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1. Introduction 

In rate making process the statistical information on claim experience are 
combined with observable variables describing the risks, in order to build a 
tariff. The observable variables considered in the tariff structure are called 
tariff variables and the premium for a new risk is simply estimated from the 
observed values of these variables. In this process, many statistical methods 
and mathematical algorithms are applied to select the variables and to build 
the tariff. 
Many tariff methods require the values of the tariff variables to be collected 
in classes. Even if it is not necessary, commercial reasons often suggest 
making use of a low number of tariff classes. For instance, if “age of the 
insured” is a motor vehicle insurance tariff variable, it may be better to 
classify the risks into age classes instead of considering the single ages. 
Obviously, a question arises: which values of the tariff variable should be 
grouped together and which not, and also how many classes should be 
formed. This paper concentrates on these particular aspects of the rate making 
process. 
We suppose to have selected a set of tariff variables. For each of these 
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variables, according to notation in [7], we call basic classes the elements of 
the finest partition of its values (e.g. the age of the insured in whole years) 
and we call tariff classes the clusters grouping the basic classes for rate 
making purposes. The determination of tariff classes can be viewed as a 
clustering problem. 
Cluster analysis techniques (for an extensive review see [1], [8], [10]) have a 
wide range of applications but, as pointed out in [7], they are rarely applied in 
insurance field. However, suitable adaptations allow their application to 
collect the basic classes and form homogenous groups, according to one or 
more characteristic variables describing the claim experience. In the 
following, for the sake of simplicity and unless otherwise stated, we will 
consider only one characteristic variable. Turning back to the variable “age of 
the insured”, the claim experience can be described, for instance, by the claim 
frequency. Ages with “quite similar” claim frequency will be allocated in the 
same cluster. In [7] Van Eeghen et al. discussed the methods proposed by H. 
Dickmann and by K. Loimaranta et al., which are adaptations of a 
hierarchical clustering method and of a non-hierarchical method of mixtures 
respectively. 
Partitioning methods of cluster analysis have a wide range of applications, 
but they also require some adaptations to give suitable solutions to this type 
of problems. In [9] the Authors proposed to apply, in a neural network 
framework, some of these methods and introduced the essential adaptations 
in the involved algorithms. 
Generally, different cluster analysis techniques produce different subdivisions 
of the basic classes in clusters, among which a choice must be done. An 
actuarial approach to solve this problem was suggested by H. Schmitter and 
E. Straub [20]. 
In this paper we examine the results obtained applying the neural clustering 
techniques developed in [9]. Comparison among different classification 
results are then performed by means of Schmitter and Straub's method. 
An outline of the paper is the following. 
In Section 2 some applications of clustering techniques in determining tariff 
classes are delineated. 
In Section 3 the Schmitter and Straub's method is discussed. 
In Sections 4 and 5 we briefly recall two neural network algorithms 
frequently used in clustering problems: simple competitive learning and 
Kohonen's self-organising map. 
Section 6 is devoted to an application of the algorithms quoted in Sections 4 
and 5 to collect in clusters the basic classes described by the fiscal power in a 
motor insurance portfolio. For this purpose the technique developed in [9] is 
applied. 
In Section 7 some final remarks and suggestions for further investigations are 
resumed. 



2. Clustering methods proposed for the determination of tariff classes. 

The basic classes can be seen as objects that have to be joined together 
according to the values of the characteristic variable; from this point of view 
the problem of determining the tariff classes may be treated simply as a 
clustering problem. However the observed values of the characteristic 
variable in each basic class are not immediately comparable by means of a 
similarity or dissimilarity measure, as usually done in traditional clustering 
procedures. In fact, these values arise from observations on the insured risks 
and then they are affected by the exposures in each basic class. For instance, 
if the characteristic variable is the claim frequency and the basic classes are 
the values of fiscal power, we will make use of observations from a portfolio 
of motor insurance risks. For each value of fiscal power, namely for each 
basic class, we observe the number of claims reported by the risks having that 
value of fiscal power. Then, we consider their total exposure measured by the 
policy-years and we can determine their claim frequency, say the observed 
value of the characteristic variable. It is clear that the basic classes cannot be 
compared simply by looking at the values of the characteristic variable but 
also the exposures must be taken into account. 
In actuarial literature, two methods have been proposed to determine the tariff 
classes, respectively by H. Dickmann and by K. Loimaranta, J. Jacobsson & 
H. Lonka (see [7] for a review). Both methods are adaptations of traditional 
clustering algorithms. The first one is a hierarchical agglomerative clustering 
method, whereas the second is a non-hierarchical method of mixtures. 
At the beginning of Dickmann’s algorithm each basic class can be viewed as 
a group containing one object so that the within-clusters variance of the 
characteristic variable can be assumed to be zero. The method consists of a 
hierarchical agglomerative procedure in which the merging of two groups, at 
each stage, is done to minimise the increase of the total within-cluster 
variance. The procedure is repeated until all basic classes are located in one 
cluster. 
As pointed out by Dickmann himself, this method can be seen as an 
adaptation of the clustering method proposed by Ward [21] to the actuarial 
problem of determining the tariff classes, taking account of the different 
exposures of the basic classes simply by means of the definition of within-
cluster variance. 
For a short description of the algorithm, let us consider a single stage with the 
basic classes joined together in K clusters. Let 
mk  be the number of basic classes located in cluster k; 
xik  be the observation of  the characteristic variable with respect to the 

i-th basic class located in cluster k; 
tik  be the value which reflects the exposure of the i-th basic class located 

in cluster k (e.g. the number of observed policy-years); 
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The total within-cluster variance with K clusters is defined as: 
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We pass from K to K-1 clusters by merging two of the existing clusters so 
that the increase of the within-clusters variance 
 ( ) ( )K
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is minimum. 
In the clustering method proposed by Loimaranta-Jacobsson-Lonka it is 
assumed that N basic classes belong to K clusters and that the characteristic 
variables are independent random variables with probability distribution a 
mixture of K distribution, one for each cluster: from this fact the 
identification of the method as non-hierarchical method of mixtures. 
More precisely, let X X N1 ,...,  be the random characteristic variables of the N 
basic classes and x xN1 ,...,  their observations. X X N1 ,...,  are assumed to be 
independent and X i  (i=1,...,N) distributed as: 
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ti  is a value which reflects the exposure of the basic class i; 
ϑ ϑ( ) ( ),...,1 K are parameters to be estimated; 
pk   is the k-th weight in the mixture and can be seen as “a priori” 
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( )P x t i
k; , ( )ϑ  is the probability distribution of the characteristic variable 

conditionally to the belonging of the basic class i to the cluster k 
and dependent on the exposure ti. 



The posterior probability ( )P k xi  for the i-th basic class to belong to the k-th 

cluster can be derived: 
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After having assigned the “a priori” probabilities p k Kk ( ,..., )= 1  and having 
estimated the parameters ϑ ϑ( ) ( ),...,1 K  by the maximum likelihood method, 

the posterior probabilities ( )�P k xi  (k=1,...,K; i=1,...,N) can be estimated. As 

long as the probability distribution ( )�P k xi  k=1,...,K is “sufficiently” 

concentrated on the value k  then the i-th basic class will be clearly allocated 
in cluster k . 
Loimaranta, Jacobsson and Lonka estimated these probabilities assuming for 
Xi (i=1,...,N) a mixture of Poisson distribution and they suggested the 
possibility of extending the method to multivariate characteristic variables 
with different distributions. Some particular cases (for instance normal 
multivariate distribution) have been treated in cluster analysis literature (e.g. 
see [8], p.34). 
Besides hierarchical clustering methods and cluster analysis methods based 
on mixtures of probability distributions, another important class of cluster 
analysis techniques is known as partitioning methods (among which the well-
known k-means algorithms). In these methods the number of clusters K is 
fixed in advance or, in some variant, determined through the procedure. 
Moreover, unlike the hierarchical techniques, they allow the relocation of the 
objects. In this way, bad initial partitions can be improved. Most of these 
techniques consist of two distinct procedures: 
− the determination of an initial allocation of the objects into the clusters; 
− the relocation of some or all of the objects to the clusters. 
An essential feature of these methods is the calculation of the centroids of the 
clusters. Many clustering algorithms have been proposed; among them those 
proposed by E.W. Forgy, by J.B. MacQueen and a variant of the latter method 
(see [1]) are reported in [9]. 
In his discussion on the main characteristics of different clustering 
algorithms, B. Everitt [8] pointed out that: 

“Hierarchical clustering techniques have a general disadvantage since they contain no 
provision for reallocation of entities who may have been poorly classified at an early stage in 
the analysis. In other words there is no possibility of correcting a poor initial partition.” 

For this reason hierarchical techniques are best suited for data in which a 
hierarchical structure can be assumed to exist, as for instance in biological 
data, so that no reallocation is needed. On the other hand partitioning 



techniques seems to be particular valuable, even though some difficulties may 
arise: the possibility of determining suboptimal solutions and heavy 
computation in case of large date sets. 
Moreover, Loimaranta et al. state that, in their opinion, the hierarchical 
clustering techniques only seldom are appropriate in actuarial applications 
and, as far as the determination of tariff classes is concerned, a method that 
searches for the optimal partition is preferable. However, in this case another 
difficult arises: how to take account of the exposures of the basic classes, 
since simple modifications of Forgy’s or MacQueen’s algorithms seem not to 
be easily available. 
In [9], the Authors discussed some techniques, in NN framework, by which 
some partitioning algorithms can be implemented in a more flexible 
environment, allowing also the exposures to be taken into account. 

3. How to choose the number of tariff classes: Schmitter and Straub’s 
method. 

A problem common to all clustering techniques is to decide the number of 
clusters in which the data are to be grouped and the determination of the tariff 
classes is not exception. 
Dickmann (1978) suggests a criterion to choose the number of tariff classes, 
based on the “loss of information” caused by joining the basic classes in 
clusters. The loss of information is defined as a function of the number of 
clusters K (following the notation in Section 2): 
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Since ( )g K  is a decreasing function, we could choose K as the smallest 
number of clusters for which, for instance, ( )g K ≤ 0 05. . 
Also Loimaranta-Jacobsson-Lonka (1980) dealt with the determination of the 
number of clusters and, under the assumptions of the Poisson mixture model, 
they derived asymptotic results to test the hypothesis on the probability 
distribution of the characteristic variable mixture of K distributions ([16]). 
Some years before the papers published by H. Dickman and by K. 
Loimaranta, J. Jacobsson and H. Lonka, S. Schmitter and E. Straub (1975) 
introduced a method to find the “best” subdivision of an insurance portfolio 
in tariff classes. They assumed the existence of a “natural subdivision” and 
derived two statistics to single out this subdivision, or possibly the “closest” 
one from a set of “admissible subdivisions”. 



For "admissible subdivisions" they mean a subset of all the subdivisions of 
the portfolio, which can be actually considered for practical and commercial 
reasons. 
According to [7], in Section 6 we apply the Schmitter and Straub's (S-S) 
model, originally designed to subdivide a portfolio in tariff classes, as a 
criterion to choose among different allocations of the basic classes in clusters. 
For this purpose, we will discuss the hypotheses and the model revisited in 
our perspective. 
It is assumed that a “natural subdivision” of N basic classes in K clusters 
exists. These clusters are characterised by the risk parameters 
( )Θ Θ( ) ( ), ... ,1 K , assumed to be a vector of random variables. Observations of 

the characteristic variables of the basic classes over I years are available. 
With reference to the natural subdivision let: 
tik  be the exposure of the k-th cluster in the i-th year; 
xik  be the mean of the observations in the year i of the characteristic 

variable of the basic classes located in the cluster k, weighted with 
their exposures. 

For the sake of simplicity in the exposition, but without losing in generality, 
we will consider as characteristic variable the claim frequency. In this case, 
tik  is the number of policy-years and xik  is the observed claim frequency in 
the k-th cluster and i-th year. 
Let us define  
X ik  the random characteristic variable claim frequency of the k-th cluster 

in year i  
and assume the following hypotheses: 

1. for k K= 1,..., , conditionally to Θ ( ) ( )k k= ϑ  the random variables 
X Xk Ik1 , ... ,  are independent and a couple of functions µ  and σ  exists 
such that: 
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2. the random vectors ( )Θ ( ) , ,...,k
k IkX X1 , k=1,..., K , are independent; 

 the random variables Θ ( ) , ,...,k k K= 1 , are i.i.d. and we call: 
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and 
( )( )T K W V= − −1 . 

Schmitter and Straub show that T is (apart from a multiplicative factor) an 
unbiased estimator of the variance w. It can be interpreted as a measure of the 
heterogeneity among the classes of the natural subdivision. 
Now we consider L admissible subdivisions and let ( )K g Lg = 1,...,  be the 

numbers of clusters of the g-th subdivision. 
Of course, we can introduce for every admissible subdivision the same 
quantities we defined for the natural one. We will mark with (g) (e.g. tik

g( ) , 
X ik

g( ) , etc.) the quantities corresponding to the g-th admissible subdivision. In 
particular we define:  
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The observed value of W g( )  is 
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where x k
g

⋅
( )  and x  are the observed values of the random variables X k

g
⋅
( )  and 

X  respectively. w g( )  measures the variability between the clusters of the g-th 
subdivision. 
The observed value of V g( )  is 
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where xik
g( )  is the observed value of the random characteristic variable X ik

g( ) . 
v g( )  is a weighted mean of the empirical variances within the clusters. 
Under the assumptions 1. and 2. above, Schmitter and Straub show that: 

A. [ ] [ ]E T E Tg( ) ≤  for all g=1,...,L and [ ] [ ]E T E Tg( ) =  if the g-th subdivision 

is the natural one or a subdivision of it; 

B. [ ] [ ]E W E Wg( ) <  if the g-th subdivision is a proper subdivision of the 
natural one. 

These results suggest a practical decision rule: 

choose the subdivision g that shows the highest value of W g( )  
among those with the highest T g( )  values. 

However, the subdivision with the highest value of T g( )  will be discarded if 
another subdivision with a slightly lower value of T g( )  and with a higher 
value of W g( )  can be formed joining some clusters of the former subdivision. 
From a methodological point of view, it is also important to note that the 
results A. and B. are formulated in terms of expectations, whereas in the 
decision rule the observed values of the statistics T g( )  and W g( )  are 
considered. Some troubles arise in the application of the decision rule when 
we have observations over one year only, since (3.1) and (3.2) are not defined 
when I=1. In this case, following [7] we can set V = 0   and 
V g Lg( ) , , ... ,= =0 1 . So we have: 
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In [7] it is pointed out that, although the method is clear and valuable, since a 
good subdivision of the basic classes in clusters should reflect the 
heterogeneity of the portfolio, the decision rule cannot ensure to find the 
natural subdivision. In fact it could not belong to the family of admissible 
subdivisions and moreover, since in practical situations the boundary among 
the clusters may be rather vague, it could not be identified by the decision 



rule. 

4. Simple competitive learning. 

The structure of a neural network is usually described as a connected graph, 
whose vertices, called units or neurons, are disposed into layers. We will 
consider only a two-layer network with m units on the first layer (input units), 
K units on the second layer (output units) and connections linking each input 
unit with each output unit. A real number, called weight, is associated at each 
connection. Each output unit will be represented by the weight vector 
m j j jm= ( ,..., )µ µ1 , where µ ji  is the weight corresponding to the connection 

between the input unit i and the output unit j,. We denote by d  a distance 
(not necessarily Euclidean) in ℜm . 
In simple competitive learning (SCL) a network is used to classify a set of 
data in clusters. We will suppose to have a set S  (input space) of N  real 
vectors of ℜm  denoted by xi  ( ,..., )i N= 1 , which have to be classified in 
clusters. If we present a vector of data x S∈  to the network, it can be 
compared with all the weight vectors. We call winner unit, c c x= ( ) , the unit 
satisfying the condition 

(4.1) d x m d x m j Kc j( , ) ( , ) ,...,≤ ∀ = 1 . 

The SCL algorithm ([11], [12]) carries out a vector classifier according to the 
criterion (4.1). In order to minimise the number of misclassifications, the 
algorithm updates the weights of the network by means of a learning rule 
(step 4 in the following description of the algorithm). 
More precisely, denoting by mj(t) and x(t) the weight vectors at time t and the 
input vector presented at the same time respectively, the simple competitive 
learning algorithm consists of the following steps. 

Simple competitive learning (SCL) algorithm 

1.  put t =0 and initialise the vectors mj(0)   (j=1,...,K); 
2.  choose an input vector x t S( ) ∈ ; 

3.  find the index c such that { }d x t m t d x t m tc j j( ( ), ( )) min ( ( ), ( ))= ; 

4.  update the weight vector mc  according to the rule 
m t m t t x t m tc c c( ) ( ) ( )( ( ) ( ))+ = + −1 α , with ] [α( ) ,t ∈ 0 1 ; 

5.  stop if the stopping rule is satisfied; 
otherwise replace t  with t + 1 , go back to step 2 and repeat for the next 
input vector. 

 
At the end of the learning process the network is able to classify the input 



vectors: input vectors that make the same output unit winner belong to the 
same cluster and the corresponding weight vector can be chosen as 
"representative" of the cluster itself. 
Several methods can be used to initialise the vectors mj(0) in step 1. The 
simplest one is the so-called random guess method: the initial values are 
chosen randomly in the "right" domain, according to the values of the input 
vectors. Another method is to initialise the weights by the average of the 
minimum and the maximum values of the elements of the vectors which have 
to be classified. In the experiments presented in Section 6 both methods have 
been used. Nevertheless, other more sophisticated methods are available. 
The term α( )t , called learning rate, is a non-increasing function of the 
variable t. A good choice of the learning rate can speed up and improve 
significantly the convergence of the algorithm. For our experiments we chose 
individual learning rates for each weight vector in the form of 
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so that, in every training cycle, only the learning rate corresponding to the 
winner unit c  is updated. A discussion about (4.2) and the choice of an 
"optimal" learning rate can be found in [14]. 
In the algorithm described above, the training is continuous, since the weights 
are updated after the presentation of each pattern. On the contrary, in the 
batch version of the algorithm, known as Linde-Buzo-Gray (LBG) algorithm 
of vector quantisation ([15]), the weights are updated after all patterns have 
been presented. As observed in [12] and [15], there is a strong relation 
between SCL, LBG and k-means algorithms. 
Vector quantisation algorithms have been originally designed as 
encoding/decoding processes in data compression. An unified framework of 
most of those algorithms can be found in [3]. 
As pointed out in [17] and [18], if we denote by p j Nj  ( ,..., )= 1  a 

probability distribution over the set S , the LBG algorithm converges to a 
local minimum of the quantity (average distortion) 

(4.3) D x m pi c x i
i

N

i
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=
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2
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Nevertheless, continuous training is frequently used, because the random 
presentation order of the input vectors can help to avoid poor local minima 
(see [11] at page 168). 
There are different types of stopping rules that we can use in step 5. A natural 
stopping rule ([3]) is 



 ∆ n
n n

n

D D
D

=
−

<−1 ε  

where Dn  denotes the average distortion after the n-th training cycle and ε is 
a fixed threshold. In our experiments we followed the suggestion of several 
authors and we stopped the algorithm after a quite large number of iterations. 

5. Self-Organising Maps. 

In [13] T. Kohonen introduced an unsupervised technique to construct 
topology-preserving mappings from the input space into a low dimensional 
lattice (usually a one- or two-dimensional array of units). This algorithm is 
called self-organising map (SOM) and it is implemented by a network whose 
architecture is similar to that of the SCL networks. The most important 
difference between SCL and SOM is the following: while simple competitive 
learning modifies only the weight vector of the winner unit, self-organising 
map updates the weight vectors of the units placed in a suitable 
neighbourhood of the winner unit too. 
Let 
I  be the set of output units 
d' be a distance defined on I I×  

λ t  be a family of positive non-increasing real functions defined on ℜ+ , 
where t  is a real non-negative number and λ t t( )0 1= ∀  

The SOM algorithm coincides with the SCL algorithm described in Section 4, 
except for step 4, which is replaced by: 

4'.  update the weight vectors according to the rule 

m t m t t d i j x t m t j Ij j t j( ) ( ) ( ) ( ' ( , ))( ( ) ( ))+ = + − ∀ ∈1 α λ . 

Here too the learning rate α  ( )0 1< <α( )t  is a non-increasing function of t 
and α( )0  is close to 1 (typically 0.8). Since λ t  is a non-increasing function, 
weights of units close to the winner unit and of the winner unit itself are 
changed significantly. On the contrary, weights of units placed further away 
from the winner unit are not updated appreciably. After the convergence of 
the algorithm, input vectors that are close in the input space are assigned to 
clusters corresponding to output units which are close in the lattice. A 
definition of this property of topology preservation can be found in [6]. 
The choice of the functions λ t  is crucial for the topology preservation. In our 
experiments we used the well-known gaussian function 
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where σ  is a decreasing function and σ( )0  is large enough. According to 
Ritter and Schulten (see [11] at page 114) we made the following choice for 
α  and σ : 
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where tmax  is the maximum value for t (fixed in advance) and α 0 , α tmax
, σ 0 , 

σ tmax
 are the fixed initial and final values of α  and σ  respectively. 

It must be noted that, despite the extensive use of SOM, the mathematical 
theory of Kohonen’s algorithm is so far unsatisfactory. A fundamental book 
on the theory of SOM is [14], while a review on main results can be found in 
[4]. A wide investigation of the connections between neural networks and 
pattern recognition can be found in [2] and [19]. 

6. Experiments 

In this section we present an application of the algorithms described in 
Section 4 and 5 to the data in Table 6.a, where we have reported the claim 
frequencies in a motor vehicle insurance portfolio. The basic classes are the 
fiscal powers of the vehicles and we want them to be allocated in clusters 
according to their claim frequencies. In [9] it is pointed out how an analogy 
between the expression of the average distortion (4.3) and of the total within 
cluster variance (2.1) in Dickmann's method suggests to consider the relative 
exposures as probability distribution on the basic classes. Assuming this 
hypothesis, we applied SCL and SOM to our data and tried to solve the 
problem of choosing the right number of clusters by means of S-S method. 
We also applied the same procedure to the same data yet grouped in a fine 
partition, reported in Table 6.b. 
We used Matlab version 4.2c.1 and the Neural Network Toolbox version 2.0b 
[5] to perform the experiments described in this section. For this purpose we 
had to modify the programs provided in the toolbox. Among the main 
modifications we carried out, it has to be pointed out the implementations of 
the recursive formula (4.2) in the SCL program and of the gaussian function 
in the SOM program. In the latter program, α  and σ  are given by (5.1) and 
(5.2) and different initial choices of the parameters are allowed. 

6. 1.  Clustering by SCL 

In Table 6.1.1 are reported the best results obtained by means of the SCL 



algorithm in several trials carried out with different numbers of output units 
and various initial learning rates. 
Note that the subdivisions reported in Table 6.1.1 (and in the following 
analogous tables) refer to the order in the data: e.g. (3 1 3 5 4 7) characterises 
the subdivision where the first cluster contains the first three elements in 
Table 6.a (fiscal powers : 22, 31 and 23), the second cluster contains the 
fourth element (fiscal power 39) and so on (see also Table 6.1.2 for some 
other examples). 
 

Table 6.a: Policy-years (exposure) and relative and absolute claim 
frequencies in automobile insurance for different fiscal powers. 

FISCAL 
POWER 

No. OF CLAIMS 
 

EXPOSURE 
 

CLAIM 
FREQUENCY 

22 38 221.17 0.171810 
31 3 17.76 0.168957 
23 270 1608.08 0.167903 
39 1 6.72 0.148898 
26 22 172.89 0.127247 
19 497 4056.32 0.122525 
21 11 93.31 0.117890 
15 1636 14425.51 0.113410 
18 1221 10917.02 0.111844 
20 1004 9184.99 0.109309 
17 1474 13543.50 0.108834 
29 6 56.33 0.106523 
14 1023 9985.27 0.102451 
16 630 6319.19 0.099696 
13 1856 18773.85 0.098861 
28 2 20.60 0.097102 
12 2122 23710.77 0.089495 
32 2 22.37 0.089397 
10 780 8798.13 0.088655 
11 46 604.43 0.076105 
9 34 462.59 0.073499 

37 2 35.61 0.056172 
8 6 108.32 0.055394 

30 3 58.08 0.051655 
27 1 20.04 0.049913 
25 1 29.77 0.033590 
24 0 8.39 0 
33 0 1.24 0 
35 0 0.00 0 
36 0 8.25 0 
38 0 3.11 0 
40 0 0.60 0 
41 0 8.13 0 

(Data provided by an Insurance Company) 



From subdivisions in Table 6.1.1 three hierarchies show up. All the 
subdivisions of the first and the second hierarchy present similar values of T, 
whereas the third shows worse results. 
According to the S-S criterion, subdivision (4 8 4 17), which is present both 
in the first and in the second hierarchy, seems to be the best one (see the 
corresponding value of W). More details on this subdivision are reported in 
Table 6.1.2. We note that the weights of the neurons and the centroids of the 
clusters are approximately equal. We can deduce the convergence of the 
algorithm to a possibly local minimum of the average distortion; therefore the 
number of iteration used can be considered sufficient. 
 

 

 

It is worthwhile to note that the best results have been obtained by means of 
the random guess initialisation of the weights. Obviously a number of trials 
large enough has been necessary. 
However, we believe that these subdivisions could be unsatisfactory for 
actual rate making purposes, since the basic classes are not contiguously 
grouped. Moreover, we observe that basic classes characterised by low 
exposure are anyhow classified according to their claim frequencies. For 
instance, the fiscal power basic classes 31 and 39 are classified in the first 

Table 6.1.1: Best subdivisions in clusters obtained by 
SCL from data in Table 6.a. 

No. of  
clusters 

Clusters   W x 10-5    T x 10-4  

6 3 1 3 5 4 17 3.2618 1.6309 R 
5 3 1 8 4 17 3.9683 1.5873 R 
4 4 8 4 17 5.2904 1.5871 R 
6 4 3 5 3 1 17 3.2614 1.6307 R 
5 4 8 3 1 17 3.9678 1.5871 R 
4 4 8 4 17 5.2904 1.5871 R 
5 11 5 3 2 12 2.9598 1.1839  
4 11 5 3 14 3.8964 1.1689  
3 11 5 17 5.6281 1.1256  

(R=weight initialisation by random guess method) 

Table 6.1.2: Details on a subdivision obtained by SCL from data in Table 6.a. 

4 clusters - W=5.2904 x 10-5   T=1.5871 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 4 22 23 31 39 0.1682 0.1683 
2 8 15 17 18 19 20 21 26 29 0.1119 0.1119 
3 4 13 14 16 28 0.1001 0.1000 
4 17 8 9 10 11 12 24 25 27 30 32 

33 35 36 37 38 40 41 
0.0886 0.0885 



cluster (see Table 6.1.2) because of their high claim frequency, even if their 
exposures are very low. Whereas other basic classes "quite" near to 31 and 39 
(e.g. 33, 35, 36, 38, 40, 41), with low exposure too, show low frequency 
instead and are therefore classified in the forth cluster. A way to try to avoid 
this kind of problems is to group the data in a fine partition before clustering 
(Table 6.b). 
 

 
The results are reported in Table 6.1.3, where two hierarchical structure can 
be identified. Both present subdivision (2 7 3 7), that could be considered 
interesting according to the S-S method. Nevertheless, in the first hierarchy 
also subdivision (2 2 5 3 7) is remarkable. In the third part of Table 6.1.3 also 
other subdivisions not identified in a hierarchical structure are reported. 
In Table 6.1.4 subdivisions (2 7 3 7) and (2 2 5 3 7) are displayed in detail. 
Since the latter is a subdivision of the former, (2 7 3 7) should be preferred, 
because its W value is higher, provided that the difference observed in the T 
values can be considered negligible. However, it does not seem to be so. In 
fact, if we look also at the centroids of (2 2 5 3 7), we note that the difference 
between the second and the third cluster is appreciable and therefore we 
conclude that this cannot be considered a subdivision of the natural one. 
According to S-S method, we prefer subdivision (2 2 5 3 7) to (2 7 3 7). 

Table 6.b: Policy-years (exposure) and relative and absolute claim 
frequencies in automobile insurance for different fiscal powers (a fine 
partition of data in Table 8.a). 

FISCAL 
POWER 

No. OF CLAIMS 
 

EXPOSURE 
 

CLAIM 
FREQUENCY 

22 38 221.17 0.171810 
23 270 1608.08 0.167903 
19 497 4056.32 0.122525 
21 11 93.31 0.117890 
15 1636 14425.51 0.113410 
18 1221 10917.02 0.111844 
20 1004 9184.99 0.109309 

24-26 23 211.05 0.108976 
17 1474 13543.50 0.108834 
14 1023 9985.27 0.102451 
16 630 6319.19 0.099696 
13 1856 18773.85 0.098861 

27-29 9 96.96 0.092824 
12 2122 23710.77 0.089495 
10 780 8798.13 0.088655 
11 46 604.43 0.076105 
9 34 462.59 0.073499 

30- 11 161.86 0.067958 
8 6 108.32 0.055394 

(Data provided by an Insurance Company) 



 

 

 

Table 6.1.3: Best subdivisions in clusters obtained by 
SCL from data in Table 6.b. 

No. of  
clusters 

Clusters   W x 10-5    T x 10-4  

6 2 2 2 3 3 7 3.2358 1.6179  
5 2 2 5 3 7 4.0112 1.6045  
4 2 7 3 7 5.2129 1.5639  
3 2 10 7 6.6232 1.3246  
6 2 1 3 3 3 7 3.2358 1.6179  
5 2 4 3 3 7 3.9770 1.5908 R 
4 2 7 3 7 5.2129 1.5639  
3 9 3 7 5.5312 1.1062  
5 2 3 4 3 7 3.9829 1.5932  
5 2 7 3 3 4 3.9826 1.5931 R 
5 2 7 1 2 7 3.9262 1.5705 R 
4 2 4 5 8 4.8243 1.4473  
4 2 4 4 9 4.8172 1.4452  
4 2 3 5 9 4.7897 1.4369  

(R=weights initialisation by random guess method) 

Table 6.1.4: Details on some subdivisions obtained by SCL from data in Table 6.b 

4 clusters - W=5.2129  x 10-5   T=1.5639 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 2 22 23 0.16774 0.16838 
2 7 15 17 18 19 20 21 24-26 0.11189 0.11188 
3 3 13 14 16 0.10005 0.10003 
4 7 8 9 10 11 12 27-29 30- 0.08862 0.08862 

5 clusters - W=4.0112 x 10-5   T=1.6044 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 2 22 23 0.16746 0.16838 
2 2 19 21 0.12224 0.12242 
3 5 15 17 18 20 24-26 0.11099 0.11097 
4 3 13 14 16 0.10008 0.10003 
5 7 8 9 10 11 12 27-29 30- 0.08857 0.08862 

5 clusters - W=3.9829 x 10-5   T=1.5932 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 2 22 23 0.16746 0.16838 
2 3 15 19 21 0.11549 0.11542 
3 4 17 18 20 24-26 0.10993 0.10993 
4 3 13 14 16 0.1001 0.10003 
5 7 8 9 10 11 12 27-29 30- 0.08865 0.08862 



We note that subdivision (2 3 4 3 7), the most interesting among those in the 
third group in the Table 6.1.3, is dominated by (2 2 5 3 7) according to the 
values of T and W. In fact, the difference between the centroids of the second 
and of the third cluster is lower than the same difference in (2 2 5 3 7) (see 
Table 6.1.4). 
It is remarkable that the initial partitioning of the data does not influence 
significantly the result, since the obtained T values in this case are not so far 
from those obtained from original data. 

6. 2. Clustering by SOM 

In Table 6.2.1 are reported the best results obtained by means of Kohonen's 
SOM using the data in Table 6.a. 
A Kohonen network with a one-dimensional array of output units and the 
Euclidean distance has been considered. 
We observe that the choice of the parameters σ 0  and σ tmax

 affects 

significantly the results obtained in the trials. More precisely, by putting σ 0  
equal to half the number of neurons (a choice recommended by several 
authors, e.g. [11]), the results are substantially worse than by using a lower 
initial value of σ . 
Two hierarchies are manifest. We note that the T values presented by the 
subdivisions of the first hierarchy (Table 6.2.1) are better than the T values 
obtained by SCL (Table 6.1.1). Subdivision (4 8 4 17) was found by both 
methods. Following S-S method we choose (4 8 4 17) instead of (3 1 8 4 17) 
in the SCL case. 
 

 
Here also (4 3 5 4 17) and (4 3 5 4 3 14) seem to be very interesting. In Table 
6.2.2 details on these subdivisions are reported and compared with the 

Table 6.2.1: Best subdivisions in clusters obtained by SOM from 
data in Table 6.a. 

No. of 
clusters 

Clusters W x 10-5 T x 10-4 σ 0  σ tmax
 

8 4 3 2 3 1 3 3 14 2.4201 1.6941 0.75 0.25 
7 4 3 2 3 4 3 14 2.8124 1.6874 0.75 0.25 
6 4 3 5 4 3 14 3.3480 1.6740 0.75 0.25 
5 4 3 5 4 17 4.0767 1.6307 0.75 0.25 
4 4 8 4 17 5.2904 1.5871 0.75 0.25 
3 4 8 21 6.9993 1.3999 0.75 0.25 
6 7 2 3 2 2 17 2.8578 1.4289 3 0.5 
5 7 4 2 3 17 3.5440 1.4176 2.5 0.5 
4 9 3 4 17 4.0005 1.2001 2 0.5 
3 12 4 17 5.6278 1.1256 1.5 0.5 



subdivision in seven clusters (4 3 2 3 4 3 14). The T values relative to the 
subdivisions in six and seven clusters are sensibly higher than that of the 
subdivision in five clusters and, by comparing the W values between the 
subdivision in seven and in six clusters, we note that the first is remarkably 
lower. In fact, in this subdivision the centroids of the third and the fourth 
cluster are quite the same. So the subdivision in six clusters seems to be more 
advisable. 
 

 
The same algorithm has been applied also to the grouped data in Table 6.b. 
The main results are reported in Table 6.2.3. Also in this case the best results 
are obtained using initial values of σ  not too high. The subdivisions in four 
and in five clusters are the same obtained by SCL (Table 6.1.3). However, 
because of the sensibly higher T value with respect to the subdivision in six 

Table 6.2.2: Details on some subdivisions obtained by SOM from data in Table 6.a 

5 clusters - W=4.0767 x 10-5   T=1.6307 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 4 22 23 31 39 0.1674 0.1683 
2 3 19 21 26 0.1224 0.1226 
3 5 15 17 18 20 29 0.1112 0.1110 
4 4 13 14 16 28 0.1003 0.1000 
5 17 8 9 10 11 12 24 25 27 30 32 33 

35 36 37 38 40 41 
0.0881 0.0885 

6 clusters - W=3.348 x 10-5   T=1.6740 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 4 22 23 31 39 0.1678 0.1683 
2 3 19 21 26 0.1223 0.1226 
3 5 15 17 18 20 29 0.1110 0.1110 
4 4 13 14 16 28 0.1003 0.1000 
5 3 10 12 32 0.0893 0.0893 
6 14 8 9 11 24 25 27 30 33 35 36 37 

38 40 41 
0.0695 0.0690 

7 clusters - W=2.8124 x 10-5   T=1.6874 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 4 22 23 31 39 0.1653 0.1683 
2 3 19 21 26 0.1223 0.1226 
3 2 15 18 0.1127 0.1127 
4 3 17 20 29 0.1090 0.1090 
5 4 13 14 16 28 0.1001 0.1000 
6 3 10 12 32 0.0893 0.0893 
7 14 8 9 11 24 25 27 30 33 35 36 37 

38 40 41 
0.0758 0.0690 



clusters (2 2 5 3 3 4), this seems to be preferable. Details of subdivisions 
(2 2 5 3 3 4) and (2 2 2 3 3 3 4) are reported in Table 6.2.4. 
 

 

 

7. Ending remarks 

In this paper we were concerned with the problem of determining the tariff 
classes by means of particular cluster analysis techniques. Two clustering 
algorithms, simple competitive learning and Kohonen's self organising-map, 

Table 6.2.3: Best subdivisions in clusters obtained by SOM from 
data in Table 6.b. 

No. of 
clusters 

Clusters W x 10-5 T x 10-4 σ 0  σ tmax
 

7 2 2 2 3 3 3 4 2.7452 1.6471 0.75 0.25 
6 2 2 5 3 3 4 3.2674 1.6337 0.75 0.25 
5 2 2 5 3 7 4.0112 1.6045 0.75 0.25 
4 2 7 3 7 5.2129 1.5639 0.75 0.25 
3 2 7 10 6.9078 1.3816 0.75 0.25 
6 4 2 3 2 1 7 2.8099 1.4049 3 0.5 
5 4 5 1 2 7 3.4841 1.3936 2.5 0.5 
4 5 4 3 7 4.0481 1.2144 1.5 0.5 

Table 6.2.4: Details on some subdivisions obtained by SOM from data in Table 6.b. 

6 clusters - W=3.2674  x 10-5   T=1.6337 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 2 22 23 0.1672 0.1684 
2 2 19 21 0.1222 0.1224 
3 5 15 17 18 20 24-26 0.1109 0.1110 
4 3 13 14 16 0.1000 0.1000 
5 3 10 12 27-29 0.0893 0.0893 
6 4 8 9 11 30- 0.0746 0.0725 

7 clusters - W=2.7452 x 10-5   T=1.6471 x 10-4  
Cluster No. of 

elements 
Fiscal Powers Weights Centroids 

1 2 22 23 0.1664 0.1684 
2 2 19 21 0.1221 0.1224 
3 2 15 18 0.1128 0.1127 
4 3 17 20 24-26 0.1090 0.1090 
5 3 13 14 16 0.1002 0.1000 
6 3 10 12 27-29 0.0893 0.0893 
7 4 8 9 11 30- 0.0757 0.0726 



have been applied in a neural network framework to the same set of data. In 
order to make a choice among the different subdivisions obtained we have 
applied a criterion proposed by H. Schmitter and E. Straub. 
The SCL algorithm belongs to the partitioning methods family of clustering 
algorithms, which generally provide good results. In our case, Kohonen's 
SOM has produced even better results for a suitable choice of the parameters. 
This fact suggests a deeper investigation on the effect of the parameters. 
Moreover, also the meaning of the weights produced by Kohonen's SOM is 
worthwhile of further studies. 
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