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Abstract

Two classes of imprecise previsions, which we termed convex and centered convex
previsions, are studied in this paper in a framework close to Walley’s and Williams’
theory of imprecise previsions. We show that convex previsions are related with
a concept of convex natural estension, which is useful in correcting a large class
of inconsistent imprecise probability assessments, characterised by a condition of
avoiding unbounded sure loss. Convexity further provides a conceptual framework
for some uncertainty models and devices, like unnormalised supremum preserving
functions. Centered convex previsions are intermediate between coherent previsions
and previsions avoiding sure loss, and their not requiring positive homogeneity is a
relevant feature for potential applications. We discuss in particular their usage in
(financial) risk measurement. In a final part we introduce convex imprecise previ-
sions in a conditional environment and investigate their basic properties, showing
how several of the preceding notions may be extended and the way the generalised
Bayes rule applies.

Key words: Convex Imprecise Previsions, Convex Natural Extension, Risk
Measures, Convex Conditional Imprecise Previsions, Generalised Bayes Rule.

1 Introduction

Imprecise probability theory is developed in [15] in terms of two major classes
of (unconditional) imprecise previsions, relying upon reasonable consistency
requirements: avoiding sure loss and coherent previsions. The condition of
avoiding sure loss is less restrictive than coherence but is often too weak.

Coherent imprecise previsions have been studied more extensively, while im-
precise previsions that avoid sure loss received less attention, and it is an
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interesting problem to state whether some special class of previsions avoiding
sure loss can be identified, which is such that

(a) its properties are not too far from those of coherent previsions;
(b) it gives further insight into the theory of imprecise previsions or generalises

some of its basic aspects;
(c) it may express beliefs which do not match with coherence but which are

useful in formalising and dependably modelling certain kinds of problems.

This paper deals with two classes of imprecise previsions, convex and centered
convex previsions, which let us provide some answers to points (a), (b), (c).

Convex and centered convex previsions were first studied in [11] and then in
[13]. This paper is an extended version of [13] in a first part, then introduces
convex conditional previsions in its Section 5. In the first part, Section 3,
we quote without proof results proved in [11] or [13]; some of them are also
generalised and proved in a conditional framework in Section 5.

After recalling some basic notions in Section 2, we study the larger class of con-
vex lower previsions in Section 3.1. Although our conclusion is that convexity
is an unsatisfactory consistency requirement – for instance, convex previsions
do not necessarily avoid sure loss – it is however important as far as (b) is con-
cerned. That is seen in Section 3.2, where a notion of convex natural extension
is discussed which formally parallels the basic concept of natural extension in
[15]. We characterise lower previsions whose convex natural extension is finite
as those complying with the (mild) requirement of avoiding unbounded sure
loss. In this case the convex natural extension indicates a canonical (least-
committal) way of correcting them into a convex assessment. As discussed
in Section 3.2.1, it is then easy to make a further correction to achieve the
stronger (and more satisfactory) property of centered convexity.

Centered convex previsions are discussed in Section 3.3, together with gen-
eralisations of the important envelope theorem. They are a special class of
previsions avoiding sure loss, retaining several properties of coherent impre-
cise previsions, and hence they appear to fulfil requirement (a).

Convex previsions are studied in the paper following a behavioural approach,
close to those in [15,18]. Section 3.4 contains a brief discussion of alterna-
tive approaches, and makes some comparisons with notions developed in the
literature [10,15] which are close to convex previsions.

Section 4 gives some answers to point (c). Here convex previsions provide
a conceptual framework for certain kinds of uncertainty models, as shown
in Examples 1 (overly prudential assessments) and 2 (supremum preserving
functions). These models are sometimes employed in practice, although they
cannot usually be regarded as satisfactory. Centered convex previsions do not
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require the positive homogeneity condition P (λX) = λP (X), ∀λ > 0, and
hence seem appropriate to capture risk aversion. In Section 4.1 we focus in
particular on risk measurement problems, showing that the results in Section
3 may be used to define convex risk measures (centered or not) for an arbitrary
set of random variables D. In particular, the definition of convex risk measure
coincides, when D is a linear space, with the concept of convex risk measure
recently introduced in the literature to consider liquidity risks [6,7].

In Section 5 we introduce convex conditional imprecise previsions and explore
their essential properties. It turns out that a meaningful part of the results
for the unconditional case can be generalised. This applies in particular to
the convex natural extension, when the convex conditional prevision is cen-
tered (Section 5.1). Further, convex conditional previsions are characterised
by a set of axioms when their domain has a special structure, and the gener-
alised Bayes rule, an important inferential device, holds for them too (Section
5.2). Conditional convexity can be exploited in particular to introduce convex
measures for conditional risks (Section 5.3). Section 6 concludes the paper.

2 Preliminaries

Unless otherwise specified, in the sequel we shall denote with D an arbitrary
set of bounded random variables (or gambles, in the notation of [15]). A lower
prevision P (an upper prevision P , a prevision P ) on D is a real-valued func-
tion with domain D. In particular, if D contains only indicator functions of
events, P (P , P ) is termed lower probability (upper probability, probability).

Lower (and upper) previsions should satisfy some consistency requirements:
the commonest are the condition of avoiding sure loss and the stronger coher-
ence condition [15].

Definition 1 P : D → R is a lower prevision on D that avoids sure loss iff,
for all n ∈ N+, ∀ X1, . . . , Xn ∈ D, ∀ s1, . . . , sn real and non-negative, defining
G =

∑n
i=1 si(Xi − P (Xi)), sup G ≥ 0.

Definition 2 P : D → R is a coherent lower prevision on D if and only if,
for all n ∈ N+, ∀ X0, X1, . . . , Xn ∈ D, ∀ s0, s1, . . . , sn real and non-negative,
defining G =

∑n
i=1 si(Xi − P (Xi))− s0(X0 − P (X0)), sup G ≥ 0.

The condition of avoiding sure loss is too weak under many respects: for in-
stance, it does not require that P (X) ≥ inf X, nor does it impose monotonic-
ity. On the other hand, it is simpler to assess and to check than coherence.

Behaviourally, a lower prevision P (X) may be viewed as a supremum buying
price for X [15], and s(X − P (X)) is an elementary gain from a bet on X,
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with stake s. We shall say that the bet is in favour of X if s ≥ 0, whilst
−s(X−P (X)) (s ≥ 0) is an elementary gain from a bet against X. Definitions
1 and 2 both require that no admissible linear combination G of elementary
gains originates a sure loss bounded away from zero. The difference is that
the concept of avoiding sure loss considers only bets in favour of the Xi, while
coherence considers also (at most) one bet against a random variable in D.

We recall the following properties of coherent lower previsions, which hold
whenever the random variables involved are in D:

(a) P (λX) = λP (X), ∀λ > 0 (positive homogeneity)
(b) inf X ≤ P (X) ≤ sup X (internality)
(c) P (X + Y ) ≥ P (X) + P (Y ) (superlinearity).

Coherent precise previsions may be defined by modifying Definition 2 to allow
n ≥ 0 bets in favour of and m ≥ 0 bets against random variables in D (m, n ∈
N). A coherent precise prevision P is necessarily linear and homogeneous :
P (aX + bY ) = aP (X) + bP (Y ), ∀a, b ∈ R. In particular P (0) = 0.

Coherent lower previsions may be characterised using precise previsions [15]:

Theorem 1 (Lower envelope theorem) A lower prevision P on D is coherent
iff P is the lower envelope of some set M of coherent precise previsions on D,
i.e. iff P (X) = infP∈M{P (X)},∀X ∈ D ( inf is attained).

Upper and lower previsions are customarily related by the conjugacy relation
P (X) = −P (−X). An upper prevision P (X) may be viewed as an infimum
selling price for X and an elementary gain from a bet concerning X is written
as s(P (X)−X). The definitions of coherence and of the condition of avoiding
sure loss are modified accordingly.

When D is a set of bounded conditional random variables, the consistency
requirements recalled above may be generalised as follows: firstly, we associate
the elementary gain gi = siBi(Xi − P (Xi|Bi)) to a bet on Xi|Bi ∈ D, where
the same symbol Bi is employed for both event Bi and its indicator function
(de Finetti’s convention). If Bi = 0 (i.e. if event Bi does not occur) the bet on
Xi|Bi is called off and nothing is won or lost, since then gi = 0.

Secondly, when considering the elementary gains g1, . . . , gn, we call support of
s = (s1, . . . , sn) the event S(s) =

∨{Bi : si 6= 0, i = 1, . . . , n}. Conditioning
G =

∑n
i=1 gi on S(s) enables us to evaluate sup G in the next definition only

when at least one of the bets on X1|B1, . . . , Xn|Bn is effective.

Definition 3 P : D → R is a conditional lower prevision avoiding uniform
loss on D iff, for all n ∈ N+, ∀X1|B1, . . . , Xn|Bn ∈ D, ∀s1, . . . , sn real and
non-negative, defining G =

∑n
i=1 siBi(Xi − P (Xi|Bi)), sup{G|S(s)} ≥ 0.
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We recall that the notion of avoiding uniform loss is the proper generalisation
of the concept of avoiding sure loss to the conditional case (cf. [15,16]). It
is less clear, however, how coherence should be generalised. In our opinion,
Williams’ definition [15,18], which we report in an equivalent form in Definition
4, is preferable under many respects, especially generality and simplicity, but
other meaningful notions have also been considered in the literature [14,15,17].

Definition 4 P : D → R is a coherent conditional lower prevision on D iff,
for all n ∈ N+, ∀X0|B0, . . . , Xn|Bn ∈ D, ∀s0, . . . , sn ≥ 0, defining S∗(s) =∨{Bi : si 6= 0, i = 0, . . . , n} and G =

∑n
i=1 siBi(Xi − P (Xi|Bi)) − s0B0(X0 −

P (X0|B0)), sup{G|S∗(s)} ≥ 0.

Lastly, in the computations of Section 5 we will often make use of the fact
that sup X|B = supω⇒B X(ω), where all ω belong to a sufficiently large under-
lying possibility space, and will also employ the equality f(X1, . . . , Xn)|B =
f(X1|B, . . . , Xn|B), where f is any real function (here, often f = G).

3 Convex Lower Previsions

3.1 Convex Previsions

Definition 5 P : D → R is a convex 1 lower prevision on D iff, for all n ∈
N+, ∀ X0, X1, . . . , Xn ∈ D, ∀ s1, . . . , sn ≥ 0 such that

∑n
i=1 si = 1 (convexity

condition), defining G =
∑n

i=1 si(Xi − P (Xi))− (X0 − P (X0)), sup G ≥ 0.

Any coherent lower prevision is convex, since Definition 5 is obtained from
Definition 2 adding the constraint

∑n
i=1 si = s0 = 1 (note that we would

get a definition equivalent to Definition 5 requiring only
∑n

i=1 si = s0 > 0).
Conversely, a convex lower prevision does not even necessarily avoid sure loss:

Proposition 1 Let P be a convex lower prevision on D and let 0 ∈ D. Then
P avoids sure loss iff P (0) ≤ 0.

Convexity is characterised by a set of axioms if D has a special structure [11]:

Theorem 2 Let P : D → R.

(a) If D is a linear space containing real constants, P is a convex lower prevision

1 The term ‘convex’ refers to the convexity condition
∑n

i=1 si = 1 (si ≥ 0), which
distinguishes convex lower (upper) previsions from coherent lower (upper) previsions
(cf. Definitions 2, 5 and 9) and convex natural extensions from natural extensions (cf.
Definition 6 and Section 3.2.1). The term ‘convex prevision’ is therefore unrelated
with convexity or concavity properties of previsions as real functions.
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iff it satisfies the following axioms: 2

(A1) P (X + c) = P (X) + c, ∀X ∈ D,∀c ∈ R (translation invariance)
(A2) ∀X, Y ∈ D, if Y ≤ X then P (Y ) ≤ P (X) (monotonicity)
(A3) P (λX + (1 − λ)Y ) ≥ λP (X) + (1 − λ)P (Y ),∀X, Y ∈ D,∀λ ∈ [0, 1]

(concavity).
(b) If D is a convex cone, P is a convex lower prevision iff it satisfies (A3) and
(A4) ∀µ ∈ R, ∀X,Y ∈ D, if X ≥ Y + µ then P (X) ≥ P (Y ) + µ.

Proposition 2 (Some properties of convex lower previsions 3) Let P be a con-
vex lower prevision on D. The following properties hold (whenever all random
variables involved are in D):

(a) If P (0) ≥ 0, P (λX) ≥ λP (X), ∀λ ∈ [0, 1] and P (λX) ≤ λP (X), ∀λ > 1
(b) P (0) + inf X ≤ P (X) ≤ P (0) + sup X
(c) ∀µ ∈ R, P ∗(X) = P (X) + µ is convex on D.

Property (a) shows that convexity is compatible with lack of positive homo-
geneity, but requires P (0) ≥ 0. If P (0) < 0, the inequalities in (a) may or
may not hold. For instance, they do not with the constant lower prevision
P ∗ = −r < 0 on D = {0, X, λX} (0 ∈ [inf X, sup X]), which is convex ∀λ (by
property (c) with µ = −r, P = 0, since then P is coherent and hence convex),
but P ∗(λX) < λP ∗(X), ∀λ ∈ [0, 1[, P ∗(λX) > λP ∗(X), ∀λ > 1.

Property (b) highlights a sore point of convexity: P (X) need not belong to
[inf X, sup X] (internality may fail). 4 It also suggests that internality could
be restored imposing P (0) = 0, if 0 /∈ D; by (c), if 0 ∈ D and P (0) 6= 0, then
P ∗(X) = P (X) − P (0) is convex and P ∗(0) = 0. Requiring P (0) = 0 is also
the only choice to make P avoid sure loss (Proposition 1), while assuring that
(a) holds.

Thinking of the meaning of a lower prevision, it appears extremely reasonable
to add condition P (0) = 0 to convexity: it would be at least weird to give a
non-zero estimate (even imprecise) of the non-random variable 0.

3.2 Convex Natural Extension

Before considering the stronger class of centered convex previsions, we in-
troduce the notion of convex natural extension, which is strictly related to
convexity.

2 (A1) and (A2) can be replaced by P (X)− P (Y ) ≤ sup(X − Y ),∀X, Y ∈ D.
3 Further properties are given in [11].
4 Non-internality cannot anyway be two-sided: if there exists X ∈ D such that
P (X) > supX (P (X) < inf X), then P (Y ) > inf Y (P (Y ) < supY ), ∀Y ∈ D. This
is easily seen applying Definition 5, with n = 2, {X0, X1} = {X, Y }.
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Definition 6 Let P : D → R be a lower prevision, Z an arbitrary bounded
random variable. Define gi = si(Xi−P (Xi)), L(Z) = {α : Z−α ≥ ∑n

i=1 gi, for
some n ≥ 1, Xi ∈ D, si ≥ 0, with

∑n
i=1 si = 1}.

Ec(Z) = sup L(Z) is termed convex natural extension 5 of P on Z.

Clearly, L(Z) is always non-empty (putting n = 1, s1 = 1, X1 = X ∈ D in
its definition, α ∈ L(Z) for α ≤ inf Z − sup X + P (X)), while Ec(Z) can in
general be infinite. This situation is characterised in the next Proposition 3.

Definition 7 P : D → R is a lower prevision that avoids unbounded sure
loss on D iff there exists k ∈ R such that, for all n ∈ N+, ∀ X1, . . . , Xn ∈ D,
∀ s1, . . . , sn ≥ 0 with

∑n
i=1 si = 1, sup

∑n
i=1 si(Xi − P (Xi)) ≥ k.

Remark 1 Definition 7 generalises Definition 1: P avoids unbounded sure
loss if and only if P + k avoids sure loss for some k ∈ R, since the last
inequality in Definition 7 may be written as sup

∑n
i=1 si(Xi− (P (Xi)+k)) ≥ 0

and the constraint
∑n

i=1 si = 1 is not restrictive for Definition 1. Note also
that if P + k avoids sure loss, then so does P + h, ∀h ≤ k. Therefore, when P
avoids unbounded sure loss, defining k = sup{k ∈ R : P + k avoids sure loss},
P avoids sure loss too whenever k ≥ 0. As a further remark, it can be seen
that the constraint

∑n
i=1 si = 1 is essential in Definition 7: wiping it out would

make Definition 7 equivalent to Definition 1.

Proposition 3 Ec(Z) is finite, ∀Z, iff P avoids unbounded sure loss.

The condition of avoiding unbounded sure loss is rather mild. For instance, it
clearly holds whenever D is finite. It is also implied by convexity [13], while
the converse implication is generally not true.

We state now some properties of the convex natural extension. An indirect
characterisation of the convex natural extension will be given in Theorem 5.

Theorem 3 Let P : D → R be a lower prevision which avoids unbounded
sure loss, Ec its convex natural extension, and L (⊃ D) the set of all bounded
random variables (on a large enough possibility space). Then

(a) Ec is a convex prevision on L and Ec(X) ≥ P (X),∀X ∈ D
(b) P is convex if and only if Ec = P on D
(c) If P ∗ is a convex prevision on L such that P ∗(X) ≥ P (X) ∀X ∈ D, then

P ∗(Z) ≥ Ec(Z),∀Z ∈ L
(d) If P is convex, Ec is the minimal convex extension of P to L
(e) P avoids sure loss on D if and only if Ec avoids sure loss on L.

5 The reason why Ec is termed ‘extension’ becomes patent from the later Theo-
rem 3, especially (d).
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3.2.1 The Role of the Convex Natural Extension

The properties of Ec closely resemble those of the natural extension E [15] of
a lower prevision P , whose definition differs from that of Ec only for the lack
of the constraint

∑n
i=1 si = 1. In particular, as E characterises coherence of P

(P is coherent iff E coincides with P on D), Ec characterises convexity of P .

Property (d) lets us extend P to any D′ ⊃ D (maintaining convexity) by con-
sidering the restriction of Ec to D′. Moreover, (e) guarantees that Ec inherits
the condition of avoiding sure loss when P satisfies it.

It is well-known that the natural extension E is finite iff P avoids sure loss,
and when finite it can correct P into a coherent assessment in a canonical way.
Analogously, the convex natural extension Ec is finite iff P avoids unbounded
sure loss, and can be used to correct P into a convex assessment, although
property (e) warns us that Ec will still incur sure loss if P does so. This
problem can be solved using Proposition 2, (c): P ∗(X) = Ec(X)− Ec(0) is a
correction of P which avoids sure loss by Proposition 1, as P ∗(0) = 0. This
also means that P ∗ is a centered convex prevision by the next Definition 8.

Alternatively, Ec may be employed to correct an assessment P which avoids
unbounded sure loss (but not sure loss) into P ′, which avoids sure loss but
is not necessarily convex. In fact, P + h avoids sure loss ∀h ≤ k < 0 (cf.
Remark 1). Since it can be shown that k = −Ec(0), it ensues that Ec(0) is
the minimum k to be subtracted from P to make P ′ = P − k avoid sure loss.

Hence, the convex natural extension points out ways of correcting an assess-
ment incurring (bounded) sure loss into one avoiding sure loss, a problem
which cannot be answered using the natural extension. These corrections can
be applied in several interesting situations, including, as already noted, the
case of a finite D.

3.3 Centered Convex Previsions and Envelope Theorems

The considerations at the end of Section 3.1 lead us naturally to the following
stronger notion of centered convexity:

Definition 8 A lower prevision P on domain D (0 ∈ D) is centered convex
(C-convex, in short) iff it is convex and P (0) = 0.

Proposition 4 Let P be a centered convex lower prevision on D. Then

(a) P has a convex natural extension (hence at least one centered convex exten-
sion) on any D′ ⊃ D

(b) P (λX) ≥ λP (X), ∀λ ∈ [0, 1], P (λX) ≤ λP (X), ∀λ ∈]−∞, 0[ ∪ ]1, +∞[
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(c) inf X ≤ P (X) ≤ sup X, ∀X ∈ D
(d) P avoids sure loss.

Properties (a)÷(d) show that centered convexity is significantly closer to co-
herence than convexity: C-convex lower previsions are a special class of pre-
visions avoiding sure loss, retaining several properties of coherence and the
extension property of convexity, but not requiring positive homogeneity.

A convex prevision P which is not centered may still be avoiding sure loss,
if P (0) < 0 (Proposition 1), but in general it is only warranted to avoid
unbounded sure loss [13], a very weak consistency requirement.

An indirect comparison among convexity, centered convexity and coherence
is given by their corresponding envelope theorems. We firstly recall that it
was proved in [15] that any lower envelope of coherent lower previsions is
coherent. Here is the parallel statement for convex lower previsions, while the
generalisation of Theorem 1 (lower envelope theorem) comes next.

Proposition 5 Let P be a set of convex lower previsions all defined on D. If

P (X) = infQ∈P
{
Q(X)

}
is finite ∀X ∈ D, P is convex on D.

Theorem 4 (Generalised envelope theorem) P is convex on D iff there exist
a set P of coherent precise previsions on D and a function α : P → R such
that:

(a) P (X) = infP∈P {P (X) + α(P )}, ∀X ∈ D ( inf is attained).

Moreover, P is C-convex iff ( 0 ∈ D and) both (a) and the following (b) hold:

(b) infP∈P{α(P )} = 0 ( inf is attained).

A similar result was proved in risk measurement theory [6], requiring D to
be a linear space. The proof of Theorem 4, given in [11] in the framework of
imprecise prevision theory, is simpler and imposes no structure on D.

Remark 2 In particular, the constructive implication of the theorem (for con-
vex previsions) enables us to obtain convex previsions as lower envelopes of
translated precise previsions. Its proof follows easily: every precise prevision P
is convex and so is P + α(P ), by Proposition 2 (c); infP∈P {P (X) + α(P )} is
a convex prevision by Proposition 5.

Remark 3 Let P be a lower prevision, L (⊃ D) the set of all bounded ran-
dom variables and S the set of all coherent precise previsions on L. Define also
M(P ) = {(Q, r) ∈ S × R : Q(X) + r ≥ P (X),∀X ∈D}. It ensues from The-
orem 4 that convexity of P can be equivalently characterised by the condition
P (X) = inf{Q(X) + r : (Q, r) ∈ M(P )}, ∀X ∈ D; C-convexity can be char-
acterised by adding the constraint inf{r : ∃Q ∈ S : (Q, r) ∈ M(P )} = 0 (cf.
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also the following Theorem 5, where the lower envelope concerns all X ∈ L).

The characterisations of convexity, centered convexity and coherence given by
the envelope theorems differ about the role of function α, that is unconstrained
with convexity, such that min α = 0 with centered convexity, identically null
with coherence (in this case Theorem 4 reduces to Theorem 1).

The next theorem characterises the convex natural extension as the lower
envelope of a set of translated coherent precise previsions and can be proved
in a way similar to the natural extension theorem in [15], Section 3.4.

Theorem 5 Let P be a lower prevision on D which avoids unbounded sure
loss, and define L, S and M(P ) as in Remark 3. Then, M(P ) = M(Ec) and
Ec(X) = inf{Q(X) + r : (Q, r) ∈M(P )},∀X ∈ L.

3.4 Convex Previsions and Bounded Rationality

Convex previsions were so far discussed following a behavioural approach
which parallels Walley’s approach to imprecise probabilities. Under appropri-
ate conditions, there are some alternative ways of modelling the same beliefs,
in terms of acceptable random variables or of partial preference orderings.

In particular, if D is a linear space any convex prevision P on D can be
alternatively described by means of a convex set of acceptable random variables
A = {X ∈ D : P (X) ≥ 0} satisfying the property:

(B1) if X ∈ A, Y ∈ D, Y ≥ X then Y ∈ A

If, in addition, P avoids sure loss then sup X ≥ 0, ∀X ∈ A. Conversely,
if A ⊂ D is non-empty, convex and satisfies (B1), P (X) = sup{c ∈ R :
X − c ∈ A}, when finite, is a convex lower prevision on D. If further sup X ≥
0, ∀X ∈ A, P is finite and avoids sure loss. This characterisation in terms of
acceptance sets is similar to those given in [15] for coherent lower previsions
and in [6,7] for convex risk measures (cf. Section 4.1) and can be proved
likewise. Besides, given an acceptance set A, a preference ordering can be
canonically introduced in D defining X � Y iff X−Y ∈ A. It is worth noting
that, given a centered convex lower prevision, the corresponding preference
ordering satisfies a set of axioms proposed in [10], where a representation
of beliefs in terms of confidence-weighted probabilities is derived from such
axioms, in a finite setting.

The behavioral approach looks nimbler than the alternatives mentioned above,
because it does not require operating on linear spaces and appears easier to
be generalised in a conditional environment, which we do in Section 5.
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As for centered convex previsions, they are closely related with the consistency
notion of n-coherence discussed in [15], Appendix B. It is illustrated there how
n-coherence can be appropriate for certain ‘bounded rationality’ models. If the
model does not require positive homogeneity, n-coherence alone is inadequate:
1-coherence is too weak, being equivalent to the internality condition (c) in
Proposition 4, 2-coherence is too strong, as on linear spaces it is equivalent
to two axioms, one of which is positive homogeneity. As a matter of fact,
C-convex previsions are a special class of 1-coherent (but not necessarily 2-
coherent) previsions.

Hence centered convex previsions are especially adequate to model lack of
positive homogeneity, which may express a type of risk aversion. It has to be
specified however that often this is an essentially practical need, in models
like the convex risk measures discussed in Section 4.1. In a foundational view,
another kind of risk aversion concerns the lower unboundedness of the gains in
Definition 2. This should not be an issue as for the elicitation and assessment
of coherent lower previsions. In fact, coherence of lower previsions is equivalent
to their constrained coherence, whose definition is obtained from Definition
2 adding the constraint sup |G| ≤ k, k ∈ R+. 6 Hence a risk-averse agent
can assess coherent imprecise previsions, without his/her assessments being
conditioned by fearing that the related gains might actually turn into too
large losses.

4 Some Applications

We have seen so far that convexity may help in correcting several inconsistent
assessments. As noted in Section 3.2.1, its usefulness in this problem is essen-
tially instrumental: we may easily go further and arrive at a centered convex
correction, which guarantees a more satisfactory degree of consistency.

Some uncertainty modelisations also give rise to convex previsions, as in the
examples which follow. We emphasise that we do not maintain that these
models are reasonable, but simply that they are sometimes adopted in practice,
and that convexity supplies a conceptual framework for them.

Example 1 (Overly prudential assessments) Persons or institutions which
have to evaluate the random variables in a set D are often unfamiliar with un-
certainty theories. In this case, a solution is to gather n experts and ask each
of them to formulate a precise prevision (or an expectation) for all X ∈ D.
Choosing P (X) = mini=1,...,n Pi(X),∀X (where Pi is expert i’s evaluation) as

6 The proof that constrained coherence implies coherence (the viceversa is trivial)
relies on the fact that whenever G in Definition 2 is such that sup |G| > k, then,
defining G′ = (k/ sup |G|)G, sup |G′| = k and sup G ≥ 0 iff supG′ ≥ 0 (cf. also [5]).
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one’s own opinion is an already prudential way of pooling the experts’opinions,
and originates a coherent lower prevision. Some more caution or lack of con-
fidence toward some experts may lead to replacing every Pi with P ∗

i = Pi − αi

before performing the minimum, where αi ≥ 0 measures in some way the fi-
nal assessor’s personal caution or his/her (partially) distrusting expert i. By
Theorem 4, P ∗ = mini=1,...,n P ∗

i is convex (cf. Remark 2). More generally, P ∗

is of course convex also when the sign of the αi is unconstrained (αi < 0 if,
for instance, expert i’s opinion is believed to be biased and below the ‘real’
prevision). It is interesting to observe that if αi ≥ 0 for at least one i, P ∗

avoids sure loss too (since then Ec(0) ≤ 0 by Theorem 5, hence Ec avoids sure
loss by Proposition 1, and so does P ∗ by Theorem 3 (e)). In particular, the
following situation may be not unusual with an unexperienced assessor: αi > 0
for some i, and 0 /∈ D, because the assessor thinks that no expert is needed to
evaluate 0, he himself can assign, of course, P ∗(0) = 0. If such is the case, the
extension of P ∗ on D ∪ {0} keeps on avoiding sure loss, as is easily seen, but
is generally not convex (to see this with a simple example, suppose X ∈ D,
P ∗(X) < inf X and use the result in footnote 4 to obtain that P ∗(0) < 0 is
then necessary for convexity).

In the following example and in Section 4.1 we shall refer to upper previsions,
to which the theory developed so far extends with mirror-image modifications.
We report the conjugates of Definition 5 and Theorem 4.

Definition 9 P : D → R is a convex upper prevision on D iff, for all n ∈
N+, ∀ X0, X1, . . . , Xn ∈ D, ∀ s1, . . . , sn ≥ 0 such that

∑n
i=1 si = 1 (convexity

condition), defining G =
∑n

i=1 si(P (Xi)−Xi)− (P (X0)−X0), sup G ≥ 0.

Theorem 6 P is convex on its domain D iff there exist a set P of coherent
precise previsions (all defined on D) and a function α : P → R such that:

(a) P (X) = supP∈P {P (X) + α(P )}, ∀X ∈ D ( sup is attained).

Moreover, P is C-convex iff ( 0 ∈ D and) both (a) and the following (b) hold:

(b) supP∈P{α(P )} = 0 ( sup is attained).

Example 2 (Supremum preserving functions) Let IP = {ωi}i∈I be a (not nec-
essarily finite) set of exhaustive non-impossible elementary events or atoms,
i.e. ωi 6= ∅ ∀i ∈ I,

∨
i∈I ωi = Ω, ωi ∧ ωj = ∅ if i 6= j. Given a function

π : IP → [0, 1], define Π : 2IP − {∅} → [0, 1] ( 2IP is the powerset of IP ) by

Π(A) = sup
ωi⇒A

{π(ωi)} ,∀A ∈ 2IP − {∅} . (1)

As well-known, if π is normalised (i.e., sup π = 1) and extended to ∅ putting
π(∅)(= Π(∅)) = 0, Π is a normalised possibility measure, a special case of
coherent upper probability [3]. Without these additional assumptions, Π is a
convex upper prevision (probability). To see this, define for i ∈ I, Pi(ωi) = 1,
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Pi(ωj) = 0 ∀j 6= i, αi = π(ωi) − 1, and extend (trivially) each Pi to 2IP . It is
not difficult to see that Π(A) = supi∈I {Pi(A) + αi} , ∀A ∈ 2IP and therefore
Π is convex by Theorem 6. If sup π < 1, Π has the unpleasant property that
Π(Ω) < 1, and also Π(∅) < 0 (this means that Π incurs sure loss and is not
C-convex). Functions similar to these kinds of unnormalised possibilities were
considered in the literature relating possibility and fuzzy set theories, and their
unsatisfactory properties were already pointed out (see e.g. [8], Section 2.6 and
the references quoted therein).

4.1 Convex Risk Measures

Further applications of convex imprecise previsions are suggested by their not
requiring positive homogeneity, cf. Proposition 4 (b). Considering the well-
known behavioural interpretation of lower (and upper) previsions [15], appli-
cations could evidently be related to situations of risk aversion, because of
which an agent’s supremum buying price for the random quantity λX might
be less than λ times his/her supremum buying price for X, when λ > 1.

We discuss here an application to (financial) risk measurement. The literature
on risk measures is quite large, as this topic is very important in many finan-
cial, banking or insurance applications. Formally, a risk measure is a map ρ
from a set D of random variables into R. Therefore ρ associates a real number
ρ(X) to every X ∈ D, which should measure how ‘risky’ X is, and whether it
is acceptable to buy or hold X. Intuitively, X is acceptable (not acceptable) if
ρ(X) ≤ 0 (if ρ(X) > 0), and ρ(X) should determine the maximum amount of
money which could be subtracted from X, keeping it acceptable (the minimum
amount of money to be added to X to make it acceptable).

Traditional risk measures, like Value-at-Risk (VaR) – probably the most wide-
spread – require assessing (at least) a distribution function for each X ∈ D.
Quite recently, other risk measures were introduced, which do not require this
and are therefore appropriate also when conflicting or insufficient informa-
tion is available. Precisely, coherent risk measures were defined in a series of
papers (including [1,2]) using a set of axioms (among these positive homo-
geneity), and assuming that D is a linear space. In these papers, coherent risk
measures were not related with imprecise previsions theory, while this was
done in [12]; see also [9] for a general approach to these and other theories.
Convex risk measures were introduced in [6,7] as a generalisation of coher-
ent risk measures which does not require the positive homogeneity axiom. We
report the definition in [7]:

Definition 10 Let V be a linear space of random variables which contains
real constants. ρ : V → R is a convex risk measure if and only if

13



(C1) ∀X ∈ V, ∀α ∈ R, ρ(X + α) = ρ(X)− α (translation invariance)
(C2) ∀X, Y ∈ V, if X ≤ Y then ρ(Y ) ≤ ρ(X) (monotonicity)
(C3) ρ(λX +(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ) ∀X, Y ∈ V ,∀λ ∈ [0, 1] (convexity).

The potential capability of convex risk measures of capturing risk aversion in
a decision theoretic framework is pointed out in [7]. In a risk measurement en-
vironment, a motivation for not assuming positive homogeneity is that ρ(λX)
may be larger than λρ(X) for λ > 1 also because of liquidity risks : if we were
to sell immediately a large amount λX of a financial investment, we might be
forced to accept a smaller reward than λ times the current selling price for X.

It was shown in [12] that risk measures can be encompassed into the theory
of imprecise previsions, because a risk measure for X can be interpreted as an
upper prevision for −X: 7

ρ(X) = P (−X). (2)

This fact was used in [12] to generalise the notion of coherent risk measures
to an arbitrary domain D. An analogue generalisation can be done for convex
risk measures [11], as we shall now illustrate.

Definition 11 ρ : D → R is a convex risk measure on D if and only if for all
n ∈ N+, ∀ X0, X1, . . . , Xn ∈ D, ∀ s1, . . . , sn real and non-negative such that∑n

i=1 si = 1, defining G =
∑n

i=1 si(Xi + ρ(Xi))− (X0 + ρ(X0)), sup G ≥ 0.

Note that Definition 11 may be obtained from Definition 9 referring to −X
rather than X, for all X ∈ D.

If D is a linear space containing real constants, the notion in Definition 11
reduces to that in [6,7], by the next theorem (cf. also Theorem 2 (a)):

Theorem 7 Let V be a linear space of bounded random variables containing
real constants. A mapping ρ from V into R is a convex risk measure according
to Definition 11 iff it is a convex risk measures according to Definition 10.

Definition 11 applies to any set D of random variables, unlike Definition 10,
which, if D is arbitrary, requires embedding it into a larger linear space.

Results specular to those presented in Section 3 apply to convex risk measures.
For instance, they can be extended on any D′ ⊃ D, preserving convexity,
and avoid sure loss iff ρ(0) ≥ 0 (we say that ρ avoids sure loss on D iff
P (−X) = ρ(X) avoids sure loss on D− = {−X : X ∈ D}).

7 We assume that the time gap between the buying and selling time of X is neg-
ligible (if not, we should introduce a discounting factor in (2)). This simplifies the
sequel, without substantially altering the conclusions.
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Like the general case in Section 3, it appears quite appropriate to add the
requirement ρ(0) = 0 to convexity, and hence to use centered convex risk
measures: 0 is the unquestionably reasonable selling or buying price for X = 0.

Centered convex risk measures have further nice additional properties, corre-
sponding to those of centered convex lower previsions: they always avoid sure
loss, and are such that − sup X ≤ ρ(X) ≤ − inf X,∀X ∈ D. This condition
corresponds to internality ((c) of Proposition 4), and is a rationality require-
ment for risk measures: for instance, ρ(X) > − inf X would mean that to
make X acceptable we require adding to it a sure number (ρ(X)) higher than
the maximum loss X may cause. Besides, a centered convex risk measures ρ
is not necessarily positively homogeneous: ρ(λX) ≥ λρ(X),∀λ ≥ 1.

A notion of convex natural extension may also be given for centered convex (or
convex) risk measures and its properties correspond to those listed in Theorem
3. When finite, it gives in particular a standard way of ‘correcting’ other kinds
of risk measures into convex risk measures. 8

The generalised envelope theorem is obtained from the statement of Theorem 6
replacing P (X) and P (X) with, respectively, ρ(X) and P (−X). Examples of
convex risk measures may be found in [6,7,11].

5 Convex Conditional Previsions

The following definition is a natural generalisation of Definition 5, and a
weaker consistency requirement than coherence in Definition 4. We recall from
Section 2 that S(s) =

∨{Bi : si 6= 0, i = 1, . . . , n}.

Definition 12 Let D be a set of conditional random variables. P : D → R is a
convex conditional lower prevision on D iff, for all n ∈ N+, ∀X0|B0, . . . , Xn|Bn

∈ D, ∀s1, . . . , sn real and non-negative such that
∑n

i=1 si = 1, defining G =∑n
i=1 siBi(Xi − P (Xi|Bi))−B0(X0 − P (X0|B0)), sup{G|S(s) ∨B0} ≥ 0.

Theorem 8 Let X be a linear space of bounded random variables, E ⊂ X the
set of all indicator functions of events in X . Let also 1 ∈ E and BX ∈ X ,
∀B ∈ E, ∀X ∈ X . 9 Define E∅ = E − {∅}, DLIN = {X|B : X ∈ X , B ∈ E∅}.
P : DLIN → R is a convex conditional lower prevision if and only if:

(D1) P (X|B)− P (Y |B) ≤ sup{X − Y |B},∀X, Y ∈ X ,∀B ∈ E∅

(D2) P (λX + (1 − λ)Y |B) ≥ λP (X|B) + (1 − λ)P (Y |B),∀X, Y ∈ X ,∀B ∈
E∅,∀λ ∈]0, 1[

(D3) P (A(X − P (X|A ∧B))|B) = 0,∀X ∈ X ,∀A, B ∈ E∅ : A ∧B 6= ∅.

8 Note that this is always possibile if D is finite (cf. Section 3.2.1).
9 The assumptions imply that if A and B ∈ E then A ∧B and A ∨B ∈ E .
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PROOF. We prove first that if (D1), (D2), (D3) hold P is convex. In fact,
letting g∗i = Bi(Xi − P (Xi|Bi)) (i = 0, . . . , n), X =

∑n
i=1 sig

∗
i , Y = g∗0, G =

X − Y in Definition 12 and using (D1) at the first inequality, (D2) and (D3)
subsequently, we get sup{X − Y |S(s) ∨B0} ≥ P (X|S(s) ∨B0)− P (Y |S(s) ∨
B0) ≥

∑n
i=1 siP (g∗i |S(s)∨B0)−P (g∗0|S(s)∨B0) =

∑
si 6=0 siP (Bi(Xi−P (Xi|Bi∧

(S(s)∨B0)))|S(s)∨B0)−P (B0(X0−P (X0|B0∧ (S(s)∨B0)))|S(s)∨B0) = 0.

Let now P be convex on DLIN . We prove that (D1), (D2), (D3) hold.

As for (D1), letting X1|B1 = X|B, X0|B0 = Y |B in Definition 12, we get
sup{B(X −P (X|B))−B(Y −P (Y |B))|B} = sup{B(X − Y )−B(P (X|B)−
P (Y |B))|B} ≥ 0, which implies sup{X − Y |B} ≥ P (X|B)− P (Y |B).

To prove (D2), apply Definition 12 with n = 2, s1 = λ, s2 = 1 − λ, X1|B1 =
X|B, X2|B2 = Y |B, X0|B0 = λX + (1− λ)Y |B.

For (D3), use again Definition 12 with n = 1. If X1|B1 = X|A∧B and X0|B0 =
A(X−P (X|A∧B))|B, then sup{[AB(X−P (X|A∧B))−B(A(X−P (X|A∧
B)) − P (A(X − P (X|A ∧ B))|B))]|B} = P (A(X − P (X|A ∧ B))|B) ≥ 0; if
X1|B1 and X0|B0 are interchanged, we get the reverse inequality P (A(X −
P (X|A ∧B))|B) ≤ 0. 2

Theorem 8 generalises Theorem 2 (a) (cf. also footnote 2) and will be used
later. Property (D3) is discussed in Section 5.2.

5.1 Convex Natural Extension in a Conditional Environment

Definition 13 Let P : D → R be a conditional lower prevision, Z|B an ar-
bitrary bounded conditional random variable. Define gi = siBi(Xi−P (Xi|Bi)),
L(Z|B) = {α : sup{∑n

i=1 gi − B(Z − α)|S(s) ∨ B} < 0, for some
n ≥ 1, Xi|Bi ∈ D, si ≥ 0,with

∑n
i=1 si = 1}.

The convex natural extension of P to Z|B is Ec(Z|B) = sup L(Z|B). 10

It is not difficult to see that Definition 13 generalises Definition 6. When
dropping the constraint

∑n
i=1 si = 1, it reduces to the definition of natural

extension in [16]. We show in the sequel that general results established for
the unconditional case may be extended to the conditional one. However, there
are some differences, and this becomes patent from the very beginning, when
we investigate whether, given Z|B, the set L(Z|B) is empty or not.

In the unconditional case, L(Z) = L(Z|Ω) is always non-empty (see Section
3.2), but L(Z|B) is not so in general, without any additional assumption. For

10 It is easily seen that L(Z|B) =]−∞, Ec(Z|B)[. This fact will be used later.
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instance, let P : D → IR, D = {X|BC}, B 6= ∅, BC 6= ∅, P (X|BC) ∈
[inf X|BC , sup X|BC ]. Then ∀Z, L(Z|B) = ∅, because, ∀α ∈ R, letting Gα =
BC(X − P (X|BC)) − B(Z − α), sup Gα ≥ sup{Gα|BC} ≥ 0. This example
shows also that L(Z|B) may be empty even when P is coherent.

The following proposition is useful in suggesting what assumptions should
guarantee that L(Z|B) is non-empty.

Proposition 6 Given P : D → R, L(Z|B) is non-empty if there is Y |C ∈ D
such that C ⇒ B.

PROOF. Let n = 1, s1 = 1, X1|B1 = Y |C (hence S(s)∨B = C ∨B = B) in
the supremum in Definition 13, so that g1−B(Z−α) = C(Y−P (Y |C))−B(Z−
α) = W . For ω ⇒ C, W (ω) = Y (ω)−P (Y |C)−Z(ω)+α, while if ω ⇒ B∧CC ,
W (ω) = −Z(ω) + α. It ensues that sup W |B ≤ max{0, sup Y − P (Y |C)} −
inf Z + α and thus α ∈ L(Z|B) ∀α < inf Z −max{0, sup Y − P (Y |C)}. 2

The sufficient condition in Proposition 6 is essentially not restrictive: a natural
way to comply with it is to include 0|B into D, if we wish to compute L(X|B).
It is also natural to put P (0|B) = 0. The next proposition lets us better clarify
this and related questions, when P is convex.

Proposition 7 Let D be such that 0|B ∈ D,∀X|B ∈ D, and let P : D → R
be a convex conditional lower prevision on D.

(a) P avoids uniform loss iff P (0|B) ≤ 0,∀ 0|B ∈ D.

Assume now that P (0|B) = 0,∀ 0|B ∈ D. Then

(b) if 0|C /∈ D, the extension of P on {0|C} such that P (0|C) = 0 is a convex
conditional lower prevision on D ∪ {0|C}

(c) if 0|B ∈ D, and B ⇒ C, there is a unique convex conditional lower prevision
which extends P on {0|C}, and necessarily P (0|C) = 0.

PROOF. Define firstly g∗i = Bi(Xi − P (Xi|Bi)) (i = 0, . . . , n).

(a) If P avoids uniform loss, P (0|B) ≤ sup(0|B) = 0 as a straightforward
consequence of Definition 3.

Conversely, let B = Bj ∈ {B1, . . . , Bn} such that sj 6= 0 in Definition 12
(this implies S(s)∨B = S(s)). Since P is convex and recalling that P (0|B) ≤
0, 0 ≤ sup{∑n

i=1 sig
∗
i −B(0− P (0|B))|S(s)} ≤ sup{∑n

i=1 sig
∗
i |S(s)}.

This implies that P avoids uniform loss, since the constraint
∑n

i=1 si = 1
is immaterial in checking Definition 3.
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(b) To check using Definition 12 that P is convex on D ∪ {0|C} we have to
evaluate the supremum of those gains G in Definition 12 where 0|C ∈
{X0|B0, . . . , Xn|Bn}. Noting that whenever 0|C ∈ {X1|B1, . . . , Xn|Bn} it
is not restrictive to assume 0|C = Xn|Bn, and defining S ′(s) =

∨{Bi : si >
0, i = 1, . . . , n− 1}, the following situations are to be considered:

(i) 0|C = X0|B0, 0|C 6= Xi|Bi (i = 1, . . . , n).
Then sup{G|S(s) ∨ C} = sup{∑n

i=1 sig
∗
i − C(0 − 0)|S(s) ∨ C} ≥

sup{∑n
i=1 sig

∗
i |S(s)} ≥ 0, where the last inequality holds because P avoids

uniform loss on D, by (a).
(ii) 0|C = Xn|Bn = X0|B0.

If n = 1, it is trivially G = 0. For n > 1, we get sup{G|S(s) ∨ C} =
sup{∑n−1

i=1 sig
∗
i +snC(0−0)−C(0−0)|S(s)∨C} ≥ sup{∑n−1

i=1 sig
∗
i |S ′(s)} ≥

0, the last inequality holding again because P avoids uniform loss on D.
(iii) 0|C = Xn|Bn 6= X0|B0.

If sn = 0, we easily get sup{G|S(s) ∨ B0} = sup{∑n−1
i=1 g∗i − g∗0|S ′(s) ∨

B0} ≥ 0 because P is convex on D.
If sn > 0, (assuming that

∑n−1
i=1 sig

∗
i = 0 if n = 1) use the equality

G =
∑n−1

i=1 g∗i +snC(0−0)−g∗0 =
∑n−1

i=1 g∗i +snB0(0−0)−g∗0 = G′ to write
sup G|S(s) ∨ B0 = sup G′|S ′(s) ∨ C ∨ B0 ≥ sup G′|S ′(s) ∨ B0 ≥ 0, where
convexity of P on D is exploited at the last inequality.

(c) Convexity of P on D ∪ {0|C} implies that when betting in favour of 0|B
and against 0|C, sup{B(0− 0)−C(0− P (0|C))|C} = P (0|C) ≥ 0. Betting
in favour of 0|C and against 0|B gives the reverse inequality. 2

Definition 14 P : D → R is a centered (conditional) lower prevision if
0|B ∈ D and P (0|B) = 0, ∀X|B ∈ D.

Convex conditional previsions which are centered generalise unconditional cen-
tered convex previsions. Let P be a centered convex conditional lower previ-
sion. Then, if 0 /∈ D, Proposition 7 (c), with C = Ω, implies P (0) = 0. More-
over, P avoids uniform loss by Proposition 7 (a) (which generalises Proposition
1) and L(X|B) 6= ∅ whenever 0|B ∈ D, by Proposition 6. If 0|B /∈ D, we may
extend P on D ∪ {0|B} putting P (0|B) = 0, before computing L(X|B). By
Proposition 7 (b), P remains centered convex on D ∪ {0|B}.

Therefore centered convex previsions appear to be an appropriate and easy
choice to ensure both the minimal consistency requirement of avoiding uniform
loss and the existence of the convex natural extension (which is necessarily
finite, cf. the later Proposition 8), whatever is X|B. However, various results
in the sequel hold and will be proved under more general assumptions.

Remark 4 If P is a centered convex conditional prevision, the term (1 −∑n
i=1 si)B0(0−P (0|B0)) can be added to every gain G =

∑n
i=1 si(Xi−P (Xi|Bi))

−B0(X0 − P (X0|B0) such that
∑n

i=1 si < 1, without modifying either it or its
conditioning event in Definition 12. This implies that Definition 12 can be
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equivalently stated relaxing the condition
∑n

i=1 si = 1 to
∑n

i=1 si ≤ 1, when P
is centered.

Proposition 8 Let P : D → R be a conditional lower prevision avoiding
uniform loss. Then Ec(X|B) ≤ sup X|B, ∀X|B. 11

PROOF. Let c = sup X|B, Xi|Bi ∈ D, si ≥ 0 (i = 1, . . . , n) such that∑n
i=1 si = 1. Then, exploiting the fact that P avoids uniform loss in the last

inequality, we can write sup{∑n
i=1 siBi(Xi−P (Xi|Bi))−B(X−c)|S(s)∨B} ≥

sup{∑n
i=1 siBi(Xi − P (Xi|Bi))|S(s)} ≥ 0. Hence c /∈ L(X|B). Recalling that

L(X|B) =]−∞, Ec(X|B)[, the inequality Ec(X|B) ≤ sup X|B follows. 2

The convex natural extension has several properties, extending those of the
conditional case.

Theorem 9 Let P : D → R be a conditional lower prevision and DLIN ⊃ D
be defined as in Theorem 8. If Ec is finite on DLIN , then:

(a) Ec(X|B) ≥ P (X|B), ∀X|B ∈ D
(b) Ec is a convex lower prevision on DLIN

(c) If P ∗ is a convex lower prevision on DLIN such that P ∗(X|B) ≥ P (X|B),
∀X|B ∈ D, then P ∗(X|B) ≥ Ec(X|B), ∀X|B ∈ DLIN

(d) P is a convex lower prevision on D iff Ec = P on D
(e) If P is convex, Ec is its minimal convex extension to DLIN .

PROOF.

(a) If X|B ∈ D, taking n = 1, X1|B1 = X|B in the definition of Ec(X|B),
we obtain sup{B(X − P (X|B))− B(X − α)|B} = α − P (X|B) < 0,∀α <
P (X|B). Hence Ec(X|B) ≥ P (X|B).

(b) To prove convexity of Ec we shall show that it satisfies properties (D1),
(D2), (D3) in Theorem 8.

To prove (D1), let X|B, Y |B ∈ DLIN . If α ∈ L(X|B), there exist Xi|Bi ∈
D, si ≥ 0 (i = 1, . . . , n) with

∑n
i=1 si = 1 such that, letting G1 =

∑n
i=1 siBi

(Xi − P (Xi|Bi)), W1 = G1 − B(X − α), sup{W1|S(s) ∨ B} < 0. Using
BX − BY ≤ B sup{X − Y |B}, we obtain sup{G1 − B(Y − α + sup{X −
Y |B})|S(s)∨B)} ≤ sup{W1|S(s)∨B)} < 0. It follows α− sup(X−Y |B) ∈
L(Y |B), ∀α ∈ L(X|B), hence Ec(X|B)− sup{X − Y |B} ≤ Ec(Y |B).

To prove (D2), let β ∈ L(Y |B) and Yj|Cj ∈ D, tj ≥ 0 (j = 1, . . . ,m), with∑m
j=1 tj = 1 such that, defining W2 =

∑m
j=1 tjCj(Yj−P (Yj|Cj))−B(Y −β),

sup{W2|S(t)∨B} < 0. Given λ ∈]0, 1[, we get sup{λW1 +(1−λ)W2|S(s)∨
S(t)∨B} ≤ max{λ sup{W1|S(s)∨B}, (1− λ) sup{W2|S(t)∨B}} < 0. (To

11 Possibly Ec(X|B) = −∞.
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prove the weak inequality, use S(s)∨S(t)∨B = [S(s)∨B]∨ [(S(s)∨B)C ∧
S(t)] = [S(t) ∨ B] ∨ [(S(t) ∨ B)C ∧ S(s)]; the left-hand supremum is the
maximum of the suprema obtained alternatively conditioning on each of
the four bracketed events. These suprema are negative, recalling also that
W1|(S(s) ∨ B)C ∧ S(t) = W2|(S(t) ∨ B)C ∧ S(s) = 0 and that W1(ω) and
W2(ω) cannot be both null at any ω ⇒ S(s) ∨ S(t) ∨B.)

This implies λα + (1− λ)β ∈ L(λX + (1− λ)Y |B), ∀α ∈ L(X|B), ∀β ∈
L(Y |B), ∀λ ∈]0, 1[, from which λEc(X|B) + (1 − λ)Ec(Y |B) ≤ Ec(λX +
(1− λ)Y |B) follows.

As for (D3), let X|A ∧ B ∈ DLIN , W = A(X − Ec(X|A ∧ B)). To prove
that sup L(W |B) = 0, we show that L(W |B) =] −∞, 0[. Given δ > 0, it
ensues from the definition of Ec(X|A∧B) that there exist Xi|Bi ∈ D, si ≥
0 (i = 1, . . . , n) with

∑n
i=1 si = 1 such that, defining G =

∑n
i=1 siBi(Xi −

P (Xi|Bi)) and Z1 = G − AB(X − Ec(X|A ∧ B) + δ), sup{Z1|S(s) ∨ (A ∧
B)} < 0. Hence Z2 = G − B(W + δ) = Z1 − BACδ (≤ Z1) is such that
sup{Z2|S(s)∨B} = max{sup{Z2|S(s)∨(A∧B)}, sup{Z2|S(s)C∧AC∧B}} ≤
max{sup{Z1|S(s) ∨ (A ∧ B)},−δ} < 0 (omit the second argument in the
maxima if S(s)C ∧ AC ∧B = ∅).

This implies −δ ∈ L(W |B), ∀δ > 0. Further, 0 /∈ L(W |B): by con-
tradiction, assuming 0 ∈ L(W |B) would imply, as can be easily seen,
Ec(X|A ∧B) ∈ L(X|A ∧B) =]−∞, Ec(X|A ∧B)[.

From Theorem 8, Ec is therefore a convex lower prevision on DLIN .
(c) Let P ∗ be as in the statement of (c) and X|B ∈ DLIN . Since −P (Xi|Bi) ≥

−P ∗(Xi|Bi) (i = 1, . . . , n), we get, ∀Xi|Bi ∈ D, ∀si ≥ 0 (i = 1, . . . , n) with∑n
i=1 si = 1, sup{∑n

i=1 siBi(Xi−P (Xi|Bi))−B(X−P ∗(X|B))|S(s)∨B} ≥
sup{∑n

i=1 siBi(Xi−P ∗(Xi|Bi))−B(X−P ∗(X|B))|S(s)∨B} ≥ 0. The last
inequality holds by the convexity of P ∗ and implies P ∗(X|B) /∈ L(X|B) =
]−∞, Ec(X|B)[.

(d) If Ec = P on D, P is convex by (b). Conversely, suppose P is convex on
D, X|B ∈ D. Then, ∀Xi|Bi ∈ D (i = 1, . . . , n), ∀si ≥ 0 with

∑n
i=1 si = 1,

sup{∑n
i=1 siBi(Xi − P (Xi|Bi))−B(X − P (X|B))|S(s) ∨B} ≥ 0. It ensues

α < P (X|B),∀α ∈ L(X|B). Hence, recalling also (a), Ec(X|B) = P (X|B).
(e) Follows immediately from (c) and (d). 2

If P is centered and avoids uniform loss, the finiteness condition about Ec in
Theorem 9 can be easily fulfilled. In fact, extending P to {0|B : 0|B ∈ DLIN}
by setting P (0|B) = 0, P keeps on avoiding uniform loss. Then Ec(X|B)
is finite, ∀X|B ∈ DLIN , by Propositions 6 and 8. Moreover, Ec is centered,
because 0 = P (0|B) ≤ Ec(0|B) ≤ 0,∀0|B ∈ DLIN by Theorem 9 (a) and
Proposition 8 and therefore, being convex, avoids uniform loss too.
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5.2 The generalised Bayes rule

Putting B = Ω in (D3) of Theorem 8 12 , we obtain the following formula,
called generalised Bayes rule (GBR) in [15]:

P (A(X − P (X|A))) = 0. (3)

Clearly, conditions (D1), (D2), (D3) in Theorem 8, hence in particular the
GBR, are necessary consistency requirement for convex previsions also when
D 6= DLIN , provided that the relevant quantities are defined. Further, the
GBR supplies us with an updating rule for consistently adding conditional
to unconditional assessments (or more generally, from (D3) of Theorem 8, for
adding assessments in a more specific conditional environment A∧B). It is im-
portant with respect to this to state whether (3) determines uniquely P (X|A),
or in other words whether P (X|A) is the only solution to P (A(X − r)) = 0.
If P (A) > 0, this is true for coherent lower previsions and is proved in [15] us-
ing their superlinearity. Superlinearity does not necessarily hold with convex
previsions, but the next proposition shows that the unicity result applies to
them too.

Proposition 9 If P is a convex prevision on D ⊃ {A, X|A, A(X−P (X|A))},
P (A) > 0, then P (X|A) is the unique solution of P (A(X − r)) = 0.

PROOF. The proof relies on the following fact:

if D0 = {A, A(X − r), A(X − t)}, A 6= ∅, r 6= t and P : D0 → R is such
that P (A) > 0, P (A(X − r)) = P (A(X − t)) = 0, then P is no convex lower
prevision on D0.

To prove this, suppose r < t and find, using Definition 5, a gain G such that
sup G < 0. Define for this G = s1A(X − t) + s2(A− P (A))− A(X − r) with
s1 ≥ 0, s2 > 0, s1 + s2 = 1. Since sup{G|AC} = −s2P (A) < 0, to comply with
Definition 5 sup{G|A} should be non-negative, which means sup{X(s1− 1)−
s1t+ s2(1−P (A))+ r|A} = sup{−s2X|A}+ r− t+ s2(t+1−P (A)) ≥ 0, that
is inf X|A ≤ ((r − t)/s2) + t + 1 − P (A), ∀s1 ≥ 0, ∀s2 such that 0 < s2 ≤ 1,
s1 + s2 = 1. It is patent that this condition cannot be satisfied for all such s2,
since lims2→0+((r − t)/s2) = −∞.

The thesis of the proposition follows at once, since we already know that
P (X|A) is a solution to P (A(X − r)) = 0. 2

12 (D3) was considered in [18], referring to coherent conditional imprecise previsions.
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5.3 Discussion

From what we have seen so far, the generalisation of convex imprecise pre-
visions in a conditional environment that we are considering extends several
results from the unconditional case, starting from the notion of convex nat-
ural extension. Again, using a centered convex prevision P seems preferable,
because it guarantees both that P avoids uniform loss and that its convex nat-
ural extension exists and is finite. As an important consequence, a centered
convex (conditional) prevision on D can be always extended on any D′ ⊃ D,
and this is an essential fact for the well-foundedness of the theory.

It is not difficult to see that some other properties of convex unconditional
previsions generalise to conditional ones. For instance, Proposition 5 holds
replacing ‘convex’ with ‘convex conditional’ in its statement. Also, if P (0|B) ≥
0, condition P (λX|B) ≥ λP (X|B), ∀λ ∈ [0, 1] is necessary for convexity of P .

It is not clear, however, what should correspond to the generalised envelope
theorem in a conditional environment: further investigation is needed on this.
So far we know that the GBR applies, and this already supplies us with a tech-
nique for consistently extending an unconditional judgement on X to X|A,
when P (A) > 0. We have to evaluate P (A(X − r)) for various r ∈ R: if
P (A(X − r)) < 0 (> 0), then, by the monotonicity property (A2) in Theorem
2, r will be an upper (a lower) bound for P (X|A). When P is also centered,
property P (X|A) ∈ I0 = [inf X|A, sup X|A] holds (use (D1) in Theorem 8
with, alternatively, X|A = 0|A and Y |A = 0|A). Because of this and mono-
tonicity, I0 can be a starting interval to compute P (X|A) using a bisection
algorithm (cf. also [4] in the framework of coherent previsions). This requires
assessing P (A(X− r)) (for instance, using the convex natural extension) for a
sufficiently large number of r ∈ I0. The GBR suggests also the interpretation
of P (X|A) as the supremum of the amounts r that can be subtracted from X
keeping X − r desirable (or acceptable), assuming that A occurs.

The problem of jointly evaluating unconditional and conditional risks in a con-
sistent way is a natural application of convex conditional previsions, whenever
convex risk measures evaluate the unconditional risks. To the best of our
knowledge, convex risk measures for conditional risks have not been consid-
ered in the literature, but it is simple to generalise Definition 11 to cover this
case. Equality (2) becomes ρ(X|B) = P (−X|B), so that results for upper
rather than lower conditional previsions should be preferably employed, and
they are easily obtained using the conjugacy relation P (−X|B) = −P (X|B).
In particular, the GBR tells us that to evaluate ρ(X|B) a subject should deter-
mine the supremum µ of the amounts r he would accept to subtract from X,
keeping X−r acceptable, with the proviso that B is true: then ρ(X|B) = −µ.

22



6 Conclusions

In this paper we studied convex and centered convex previsions. Convex pre-
visions do not necessarily satisfy minimal consistency requirements, but are
useful in generalising natural extension-like methods of correcting inconsistent
assessments and in providing a conceptual framework for some uncertainty
models. Centered convex previsions are in a sense intermediate between the
avoiding sure loss condition and coherence: their properties are closer to coher-
ence than those of a generic prevision that avoids sure loss, but are also com-
patible with lack of positive homogeneity. Because of this, they are potentially
useful at least in models which incorporate some forms of risk aversion. We
outlined a risk measurement application, where they lead to defining convex
risk measures, and believe that several applications of convex imprecise previ-
sions are still to be explored. We showed that the concept of convex imprecise
prevision may be consistently generalised to the conditional case, extending
many results from the unconditional framework and proving that the gener-
alised Bayes rule may be applied. In our opinion, there is scope for further
investigating properties and applications of convex conditional previsions, for
instance concerning envelope theorems and risk measures for conditional risks.
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