), and, for Er|Hr∈ℑ (∈ℑh), 
mr = 

�∈P
min {P(Er|Hr)} (mr

(h) = 
hP

min
�∈

{P(Er|Hr)}). 

By 2.2.5, it is not restrictive to consider the 
probabilities in � (�h) on an arbitrary domain which 
includes ℑ (ℑh). 
Define � as the partition whose atoms are the not 
impossible logical products obtained developing the 
expression n

1i=∧ [(Ei ∧ Hi) ∨ (Ēi ∧ Hi) ∨ H̄i]. Note that 
ℑ ⊂ �(�)|��

∅(�). 

Let I1 = {1,…,n}, K1 = ∨i∈I1
Hi. If K̄1 ≠ ∅, then K̄1 is 

an atom of �; we call e1,…,em the remaining atoms 
of �. Define then J1 = {j: ej � K1} = {1,…,m}, 
ℑ0 = ℑ, �� = �. 

The function δ(E � F) is equal to one if E � F 
holds, to zero otherwise. 

3.2 Checking the ASL condition 

Step h (first step: h = 1) 
Consider the linear system (Sh): 

�
�

�

�
�

�

�

∈≥=

∈

≥�δ−∧�δ

�

��

∈

∈∈

)Jj(0x,1x

;Iifor

,0)He(xa)HEe(x

)S(

hj
Jj

j

h

Jj
ijji

Jj
iijj

h

hh

h  

If (Sh) has no solution, P is not ASL. 
If (xj(h))j∈Jh

 is a solution for (Sh), since (xj(h))j∈Jh
 is a 

non-negative vector whose components sum up to 
one, it is also a coherent probability Ph on the 
conditional partition �|Kh, putting Ph(ej|Kh) = xj(h). 
As well known, Ph has a unique coherent extension 
on every E|Kh∈�(�|Kh) by additivity. Then, also 
observing that for ej � Kh and E � Kh it is 

(2) δ(ej|Kh � E|Kh) = δ(ej � E), 

we have Ph(E|Kh) = Σj∈Jh
xj(h)δ(ej � E). 

Referring to the solution found for (Sh), define 
then Ih+1 = {i∈Ih: Ph(Hi|Kh) = 0}, Kh+1 = ∨i∈Ih+1

Hi, 
Jh+1 = {j∈Jh: ej � Kh+1}, ℑh = {Ei|Hi: Hi � Kh+1}. 

We define also Kh
+
 = ∨{ej∈� : Ph(ej|Kh) > 0}, which 

will be used in 3.4 (c). Note that Kh
+
 ≠ ∅, 



Kh
+
 ∧ Kk = ∅ if h < k, Kh

+
 ∧ Kk

+
 = ∅ if h ≠ k. 

If Kh+1 = ∅, the procedure terminates and P is ASL; 
otherwise continue with step h+1. 

3.3 Remarks on system (Sh) 

(a) If Ph∈�h−1, then Ph(ej|Kh), j∈Jh, is a solution for 
(Sh). 
In fact, recalling (2), the i-th inequality in (Sh) may 
be written in terms of Ph as 

(3) Ph(Ei ∧ Hi|Kh) − aiPh(Hi|Kh) ≥ 0, 

and (3) holds either trivially (if Ph(Hi|Kh) = 0) or else 
because of the following sequence (where the 
relation Hi � Kh and the product rule are also 
exploited): 

ai = P(Ei|Hi) ≤ Ph(Ei|Hi) = Ph(Ei|Hi ∧ Kh) =  

 = 
)KH(P

)KHE(P

hih

hiih

|
|∧

. 

The conclusion follows. 
(b) Note also that (3) cannot hold trivially for all 
i∈Ih (Ph(∨i∈Ih

Hi|Kh) = Ph(Kh|Kh) = 1); Ih+1 is precisely 

the set of all i∈Ih such that the i-th inequality is 
trivially (0 − ai⋅0 ≥ 0) verified by the solution found 
for (Sh). It is easily seen that the inequalities in 
system (Sh+1) are then a proper subset of the 
inequalities of (Sh). 

3.4 Algorithm consistency  

This algorithm is discussed from various viewpoints 
in [2], [6], [7]. We give here a different proof of its 
consistency, which will be useful in the next section. 
Precisely: 
(a) the algorithm terminates in a finite number of 
steps. 
In fact, the number of inequalities in the first row of 
(Sh) is finite (n for h = 1) and strictly decreasing as h 
increases, by 3.3 (b). 
(b) If the last system (St) is incompatible, P is not 
ASL. 

In fact, by 3.3 (a) the set �t−1 is then empty, and so is 
also � ⊂ �t−1 (3.1). Then P is not ASL by 2.1.5. 
(c) If the last system (St) is consistent, P is ASL. 
To prove this, it is sufficient to determine a coherent 
conditional probability P* which dominates P on ℑ 
(2.1.5) and is defined on �(�)|��

∅(�) (⊃ ℑ). By 
2.2.4, we can assign P* by means of its weight 

system, defined as follows: 

– �' = {K1
+,…,Kt

+,D}, D = ¬( t
1h=∨ Kh

+). It is easy to 
verify that �'�is a partition; 

– K1
+
 >… > Kt

+
 > D; 

– πh(ej) = xj(h), ∀ej: ej � Kh
+, h = 1,…,t; πD arbitrary 

and positive. 
It is not difficult to see that, given P* just defined, 
choosing arbitrarily Er|Hr∈ℑ there exists (a unique) 
h such that Hr*  � Kh

+; moreover, given E∈�(�), 
the following equality holds (σ is the sum function 
(2.2.3) of P*): 

(4) σ(E ∧ Hr*) = Σj∈Jh
xj(h)δ(ej � E ∧ Hr). 

Then, applying 2.2.4, (4) twice (for E = Er, E = Hr) 
together with σ(Hr*) = σ(Hr), and the r-th constraint 
in (Sh), we get: 

P*(Er|Hr) = 
)H(

*)HE(

r

rr

σ
∧σ

 =  

 = [Σj∈Jh
xj(h)δ(ej � Er ∧ Hr)] / [Σj∈Jh

xj(h)δ(ej � Hr)] ≥  

 ≥ ar = P(Er|Hr).  

Hence P* ≥ P.                                                           � 

3.5 Remarks 

(a) It has been proved in the final part of 3.4 (c) that 
the probability P* dominates P on ℑ. Further, it is 
easily seen that the restriction of P* on �|K1 is the 
solution found for (S1): P*(ej|K1) = xj(1) = P1(ej|K1).  
It follows from these two facts that, if P is ASL, any 
solution of (S1) is a probability on �|K1 which can 
be always coherently extended to a probability 
dominating P on ℑ. 
An analogue conclusion may be drawn for the 
solutions of system (Sh). In fact, by applying the 
same argument of 3.4 (c) to a sequence of systems 
starting with (Sh) instead of (S1), we determine a 
probability Ph* on �(�)|��

∅(�) dominating P on ℑh−1. 
Further, it is Ph*(ej|Kh) = xj(h) = Ph(ej|Kh). 
It follows that, if P is ASL on ℑh−1, any solution of 
(Sh) can be always extended to a probability 
dominating P on ℑh−1. 
(b) If P is ASL, a solution for system (Sh) can be 
found operationally by optimising a linear function 
ƒ, subject to (Sh). The choice of ƒ has a crucial 
importance in the procedure 4.2 for finding the least-
committal lower probability, because of the 



additional probabilistic information it gives us. 
Observe for this that if ƒ = Σj∈Jh

xjδ(ej � E), E∈�(�), 

E � Kh, by minimising ƒ subject to (Sh) we obtain 
min ƒ = min Ph(E|Kh), where the minimum is over all 
coherent probabilities Ph dominating P on ℑh−1 (3.3 
(a), 3.5 (a)). 
(c) Let Er|Hr be an event of ℑh−1. We shall consider 
in section 4 the following system 

�
�

�

�
�

�

�

∈≥=�δ

∈

≥�δ−∧�δ

�

��

∈

∈∈

)Jj(0x,1)He(x

;Iifor

,0)He(xa)HEe(x

)T(

hj
Jj

rjj

h

Jj
ijji

Jj
iijj

h

hh

h

Every solution (xj(h))j∈Jh
 of (Th) corresponds to a 

solution (xj(h)/k)j∈Jh
, k = Σj∈Jh

xj(h), of (Sh) and it is 
therefore proportional to a probability Ph 
(xj(h) = kPh(ej|Kh), ∀j∈Jh). By the normalisation 
constraint in (Th), Ph(Hr|Kh) is strictly positive: 
Ph(Hr|Kh) = Σj∈Jh

Ph(ej|Kh)δ(ej � Hr) = 1/k > 0. Clearly, 
Ph can be extended, by 3.5 (a), to a probability 
dominating P on ℑh−1. 

4    From ASL to least-committal probabilities 

Suppose now that P is ASL. To find its least-
committal coherent correction on ℑ, by 2.1.7 we 
have to find mr = 

�∈P
min {P(Er|Hr)}, for r = 1,…,n. The 

following proposition solves the problem in a special 
case. 

4.1 Proposition  

Let P be an ASL lower probability assessment on 
ℑh−1 (the notation is as in sect. 3). Consider the 
linear programming (LP) problem (Ph): 

(Ph) µr
(h) = min Σj∈Jh

xjδ(ej � Hr), subject to (Sh). 

If µr
(h) > 0, then mr

(h−1) (3.1) is the solution of the 
following auxiliary LP problem (Ah): 

(Ah) mr
(h−1) = min Σj∈Jh

xjδ(ej � Er ∧ Hr), subject to 
(Th). 

Proof  It ensues from 3.3 (a) and 3.5 (a) that the 
solutions of system (Sh) correspond to all 
probabilities of �h−1. 
It ensues from an argument similar to that of 3.3 (a) 
that every probability belonging to the set 

�h−1
+
 = {Ph∈�h−1: Ph(Hr|Kh) > 0} is proportional to a 

solution of system (Th) and from 3.5 (c) that every 
solution of (Th) is proportional to a probability of 
�h−1

+. Given a solution (xj(h))j∈Jh
 for (Th), it is then, 

∀j∈Jh, xj(h) = kPh(ej|Kh), k = Σj∈Jh
xj(h), Ph∈�h−1

+. 

When the ‘if’ condition in the hypothesis of this 
proposition holds (that is, by 3.5 (b), when 
Ph(Hr|Kh) > 0 ∀Ph∈�h−1), it is �h−1

+
 = �h−1, so that also 

the solutions of (Th) identify all Ph∈�h−1. 

Therefore, for each Ph∈�h−1, the summations in (Th) 
may be written as: 

Σj∈Jh
xj(h)δ(ej � Er ∧ Hr) = kPh(Er ∧ Hr|Kh), 

Σj∈Jh
xj(h)δ(ej � Hr) = kPh(Hr|Kh). 

From this, relation Hr � Kh, the product rule and the 
normalisation constraint in (Th) we get: 

Ph(Er|Hr) = Ph(Er|Hr ∧ Kh) = 
)KH(P

)KHE(P

hrh

hrrh

|
|∧

 =  

 = [Σj∈Jh
xj(h)δ(ej � Er ∧ Hr)] / [Σj∈Jh

xj(h)δ(ej � Hr)] =  

 = Σj∈Jh
xj(h)δ(ej � Er ∧ Hr). 

It ensues that solving the LP problem (Ah) we 
determine mr

(h−1).                                                      � 
 
By applying 4.1 with h = 1, if the solution of the LP 
problem (P1) is such that min Σj∈J1

xjδ(ej � Hr) > 0, 

i.e. P1(Hr|K1) > 0, ∀P1∈�0 = �, it is possible to find 
mr = mr

(0) by solving the LP problem (A1). 
Otherwise, the procedure continues as shown in 4.2. 

4.2 Finding the least-committal lower 
probability 

We describe now a general procedure for finding the 
least-committal lower probability P* for P, 
supposing that P is ASL. It determines 
mr = P*(Er|Hr) for each Er|Hr. Clearly, P* = P iff P is 
coherent. 

Step h (first step: h = 1) 
Find a solution for the LP problem (Ph) (4.1): 

(Ph) µr
(h) = min Σj∈Jh

xjδ(ej � Hr), subject to (Sh). 

 If µr
(h) > 0, then mr is the solution of the LP 

problem (Ah) (4.1): 

(Ah)   mr = min Σj∈Jh
xjδ(ej � Er ∧ Hr), subject to (Th). 



 If  µr
(h) = 0, and xj(h) = Ph(ej|Kh), j∈Jh, is the 

solution found for (Sh) in problem (Ph), define, as 
in 3.2, Ih+1 = {i∈Ih: Ph(Hi|Kh) = 0}, Kh+1 = ∨i∈Ih+1

Hi, 

Jh+1 = {j∈Jh: ej � Kh+1}, and continue with step h+1. 

4.3 Algorithm consistency theorem  

Let P be ASL on ℑ. Algorithm 4.2 determines 
mr = P*(Er|Hr) ∀Er|Hr∈ℑ. 

Proof  4.2 terminates in a finite number of steps. In 
fact, since the sequence {Kh} is strictly monotone 
and decreasing (because so is the sequence {Ih} by 
3.4 (a)) and Hr � Kh holds for each problem (Ph), 
the stopping condition µh > 0 (i.e. min Ph(Hr|Kh) > 0) 
is sooner or later met. 
At the last step s, by 4.1, the algorithm determines 
mr

(s−1). The case s = 1 is trivial. Suppose then s > 1. 

Clearly, it is mr
(s−1) ≤ mr, since each probability 

dominating P on ℑ dominates P on ℑs−1. 

Hence the thesis is proved if we can find Pr*∈� such 
that Pr*(Er|Hr) = mr

(s−1). To do this, by 2.2.4, we can 
assign the weight system of Pr* on the partition �, 
thereby defining Pr* on �(�)|��

∅(�) (⊃ ℑ). Calling 
(x̄j(s))j∈Js

 the solution found for system (Ts) in the LP 
problem (As), complete for this the sequence of 
solutions for systems (S1),…,(Ss−1) by assigning to 
system (Ss) the solution (yj(s))j∈Js

 obtained by 
multiplying each component of (x̄j(s))j∈Js

 by  
1/Σj∈Js

x̄j(s). (S1),…,(Ss) is a particular subsequence 
in the procedure for checking the ASL condition for 
P; let us complete it in the way described in sect. 3, 
if necessary (i.e., if Ks+1 ≠ ∅), getting in this way a 
sequence of solutions for (S1),…,(St) (t ≥ s). 
Referring to this sequence, define the weight system 
of Pr* as in 3.4 (c) (so that, for instance, 
�' = {K1

+,…,Kt
+,D}; the only difference is that πs(ej) 

is equal to yj(s) instead of xj(s)). 
In order to prove that it is 

Pr*(Er|Hr) = mr
(s−1) = Σj∈Js

x̄j(s)δ(ej � Er ∧ Hr) 

note firstly that by construction Hr* = Hr ∧ Ks
+ and 

that, given E∈�(�), the following equality, analogue 
of (4) in 3.4 (c), holds (σ is the sum function of Pr*): 

(4') σ(E ∧ Hr*) = Σj∈Js
yj(s)δ(ej � E ∧ Hr). 

We obtain now the following equalities (in the 
fourth, apply (4') twice, for E = Er and E = Hr): 

mr
(s−1) = Σj∈Js

x̄j(s)δ(ej � Er ∧ Hr) =  

 = [Σj∈Js
x̄j(s)δ(ej � Er ∧ Hr)] / [Σj∈Js

x̄j(s)δ(ej � Hr)] =  

 = [Σj∈Js
yj(s)δ(ej � Er ∧ Hr)] / [Σj∈Js

yj(s)δ(ej � Hr)] =  

 = 
)H(

*)HE(

r

rr

σ
∧σ

 = Pr*(Er|Hr).                                   � 

4.4 An operational generalisation  

In order to apply 4.2, it is assumed that P is ASL. 
Nevertheless, when this is not known a priori it is 
possible to run one procedure (‘merging’ 3.2 and 
4.2) which both checks the ASL condition for P and 
finds its least-committal lower probability, thereby 
verifying also whether P is coherent (therefore, it 
improves the algorithm for checking coherence 
introduced in [11]). 
Refer for this to Er|Hr∈ℑ and operate as follows at 
each step h (h ≥ 1): 

h.a) consider problem (Ph) in step h of 4.2. If (Ph) is 
infeasible, P is not ASL and the procedure 
stops; otherwise define Ih+1, Kh+1, Jh+1 as in 4.2, 
both when µr

(h) = 0 and when µr
(h) > 0; 

h.b.1) if µr
(h) = 0, go to step h+1.a);  

h.b.2) if µr
(h) > 0 and Kh+1 = ∅, P is ASL on ℑ; solve 

then (Ah), whose solution is P*(Er|Hr); 
h.b.3) if µr

(h) > 0 and Kh+1 ≠ ∅, execute from step h+1 
onwards the procedure 3.2; 
– if doing so a system is incompatible, P is 

not ASL on ℑ; 
– if all systems are consistent, P is ASL on 

ℑ; in this case, solve (Ah) to find P*(Er|Hr). 

If the above procedure states that P is ASL, execute 
4.2 for all Ei|Hi∈ℑ, Ei|Hi ≠ Er|Hr, finding P*, which 
is equal to P if and only if P is coherent. 

4.5 An example 

Given the partition � = {e1, e2, e3, e4} and the events 
E = e1 ∨ e2 ∨ e4, F = e1 ∨ e4, H = e1 ∨ e2 ∨ e3, consider 
the assignment P(F|E ∧ H) = 1/3, P(E|H) = 3/4, 
P(F|H) = 1/2, P(F|E) = 1/2. Since we do not know 
whether P is ASL on ℑ = {F|E ∧ H, E|H, F|H, F|E}, 
let us apply 4.4, starting from F|E ∧ H: 

1.a) Problem (P1) is  

µ(1) = min (x1 + x2), subject to 
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1.b.1) Since µ(1) = 0 (obtained for xj = 0 (j ≠ 4) and 
x4 = 1), we pass to step 2.a), observing that 
K2 = e1 ∨ e2 ∨ e3. 

2.a) Problem (P2) is 

µ(2) = min (x1 + x2), subject to 
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2.b.2) Since µ(2) = 3/4 (obtained for x1 = 1/2, 
x2 = x3 = 1/4) and K3 = ∅, P is ASL. To find 
P*(F|E ∧ H) we solve the following problem (A2): 

m(1) = min x1, subject to 
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We obtain (for x1 = x2 = 1/2 and x3 = 0) 
m(1) = P*(F|E ∧ H) = 1/2 > P(F|E ∧ H). 
By applying 4.2 to the events of ℑ' = ℑ − {F|E ∧ H}, 
it can be verified that P* = P on ℑ'. Therefore, we 
conclude that P is not coherent on ℑ and we must 
raise our evaluation on F|E ∧ H from 1/3 to 1/2 in 
order to achieve coherence. 
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