
Direct Algorithms for Checking Coherence

and Making Inferences from Conditional

Probability Assessments

Peter Walley, Renato Pelessoni a and Paolo Vicig a

a Dipartimento di Matematica Applicata ‘B. de Finetti’, Università di Trieste,
Trieste, Italy

Abstract

We solve two fundamental problems of probabilistic reasoning: given a finite set of
conditional probability assessments, how to determine whether the assessments are
mutually consistent, and how to determine what they imply about the conditional
probabilities of new events? These problems were posed in 1854 by George Boole,
who gave a partial solution using algebraic methods. The two problems are funda-
mental in applications of the Bayesian theory; Bruno de Finetti solved the second
problem for the special case of unconditional probability assessments in what he
called ‘the fundamental theorem of probability’. Using ideas from the theory of
imprecise probabilities, we show that the general problems have simple, direct solu-
tions which can be implemented using linear programming algorithms. Unlike earlier
proposals, our methods are defined directly in terms of the assessments, without in-
troducing unknown probabilities. Our methods work when any of the conditioning
events may have probability zero, and they work when the assessments include
imprecise (upper and lower) probabilities or previsions.

Key words: Bayesian inference; coherence; conditional probability; imprecise
probability; lower probability; natural extension; probabilistic logic

1 Introduction

1.1 The fundamental problems of probabilistic reasoning

This paper is concerned with solving two fundamental problems of probabilis-
tic reasoning:

The consistency problem: given an arbitrary finite collection of conditional
probability assessments, how can we determine whether the assessments are
mutually consistent?

The inference problem: how can we make inferences from the assessments
concerning the conditional probabilities of other events?

In the simplest version of the problem, we suppose that conditional probabili-
ties P (Ai|Bi) are specified for i = 1, 2, . . . , k, where Ai and Bi are arbitrary
events with Bi non-null. The two problems are to check whether these condi-
tional probability assessments are mutually consistent, and to calculate what
they imply about a further conditional probability P (A|B).

The consistency and inference problems are fundamental problems in proba-
bilistic logic [24], in the Bayesian theory of inference [9], and in the theory of
imprecise probability [31]. The problems are therefore of great importance in
expert systems and artificial intelligence, where these theories are widely used
[32]. In this paper we describe general algorithms that can be used to solve
the two problems. The computations involve only linear programming. In most
applications, each problem can be solved through a single linear program.

The algorithms that we propose for solving the consistency and inference prob-
lems are direct: they work by investigating certain kinds of linear combinations
of the assessments. The algorithms that have been previously proposed for
solving the two problems are indirect: they work by investigating certain kinds
of precise probability measures that extend the assessments to other events
or that dominate the assessments. The direct and indirect methods can be
regarded as dual formulations of the same problem, but, not surprisingly, the
direct methods turn out to be both theoretically and computationally simpler
than the indirect ones. Our solutions are based on the concepts of coherence
and natural extension from the theory of imprecise probabilities [31], which
are both defined directly in terms of the assessments. In contrast, the pre-
vious methods are based on indirect definitions of consistency and inference:
consistency is defined as compatibility with a precise conditional probability
measure on a larger domain, and inferences are made by computing bounds on
the possible extensions of the assessments to conditional probability measures
on larger domains.

Two further properties that distinguish our algorithms from most of the previ-
ous proposals (exceptions are noted in subsection 1.4) are that they work when
any of the conditioning events may have probability zero, and they work when
any of the conditional probability assessments are imprecise. The standard
techniques for checking consistency or making inferences [15–17,20,21,24,26],
which involve a single linear program, are implicitly based on an assumption
that the probabilities of all the conditioning events are bounded away from

2

zero. When this assumption fails, the standard techniques may give incorrect
answers. The assumption is frequently violated in practical applications, be-
cause the given assessments are usually uninformative about at least some of
the probabilities of conditioning events, i.e., they imply the trivial lower bound
of zero. For example, an assessment of a conditional probability P (A|B) is,
by itself, completely uninformative about the probability of B, and it is con-
sistent with P (B) = 0. Further examples of zero probabilities are given in the
following subsection.

It is also common in applications that not all probabilities can be assessed
precisely, and methods are needed to deal with imprecise probabilities. This
issue is discussed in subsection 1.3.

1.2 Numerical examples

In this subsection we describe two numerical examples which will be used
throughout the paper to illustrate our algorithms. The first example, which is
based on Example 6 of [17], shows that it is not difficult for zero probabilities
to arise even in quite small examples.

Example 1 Suppose that A1, . . . , A5 are logically independent events, and
the following precise, unconditional probability assessments are made: P (A1) =
0.6, P (Ac

1∪A2) = 0.4, P (A2∪A3) = 0.8, P (A3∩A4) = 0.3, P (Ac
4∪A5) = 0.5,

and P (A2 ∪ A5) = 0.6. In this case the consistency problem is to determine
whether the six assessments are coherent, and the inference problem is to de-
termine what they imply about the probabilities of other events, for instance
P (A3), P (A4|A3), or P (A1 ∩ A2|B) where B = (A1 ∩ A2) ∪ (Ac

1 ∩ Ac
2).

It is immediately apparent that the six assessments are consistent with many
events having zero probabilities. For example, it is clear from the first two as-
sessments that P (A1 ∩ A2) must be zero. If we knew that P (B) was bounded
away from zero then we could infer from the assessments that P (A1∩A2|B) =
0. However, it turns out that the assessments are also consistent with P (B) =
0, and it is not immediately clear what we can say about P (A1∩A2|B). Because
the conditioning event B may have probability zero, the standard algorithms
cannot be relied upon to compute P (A1∩A2|B). This is not an isolated exam-
ple: there are many other events, such as A3 ∩ A5, A4 ∩ A5, (A1 ∪ A4)

c and
A2 ∩ (A1 ∪ A3 ∪ A5), which may have probability zero here. If C is such an
event and we want to make inferences about a conditional probability P (A|C),
we cannot in general use the standard linear programming algorithms. There
may be similar difficulties in checking consistency, if any further assessment
is made that is conditional on C.

Example 2 Suppose that three football teams, X, Y and Z, play a tourna-

3

Table 1
Precise probability assessments P (Ci) for the 27 events Ci in the football example.

(L, L, L) (L, L, W) (L, D, L) (L, D, D) (L, D, W) (L, W, D) (L, W, W) (D, L, L) (D, L, D)

0.015 0.04 0.02 0.045 0.04 0.055 0.06 0.015 0.02

(D, L, W) (D, D, L) (D, D, W) (W, L, L) (W, L, D) (L, L, D) (W, D, D) (W, D, W) (W, W, L)

0.04 0.02 0.05 0.01 0.02 0.02 0.04 0.055 0.04

(W, W, D) (W, W, W) (D, W, L) (D, W, D) (D, W, W) (W, D, L) (L, W, L) (D, D, D) (W, L, W)

0.04 0.06 0.04 0.05 0.07 0.02 0.04 0.035 0.04

ment involving three matches, X vs. Y, X vs. Z, and Y vs. Z. Two points are
assigned for a win, and one for a draw. The winner is the team which gains
the most points. If this criterion does not determine a unique winner, further
rules are applied, based firstly on the number of goals scored, and finally using
randomization if necessary.

A subject makes precise probability assessments for the 27 events of the kind
Ci = (R(X, Y), R(X, Z), R(Y, Z)), where R(·, ·) represents W (win), D (draw)
or L (loss) for the first team in alphabetical order. For instance, (W, W, L)
means that X wins against Y and against Z, and Y loses against Z. Suppose
that the probability assessments are those given in Table 1, based on the sub-
ject’s belief that team Z is weaker than teams X and Y, which are about equally
strong. In this case, because the 27 events Ci form a partition, it easy to verify
that the probability assessments are mutually consistent, by checking only that
the numbers are non-negative and sum to one.

The subject wishes to evaluate the probability of the event A, that team X
wins the tournament. This is an example of an inference problem. In this
case it is relatively easy to find the best possible lower and upper bounds for
P (A), by summing the probabilities of all the events Ci that imply A to get the
lower bound 0.325, and summing the probabilities of all the events Ci that are
consistent with A to get the upper bound 0.53.

All the events Ci have been assigned positive probability in this example, so
it may appear that no difficulty could arise from conditioning on an event
of probability zero. But these difficulties can arise when we introduce other
events. For example, let B denote the event that team X scores more goals in
the tournament than each of the other teams. Then both B and its complement
are consistent with all 27 events Ci, so it is consistent with the assessments
in Table 1 that B has probability zero. Consequently difficulties may arise in
calculating P (A|B).

1.3 More general versions of the problems

In general, a set of conditional probability assessments cannot be expected to
determine a unique value for a further conditional probability P (A|B), but
only to determine upper and lower bounds for P (A|B). That was just seen in

4

the inferences about P (A) in the football example, where we obtained only
upper and lower bounds for P (A). The upper and lower bounds are called
upper and lower probabilities.

Because inferences usually need to be expressed in terms of upper and lower
probabilities, it is natural to generalize the problem by allowing the initial
assessments to be also in the form of upper and lower probabilities. In fact
this generalization greatly extends the scope of the problem. There are many
applications in which it is difficult or unreasonable to make precise probabil-
ity assessments, because either there is little available information on which
to base the assessments or the information is difficult to evaluate. In these
problems we may be able only to assess upper and lower probabilities. For
example, the precise probability assessments given in Table 1 are unrealistic
since even a subject with very extensive information about the teams would
find it difficult to assess precise probabilities for the 27 outcomes.

Because an assessment of an upper probability P (A|B) is equivalent to the
assessment P (Ac|B) = 1 − P (A|B) of a lower probability, we can assume
that all the quantities assessed are lower probabilities. When the assessments of
upper and lower probabilities coincide, the common value P (A|B) = P (A|B)
is called a precise probability and it is written as P (A|B).

In the general formulation of the problem, we suppose that finitely many
conditional lower probabilities P (Ai|Bi) = ci are specified, for i = 1, 2, . . . , k.
We do not assume any structure for the collection of conditional events {A1|B1,
A2|B2, . . . , Ak|Bk}. A user is free to make whatever conditional probability
assessments are most natural or convenient. All the relevant events, Bi and
Ai ∩ Bi (i = 1, 2, . . . , k), can be identified with subsets of a possibility space
Ω. If these events are not defined as subsets of a given possibility space, but
instead the logical relationships amongst the events are specified, then we can
define an appropriate possibility space whose atoms are all the events of the
form

⋂k
i=1 Di that are logically possible, where each Di is chosen to be Ai∩Bi,

Ac
i ∩ Bi or Bc

i . For instance, the six unconditional assessments in Example 1
generate a partition which contains 20 atomic events. We assume that all the
conditioning sets Bi are non-empty.

It is important to emphasize that this formulation allows assessments of pre-
cise probabilities, upper probabilities and unconditional probabilities. As pre-
viously noted, an assessment of an upper probability P (A|B) = c can be
replaced by an equivalent assessment of a lower probability, P (Ac|B) = 1− c.
A precise probability assessment P (A|B) = c, which is equivalent to speci-
fying equal upper and lower probabilities P (A|B) = P (A|B) = c, can there-
fore be replaced by the two lower probability assessments P (A|B) = c and
P (Ac|B) = 1− c. An unconditional lower probability assessment P (A) = c is
equivalent to P (A|Ω) = c, i.e., equivalent to conditioning on the certain event

5

Table 2
Assessments of upper and lower conditional probabilities for five events A|Ci in the
football example.

A|(L,W,L) A|(D,D,D) A|(D,W,W) A|(W,L,W) A|(W,D,L)

P 1 1 0.75 0.65 0.8

P 0.6 0 0.25 0.4 0.65

Ω, and similarly for precise assessments of unconditional probability.

The formulation of the problem that we study here could be generalized fur-
ther, to allow assessments of conditional upper and lower previsions (expecta-
tions) of random variables. See the Conclusions for details.

Example 3 In the football example, suppose the subject recalls that P (A) =∑27
i=1 P (A|Ci)P (Ci) by the conglomerative property, and hence he could de-

termine P (A) precisely if he were able to assess the 27 values P (A|Ci). The
assessment of P (A|Ci) is trivial for those A|Ci which are impossible, like
A|(L, L, D), and those A|Ci which are sure, like A|(W, W, D), but there re-
main 5 events A|Ci which are neither impossible nor sure. The subject might
find it hard to give precise probabilities for these events because extra informa-
tion, such as guessing the number of goals scored, is required. In particular,
there is little information concerning the probability of A|(D, D, D). So he
adds 10 imprecise probability assessments, given in Table 2, to the 27 precise
assessments in Table 1. Because each of the 27 precise assessments in Table
1 is equivalent to two assessments of lower probabilities, there are a total of
2× 27 + 10 = 64 lower probability assessments.

Now it is necessary to check the consistency of the system of 64 lower probabil-
ities, and to determine what the system implies about the probability of event
A. These problems will be solved later in the paper. It turns out that, although
the new assessments in Table 2 are quite imprecise, they substantially reduce
the imprecision in the probability of A.

1.4 Previous work on the problems

George Boole [2,3] formulated a version of the inference problem, assuming
that the given assessments are mutually consistent, as early as 1854. He recog-
nized that, in general, the probability assessments will determine only upper
and lower bounds for the conditional probability of a new event, and he sug-
gested several algebraic methods for finding the upper and lower bounds. The
most efficient of his methods involves using the assessments to determine a sys-
tem of linear equality and inequality constraints on variables which represent
the unknown probabilities of the possible atomic events, and then solving this

6

system by successive elimination of variables (Fourier-Motzkin elimination).
Because Boole formulated the problem in terms of unknown probabilities, his
methods are what we call indirect solutions.

Whereas linear programming gives only numerical bounds for P (A) in the
inference problem, the methods of Boole and Hailperin [16] can be used to
produce an analytical solution. For example, if A1 and A2 are logically in-
dependent, A = A1 ∪ A2, and the assessments P (A1) and P (A2) are re-
garded as unspecified parameters, Boole’s method gives the general bounds
max {P (A1), P (A2)} ≤ P (A) ≤ P (A1) + P (A2). Boole’s methods are de-
scribed in detail in [16,18]. It appears to be possible to use the direct methods
of this paper in a similar way to derive the rules of coherence for imprecise
probabilities, by using Fourier-Motzkin elimination to successively remove the
coefficients λi.

For the special case of unconditional probability assessments, the inference
problem was solved by de Finetti [8], in what he later called ‘the fundamental
theorem of probability’ [9]. The name he gave to this result shows how impor-
tant the problem is in the Bayesian theory of probability. In effect, de Finetti’s
fundamental theorem shows that the inference problem can be solved (for pre-
cise, unconditional probabilities) by linear programming (LP). The consistency
problem can be solved using de Finetti’s concept of coherence, which again
involves linear programming. LP approaches to the consistency and inference
problems and to de Finetti’s fundamental theorem were described by Hailperin
[15] and by Bruno and Gilio [4]. Several generalizations of the fundamental
theorem of probability were proposed in [21,22,31].

Linear programming solutions for the consistency and inference problems also
have a fundamental role in the theory of probabilistic logic that was proposed
by Nilsson [24,25]; see also [26]. Hansen, Jaumard et al. [17,20] have shown
that these methods can be extended to cope with problems that involve a very
large number of assessments and variables, by incorporating column generation
methods which avoid explicit formulation of an underlying partition of atomic
events. They call the consistency and inference problems probabilistic satis-
fiability problems. The survey paper [17] also includes a thorough survey of
earlier work on the consistency and inference problems, and of computational
algorithms for implementing the earlier solutions.

Hailperin [16] extended Boole’s methods to deal with conditional probabilities,
by regarding an assessment P (A|B) = c as a linear constraint, of the form
P (A ∩ B) = cP (B), on the unknown probabilities P (A ∩ B) and P (B). In
general, this constraint is equivalent to the constraint P (A|B) = c only if
P (B) > 0, so Hailperin’s method effectively assumes that all conditioning
events have positive lower probability. Most of the other methods for solving
the consistency and inference problems have the same limitation [17,20–22].

7

As seen in subsections 1.1 and 1.2, it is quite common in practice for some
conditioning events of interest to have zero lower probability: this does not
mean that the probability of such an event is known to be zero, but merely
that having probability zero is consistent with the assessments.

Methods for handling zero probabilities have been studied only quite recently.
A general method for checking consistency of precise conditional probability
assessments, which works when conditioning events may have zero probability,
was developed in a series of papers by Coletti, Gilio and Scozzafava, including
[5,6,13,14]. Computationally, this method requires solving a sequence of LP
problems. Another solution for the inference problem in the case of precise
conditional probabilities, which again involves a sequence of LP problems,
was given by Vicig [30].

Many of the earlier studies, for example [5,13,15,17,20–22], have considered
the possibility that probability assessments are imprecise, although most of
these works contain only a brief discussion of imprecision. Walley [31] gave a
detailed theory of imprecise conditional probabilities, including very general
formulae for checking consistency and making inferences, on which the ap-
proach in this paper is based. These formulae apply also when conditioning
on events of probability zero and when infinitely many conditioning events are
involved. (See also [33,37].) The consistency problem for imprecise assessments
was also studied in [5,13], using a definition of consistency that is similar to
what we call ‘avoiding uniform loss’, and in [29], using a stronger definition
which we call ‘coherence’. Pelessoni and Vicig [27] suggested an algorithm for
computing the least-committal coherent correction of imprecise assessments
which avoid uniform loss, which can also be used to give a solution to the
inference problem. Again these algorithms require solving a sequence of LP
problems. The Pelessoni-Vicig algorithm is related, through duality, to the
methods proposed in this paper; see subsection 3.7 for a comparison.

All the computational methods proposed in the work we have outlined are
indirect, in the sense that they involve programming problems in which the
variables are taken to be unknown probabilities, and their solutions rely on
properties of precise conditional probabilities. In this paper we propose direct
methods for solving the consistency and inference problems, using the theory
developed in [31], which do not involve unknown probabilities.

1.5 Outline of the paper

The consistency problem, to check whether the assessments of lower proba-
bilities or precise probabilities are mutually consistent, is defined and solved
in Section 2. Consistency is characterized mathematically through a condition

8

of ‘avoiding uniform loss’. In the case where all assessments are precise, this
condition is equivalent to de Finetti’s definition of coherence. Two algorithms
for verifying this condition are proposed in subsection 2.3. When some of the
assessments are imprecise, avoiding uniform loss still characterizes a basic type
of consistency, but there is a stronger notion of consistency, called coherence,
which is considered in subsections 3.2 and 3.8.

Section 3 describes a solution to the inference problem. Inferences are made
by calculating upper and lower probabilities for a new conditional event A|B,
using a concept of natural extension. In the case where all assessments are
precise and coherent, the natural extensions are the upper and lower bounds
for the interval of coherent values of P (A|B). Two algorithms for computing
natural extensions are proposed in subsection 3.4. Section 3 also contains a
study of the conditions under which natural extension can be computed ex-
actly by solving a single linear program, an investigation of the dual problem,
and methods for checking whether a system of imprecise probability assess-
ments is coherent.

Brief suggestions for generalizations and further research are given in the con-
cluding section 4.

1.6 Notation

We use the same symbol, A or B, to denote both an event and its indicator
function (de Finetti’s convention). Using this convention, write Gi = Bi[Ai−
ci] for i = 1, 2, . . . , k, where ci = P (Ai|Bi). Here Gi is a random variable
which plays an important role in the ensuing theory. It represents the net
reward from a bet on the event Ai conditional on Bi at the rate P (Ai|Bi).
(The bet is called off, and the reward is zero, unless Bi occurs.) The lower
probability P (Ai|Bi) is interpreted as a marginally acceptable rate for betting
on Ai conditional on Bi, meaning that the bet whose reward is Bi[Ai − a]
is acceptable whenever a < P (Ai|Bi). Hence the random reward Gi is at
least marginally acceptable, but it is not necessarily strictly acceptable. For
any positive ε, the random variable Gi + εBi, which is the net reward from a
conditional bet at the lower rate P (Ai|Bi)− ε, is strictly acceptable.

When λ = (λ1, . . . , λk) is a k-vector, we write λ ≥ 0 to mean that λi ≥ 0
for i = 1, 2, . . . , k, and we write λ � 0 to mean that λ ≥ 0 and λ 6= 0.
We shall consider linear combinations of the random variables Gi, of the form∑k

i=1 λiGi. When λ ≥ 0, we define S(λ), the support of λ, to be the union of
those conditioning events Bi for which λi > 0. If we interpret λi as the stake
of a bet on Ai which is called off unless Bi occurs, S(λ) can be interpreted
as the event that at least one non-zero bet takes place. Let I(λ) = {i : λi >

9

0, i = 1, . . . , k}, so S(λ) =
⋃

i∈I(λ) Bi. If X is a bounded random variable and
B is a non-empty subset of Ω, sup [X|B] = sup {X(ω) : ω ∈ B} denotes the
supremum possible value of X if B occurs.

2 The consistency problem

The first problem is to determine whether the given assessments P (Ai|Bi) =
ci (i = 1, 2, . . . , k) are mutually consistent. This problem will be solved in this
section by formulating a concept of ‘avoiding uniform loss’, which is equiva-
lent, in the special case where all the assessed probabilities are precise, to de
Finetti’s concept of coherence.

2.1 Avoiding uniform loss (AUL)

It was explained in subsection 1.6 that, for any positive ε, the random re-
ward Gi + εBi is strictly acceptable. Following Walley [31,33], we say that
the assessments incur uniform loss if there is a positive linear combination
of these acceptable gambles whose net reward cannot possibly be positive. If
the assessments do not incur uniform loss, we say that they avoid uniform
loss. Formally, the assessments avoid uniform loss (AUL) if and only if the
parametric system of linear inequalities

k∑
i=1

λi(Gi + εBi) ≤ 0 and λ � 0 (1)

has no solution (λ, ε) with ε > 0. The sum on the left-hand side of (1) is a
random variable X, and we write X ≤ 0 to mean that the value of the variable
X is certainly less than or equal to 0, i.e., X(ω) ≤ 0 for all ω ∈ Ω.

Condition (1) is defined directly in terms of the assessments ci, since the
left-hand side of (1) is a positive linear combination of the gambles Gi +
εBi = Bi[Ai − (ci − ε)]. As already mentioned, the positive adjustment ε is
needed to ensure that these gambles are acceptable. A slightly different way of
interpreting ε is to regard it as an arbitrarily small reduction to the assessed
lower probabilities ci, which makes the assessments slightly more cautious. In
other words, ε acts as a perturbation of the assessments.

If the assessments incur uniform loss, it is useful to identify a subset of mutu-
ally inconsistent assessments I(λ) = {i : λi > 0, i = 1, . . . , k}, where λ � 0 is
such that

∑k
i=1 λi(Gi + εBi) ≤ 0 for some ε > 0. To achieve consistency, some

10

of the assessments P (Ai|Bi) (i ∈ I) must be reduced. Several ways of doing
this are discussed later in subsection 2.4.

AUL is a simple consistency requirement. It is violated if and only if there
is a positive linear combination of strictly acceptable conditional bets which
cannot possibly result in a net gain. The discussion in [31, Ch. 7] indicates
that AUL is the proper characterization of consistency in this problem. In the
following discussion, we compare it with a weaker condition that is implicit in
some of the literature. First we give an alternative characterization of AUL.

Lemma 1 The assessments AUL if and only if

sup [
k∑

i=1

λiGi|S(λ)] ≥ 0 whenever λ � 0. (2)

PROOF. Using S(λ) =
⋃{Bi : λi > 0} and writing τ1 = min {λi : λi >

0, i = 1, . . . , k} and τ2 =
∑k

i=1 λi, we see that

τ1S(λ) ≤
k∑

i=1

λiBi ≤ τ2S(λ). (3)

If the assessments incur uniform loss then there are λ � 0 and ε > 0 such
that 0 ≥ ∑k

i=1 λi(Gi + εBi) ≥
∑k

i=1 λiGi + ετ1S(λ), using (3), with τ1 > 0
since λ � 0. Hence sup [

∑k
i=1 λiGi|S(λ)] ≤ −ετ1 < 0, so that (2) fails.

Conversely, if there is λ � 0 such that sup [
∑k

i=1 λiGi|S(λ)] = −δ < 0, let
ε = δ/τ2. (Here τ2 > 0 since λ � 0.) Then

∑k
i=1 λi(Gi + εBi) =

∑k
i=1 λiGi +

ε
∑k

i=1 λiBi ≤ −δS(λ)+ετ2S(λ) = 0, using (3). Thus the failure of (2) implies
that the assessments incur uniform loss. ♦

Another characterization is that the assessments AUL if and only if there is no
λ � 0 such that

∑k
i=1 λiGi ≤ −S(λ). Another characterization, which can

be obtained from the properties in section 3.2 or from results in [37], is that
the assessments AUL if and only if there are precise conditional probabilities
{P (Ai|Bi) : i = 1, . . . , k} which satisfy AUL (or, equivalently, de Finetti’s
definition of coherence) and P (Ai|Bi) ≥ ci for i = 1, . . . , k. This is an indirect
characterization, in the sense that it refers to precise conditional probabilities
with certain properties. This characterization is the basis for the algorithms
previously introduced for checking AUL or similar conditions. In particular
[13] takes the dominance condition in this characterization as a definition of
coherence for imprecise probabilities, and [5] considers a condition similar to
AUL but without assuming the conjugacy relation P (A|B) = 1 − P (Ac|B).
A different proof of essentially the same algorithm for checking the AUL con-

11

dition is given in [27, sec. 3]. All these algorithms are indirect and rely on
properties of precise conditional probabilities.

We use the term ‘uniform loss’ rather than ‘sure loss’ because violations of
AUL cannot necessarily be exploited to produce a sure loss. Incurring uniform
loss means that there is a positive linear combination of strictly acceptable
bets which, if any of them takes place, must produce a net loss. That is, there
is a net loss if S(λ) occurs, but not otherwise. To illustrate that, consider the
two assessments P (A|B) = 0.6 and P (Ac|B) = 0.5, where B is not certain to
occur. By setting λ1 = λ2 = 1, so that S(λ) = B, it is easily verified that these
assessments incur uniform loss. However, there is no way to exploit the two
assessments to produce a sure loss, because any bets based on the assessments
must be conditional on B. If B fails to occur then all bets will be called off
and nothing is lost or gained. Nevertheless the two assessments are obviously
inconsistent.

We say that the assessments avoid sure loss (ASL) if sup [
∑k

i=1 λiGi|Ω] ≥ 0
whenever λ � 0, or equivalently, there is no λ � 0 such that

∑k
i=1 λiGi ≤ −1.

This condition can be checked by solving a linear program. Clearly AUL im-
plies ASL. The example in the preceding paragraph shows that AUL is a
stronger condition than ASL, and it also shows that ASL is too weak to char-
acterize ‘consistency’ of the assessments. A sufficient condition for ASL is that⋃k

i=1 Bi ⊂ Ω (since
∑k

i=1 λiGi = 0 outside
⋃k

i=1 Bi), and yet the assessments
may be inconsistent in such cases. Conditions will be given later under which
ASL is equivalent to AUL.

Many of the methods that have been proposed for dealing with conditional
probability assessments implicitly use the ASL condition as a definition of
consistency. Consequently they are unable to detect the type of inconsistency
illustrated above, where the assessments satisfy ASL but not AUL. For further
discussion of the difference between ASL and AUL, and examples which show
that ASL is too weak, see [31].

In general, we cannot simplify the AUL condition (1) by setting ε = 0. That
is illustrated by the following example.

Example 4 Suppose that there is a single assessment P (A1|B1) = 1, which
is equivalent to the precise probability assessment P (A1|B1) = 1. This assess-
ment avoids uniform loss, but taking λ1 = 1, we see that λ1G1 = B1(A1−1) ≤
0. Thus condition (1) is satisfied with ε = 0.

In fact, whenever the assessments imply that some event B has probability
zero, there is λ � 0 such that

∑k
i=1 λiGi ≤ −B ≤ 0. More generally, if

the assessments imply that any non-trivial conditional probability P (A|B) is
precisely determined, i.e., P (A|B) = P (A|B), then condition (1) is satisfied
for ε = 0. This shows that the condition obtained by setting ε = 0 in (1) is

12

not necessary for consistency.

2.2 Checking coherence of precise probability assessments

Suppose that all the probability assessments are precise, P (Ai|Bi) = ci for
i = 1, 2, . . . ,m. We say that the assessments are de Finetti-coherent, or dF-
coherent, when

sup [
m∑

i=1

λiGi|S(λ)] ≥ 0 for all real numbers λ1, . . . , λm. (4)

(See [19] for an equivalent definition.) This condition is identical to the nec-
essary and sufficient condition (2) for AUL of conditional lower probabilities,
except that now the coefficients λi are not required to be non-negative but are
allowed to take any real values.

When all the probability assessments are precise, dF-coherence is equivalent
to AUL. To see that, recall that any assessment of a precise conditional prob-
ability P (A|B) = c is equivalent to two assessments of conditional lower
probabilities, P (A|B) = c and P (Ac|B) = 1− P (A|B) = 1− c.

Lemma 2 The precise probability assessments P (Ai|Bi) = ci (i = 1, . . . ,m)
are dF-coherent if and only if the corresponding assessments of conditional
lower probabilities, P (Ai|Bi) = ci and P (Ac

i |Bi) = 1 − ci (i = 1, . . . ,m),
avoid uniform loss.

PROOF. The assessments P (Ai|Bi) = ci and P (Ac
i |Bi) = 1 − ci have

marginal gambles Gi = Bi[Ai − ci] and G′
i = Bi[A

c
i − (1 − ci)] = Bi[1 −

Ai − 1 + ci] = −Bi[Ai − ci] = −Gi. Including both Gi and −Gi in (2), where
the coefficients λj are required to be non-negative, is equivalent to allowing
λj to take any real value. It follows from Lemma 1 that AUL is equivalent to
dF-coherence. ♦

dF-coherence of precise probability assessments can therefore be verified by
checking AUL.

2.3 Algorithms for checking consistency

To check the AUL condition, we need to determine whether the system of
inequalities (1) has a solution (λ, ε) with ε > 0. Because (1) becomes weaker

13

as ε decreases, it has a solution if and only if it has a solution for sufficiently
small values of ε. That suggests the following algorithm for checking AUL.

Algorithm 1. Fix a very small positive value of ε, and check whether the
system of linear inequalities (1) has a solution λ. This involves a single linear
program.

In practice, Algorithm 1 will almost always give the correct answer to the
consistency problem, provided that ε is chosen to be sufficiently small. Gener-
ally ε should be chosen to be larger than the rounding error in computations,
but also much smaller than the rounding in the assessments. The latter con-
dition is generally easy to satisfy because probabilities are rarely specified to
more than four decimal places. For example, ε can be taken to be 5 or 10
times the rounding error of computations. We have successfully used values
of ε that range from 10−7 to 10−10 in standard optimization programs such
as Lingo and the simplex package of Maple V, in computations with at least
10 floating-point digits. As shown below, however small ε is chosen to be,
examples can be constructed in which Algorithm 1 fails to detect an inconsis-
tency in the assessments. But in such examples, if ε is chosen to be not much
larger than the rounding error of computations, the degree of inconsistency is
so small as to be almost indistinguishable from rounding error and it will be
difficult for any other algorithm to detect the inconsistency.

Using Lemma 2, Algorithm 1 can be used to check dF-coherence of precise
conditional probability assessments. In the case of precise assessments, the
small perturbation ε that is involved in Algorithm 1 is useful also from the
point of view of numerical analysis. Precise assessments that are dF-coherent
are almost incoherent, in the sense that an arbitrarily small perturbation can
make them incoherent. Such perturbations can be introduced in computations
through rounding errors, and this can cause serious problems for many algo-
rithms. If the value of ε used in Algorithm 1 is larger than the rounding error
of computations, it protects against this kind of numerical instability.

Whatever positive value of ε is used in Algorithm 1, examples can be con-
structed in which the system (1) has no solution λ but the assessments nev-
ertheless incur uniform loss. In other words, when AUL fails, the supremum
value of ε for which (1) has solutions may be arbitrarily close to zero. That
can be seen in the following example.

Example 5 Given any small positive value of ε, suppose that two assessments
are made: P (A|B) = c and P (Ac|B) = 1 − c + ε, where 0 < ε ≤ c ≤ 1.
Because P (A|B) + P (Ac|B) > 1, these assessments incur uniform loss, as
can be easily proved by applying the definition. However, it can be seen that,
for this value of ε, system (1) has no solution λ.

The next example shows that the supremum value of ε for which (1) has

14

solutions may be very close to zero even when the assessments are specified
only ‘roughly’, to just a few decimal places.

Example 6 Suppose that six assessments of conditional upper and lower prob-
abilities are made: P (A) = 1/16, P (Cc ∩D) = 0.01, P (F) = 0.51, P (A|B) =
0.49, P (B|C) = 0.51, and P (D|F) = 0.51, where the events are related by
∅ ⊂ A ⊂ B ⊂ C ⊂ D ⊂ F ⊂ Ω and ⊂ denotes strict inclusion. If we apply
Algorithm 1 with ε greater than or equal to 10−7, we find that the system (1)
has no solution λ. This might suggest that the assessments AUL. When ε is
less than or equal to 10−8, however, (1) does have a solution λ, which shows
that the assessments incur uniform loss. (In fact, they incur sure loss.) This
behaviour could be detected if, after using Algorithm 1 with ε greater than or
equal to 10−7, we also checked for solutions of (1) with ε = 0: the discrepancy
between the two answers warns us that further investigation is needed, using
either smaller positive values of ε or Algorithm 2.

We emphasize that the two preceding examples are artificial and were con-
structed to produce pathological behaviour of Algorithm 1. In the more real-
istic examples we have studied, Algorithm 1 has always produced the correct
answer, even with only moderately small values of ε.

In cases where we need an absolute guarantee of consistency, Algorithm 1
can be extended in two ways. Note first that if Algorithm 1 has a solution λ
then the assessments are definitely not consistent (they incur uniform loss). If
Algorithm 1 has no solution λ, the next step is to check whether the system
(1) with ε = 0 has a solution λ. This involves a second linear programming
problem. If this second system has no solution then the assessments are def-
initely consistent (they satisfy AUL). In the remaining case, where the first
system (with ε > 0) has no solution but the second system (with ε = 0) has
a solution, we can either try smaller positive values of ε or use the following
iterative algorithm, which is guaranteed to work in all cases.

Algorithm 2

(a) Set I = {1, 2, . . . , k}.
(b)

Maximise
∑
i∈I

τi

subject to λ ≥ 0, 0 ≤ τi ≤ 1 (i ∈ I)

and
∑
i∈I

λiGi +
∑
i∈I

τiBi ≤ 0. (5)

(c) If τi = 1 for all i ∈ I then the assessments incur uniform loss. Otherwise,
replace I by the subset {i ∈ I : τi = 1}. If I is empty then the assessments
AUL. Otherwise, return to (b).

15

The consistency of algorithm 2 relies upon the following three basic properties:

(i) The assessments incur uniform loss if and only if there exist λ � 0 and
τi ∈ {0, 1} (i = 1, . . . , k) such that

∑k
i=1 λiGi +

∑k
i=1 τiBi ≤ 0, and τi = 1

whenever λi > 0 (alternatively, iff there exist λ � 0 and a non-empty
J ⊂ {1, . . . , k} such that

∑
i∈J λiGi +

∑
i∈J Bi ≤ 0).

In fact, if the assessments incur uniform loss, define m = min {λi : λi > 0}
and divide all terms in (1) by εm, getting

∑k
i=1(λi/εm)Gi+

∑k
i=1(λi/m)Bi ≤

0; hence, putting λ′ = λ/(εm), τi = 1 if λi > 0, τi = 0 otherwise, and
since (λi/m)Bi ≥ τiBi, obtain

∑k
i=1 λ′iGi +

∑k
i=1 τiBi ≤ 0. Conversely, if∑k

i=1 λiGi +
∑k

i=1 τiBi ≤ 0 for λ � 0 and τi ∈ {0, 1} (i = 1, . . . , k) are such
that τi = 1 whenever λi > 0, then it is

∑
i:λi>0 λi (Gi + (1/λi)Bi) ≤ 0, and

(1) is easily obtained from this putting ε = min {1/λi : λi > 0}.
(ii) If τ is a solution in (b), it must have τi = 0 or τi = 1 for all i ∈ I.

To prove (ii), suppose that (λ′, τ ′) satisfies the constraints (5), but that
0 < τ ′i < 1 for some i ∈ I. Then (λ′, τ ′) cannot be a solution in (b), be-
cause putting s = min {τ ′i : τ ′i > 0}, λ = λ′/s, τi = 0 if τ ′i = 0, τi = 1
if τ ′i > 0 (i ∈ I) then

∑k
i=1 τi >

∑k
i=1 τ ′i , and (λ, τ) satisfies the con-

straints (5), since
∑

i∈I λiGi +
∑

i∈I τiBi = (1/s) (
∑

i∈I λ′iGi +
∑

i∈I sτiBi) ≤
(1/s) (

∑
i∈I λ′iGi +

∑
i∈I τ ′iBi) ≤ 0.

(iii) Let (λ, τ) be an optimal solution in (b) and let (λ′, τ ′) satisfy (5). Then
τi = 1 whenever τ ′i > 0.
To prove (iii), note that also ((λ + λ′)/2, (τ + τ ′)/2) satisfies (5). It ensues
from the proof of (ii) that there exists a solution (λ′′, τ ′′) in (b) such that
τ ′′i ∈ {0, 1}, τ ′′i = 1 iff (τi + τ ′i) /2 > 0 iff τi > 0 or τ ′i > 0 (i ∈ I). If it
were τ ′i > 0 and τi = 0 for some i, this would then imply

∑
i∈I τ ′′i >

∑
i∈I τi,

contradicting the optimality of (λ, τ).

Algorithm 2 checks whether the assessments incur uniform loss by using (i) and
by successively reducing the set I. Consider the set of indexes i corresponding
to positive λi in at least one (λ, τ) making the assessments incur uniform loss
by (i). Reducing I produces progressively more stringent bounds on this set.
In fact, at each iteration of step (b), I is replaced by I ′ = {i ∈ I : τi = 1} and,
by (ii) and (iii), step (b) produces a solution τ with as many components as
possible equal to 1. This implies that I ′ is the unique largest subset of I with
the property that

∑
i∈I λiGi +

∑
i∈I′ Bi ≤ 0. It implies also that a necessary

condition for (λ, τ) to make the assessments incur uniform loss according to
(i) is that λi = 0 for each i ∈ I − I ′. For instance, if at the first iteration
I ′ 6= I = {1, . . . , k}, then τi (and hence λi) must be zero for i ∈ I − I ′ in any
such (λ, τ). Consequently,

∑
i∈I′ λiGi+

∑
i∈I′ Bi ≤ 0 must hold for these (λ, τ),

and in fact, after replacing I by I ′, this is precisely inequality (5) in step (b) of
the second iteration. The same argument applies to the next iterations. When
the algorithm terminates, τi = 1 for all i ∈ I (where possibly I is empty), so
that I ′ = I. Therefore

∑
i∈I λiGi +

∑
i∈I Bi ≤ 0. By (i), if I is non-empty then

the assessments incur uniform loss, whereas if I is empty they AUL, because

16

any (λ, τ) which could make the assessments incur uniform loss should be
such that λi = 0 for i ∈ {1, . . . , k} − I ′ = {1, . . . , k}, that is λ = 0. But this
is not consistent with λ � 0 in (i).

Reducing the set I in step (c) is equivalent to reducing the set of assessments.
Since the number of assessments must be reduced at each stage, the algorithm
is guaranteed to give an answer in at most k steps, i.e., after solving at most
k linear programs of the form (5). If the assessments incur sure loss then
Algorithm 2 requires only one step, and similarly if there is no set Bj such
that

∑k
i=1 λiGi + Bj ≤ 0. If the assessments incur uniform loss, the algorithm

reveals (at the last step) the largest subset I which does so.

As explained in the preceding subsection, dF-coherence of m precise proba-
bility assessments can be verified by checking AUL. Therefore, Algorithms 1
and 2 can be used also to verify dF-coherence. Algorithm 1 involves a single
linear program with 2m variables, while Algorithm 2 requires solving at most
2m linear programs.

A sufficient condition for AUL to be equivalent to ASL is that all the condition-
ing events Bi have probabilities that are bounded away from zero (formally, the
natural extensions E(Bi), defined in Section 3, are non-zero for i = 1, . . . , k).
This holds, for instance, if all the assessments are of unconditional probabil-
ities, as in Example 1. In this case, AUL can be checked by solving a single
linear program: the assessments AUL if and only if there is no λ � 0 such
that

∑k
i=1 λiGi ≤ −1. For the assessments in Example 1, this system has

no solution λ � 0, and therefore the assessments are consistent. This can
also be verified by applying Algorithm 1 or Algorithm 2. More generally, if
E(Bi|

⋃k
i=1 Bi) > 0 for all i = 1, 2, . . . , k, the assessments AUL if and only if

there is no λ � 0 such that
∑k

i=1 λiGi +
⋃k

i=1 Bi ≤ 0, which can be checked
by solving a single linear program.

Example 7 Consider the football example, with just the 10 upper and lower
probability assessments given in Table 2, plus one further assessment that
P (A|B) = 0.5, where A denotes the event that team X wins the tournament,
and B is the event that X finishes equal first on points and also Y loses
against Z. Here B is the union of the two outcomes (L, W, L) and (W, D, L).
Using this fact, it is easy to see that the three assessments P (A|B) = 0.5,
P (A|(L, W, L)) = 0.6 and P (A|(W, D, L)) = 0.65 are mutually inconsistent,
and therefore the system of 11 upper and lower probabilities incurs uniform
loss. This can be checked using Algorithm 1, with any value of ε smaller than
0.05. It is also easy to see that this system avoids sure loss, because the union
of the 11 conditioning events is not certain to occur. Again, the ASL condition
is too weak to detect the inconsistency in the assessments.

Now suppose that, in addition to these 11 imprecise probability assessments,

17

we consider the 27 precise assessments in Table 1. In this case the assessments
incur sure loss: combining the three assessments that incur uniform loss with
P (L, W, L) = 0.04 produces a sure loss. The precise probability assessments
tell us that the event B has positive probability, and this is enough to turn the
uniform loss (on the set S(λ) = B) into a sure loss. This illustrates that the
difference between AUL and ASL is essentially concerned with whether or not
the union of conditioning events, S(λ), has lower probability zero.

Computations for this and the later examples were done using both the opti-
mization program Lingo and Maple V (release 5.1). We wrote a Maple program
that constructs an appropriate space Ω, sets up the relevant LP problems with
varying values of ε, and solves the LP problems.

2.4 Methods for modifying inconsistent assessments

Suppose that the k assessments P (Ai|Bi) = ci (i = 1, 2, . . . , k) are incon-
sistent, in the sense that they incur uniform loss. Then it is useful to have
an automatic method for modifying the assessments in some kind of minimal
way, so that the modified assessments AUL. One method is suggested by the
definition of AUL (1), in which the positive parameter ε can be regarded as a
constant reduction to each of the assessments. The method is to reduce each
assessment by a constant amount ε1, where ε1 is defined to be the minimum
value of ε such that the reduced assessments P (Ai|Bi) = ci−ε (i = 1, 2, . . . , k)
AUL. (It can be seen from (1) that the infimum such ε does achieve AUL. A
similar method for modifying unconditional probability assessments was sug-
gested in [17].) It can be shown that ε1 is the maximum value in the nonlinear
program: maximize ε subject to the system of constraints (1).

If ci < ε1 then the modified assessment ci−ε1 is negative, so that Gi+ε1Bi ≥ 0
and the modified assessment does not contribute to the uniform loss. Hence
we can make a slightly different modification, to P (Ai|Bi) = max {ci−ε1, 0},
without changing AUL.

Another approach, which seems a little more natural, is to make a multi-
plicative modification instead of an additive one. In that case we replace
P (Ai|Bi) = ci by P (Ai|Bi) = (1− ε2)ci (i = 1, 2, . . . , k), where ε2 is minimal
such that the modified assessments AUL. The new assessments correspond to
forming an ε2-contamination neighbourhood of the original assessments. Again,
ε2 can be computed as the maximum value of a nonlinear program: maximize
ε subject to

∑k
i=1 λi(Gi + εciBi) ≤ 0 and λ � 0.

In both approaches, it suffices to modify only those assessments P (Ai|Bi)
for i ∈ I, where I is the largest subset of {1, 2, . . . , k} which incurs uniform
loss. This is the set that is computed in Algorithm 2.

18

The values ε1 and ε2 can be regarded as measures of the degree of inconsistency
of the assessments. They could be defined in the same way in the case where
the assessments AUL: in that case both values are non-positive, and −ε1 and
−ε2 measure the degree of consistency of the assessments.

As a numerical example, consider the first part of Example 7, involving 11
assessments. The minimal reductions which achieve AUL are found to be ε1 =
0.05 and ε2 = 1/11. The modified assessments that are produced by the two
methods are quite similar.

3 The inference problem

3.1 Natural extension

Given the assessments of conditional lower probabilities P (Ai|Bi) = ci (i =
1, 2, . . . , k), we make inferences by calculating further conditional lower and
upper probabilities, which will be denoted by E(A|B) and E(A|B). The sym-
bol E stands for ‘Extension’. Here A|B need not be a new conditional event:
it may agree with one of the conditional events Ai|Bi for which assessments
are made. We always assume that the conditioning event B is non-null. Again
the upper probabilities are determined by lower probabilities through the con-
jugacy relation E(A|B) = 1−E(Ac|B), so we concentrate on the lower prob-
ability E(A|B).

The quantity E(A|B) represents what can be inferred from the assessments
concerning the conditional lower probability P (A|B). Recall that P (A|B) is
interpreted as a supremum (marginally acceptable) rate for betting on A con-
ditional on B. We therefore define the natural extension E(A|B) to be the
supremum rate for betting on A conditional on B that can be constructed
from the assessments through positive linear combinations of strictly accept-
able bets. See [31–33] for further discussion of this idea.

Formally, the natural extension E(A|B) is defined to be the supremum value
of µ for which there are ε > 0 and λ ≥ 0 such that

B(A− µ) ≥
k∑

i=1

λi(Gi + εBi). (6)

The supremum may or may not be achieved by some µ. Here B(A − µ) rep-
resents the net reward from a bet on A conditional on B at betting rate µ,
and

∑k
i=1 λi(Gi + εBi) is the net reward from a positive linear combination

of bets on Ai conditional on Bi at rates P (Ai|Bi)−ε. The positive adjustment

19

ε is needed to ensure that these bets are strictly acceptable. Note that (6)
directly characterizes the natural extension in terms of linear combinations of
the assessments P (Ai|Bi).

There are always values of (µ, λ, ε) which satisfy the constraints in the defini-
tion of natural extension. For example, µ = 0, λ = 0 and any positive value
of ε satisfy the constraints, and this shows that always E(A|B) ≥ 0.

To define the natural extension, it is not necessary that the assessments AUL.
However, assessments that incur uniform loss may produce bad inferences, in
the sense that E(A|B) may be infinite: this happens if and only if B ⊆ S,
where S is the largest set S(λ) on which the assessments incur uniform loss.

An alternative characterization of the natural extension is given in the follow-
ing lemma, which is analogous to Lemma 1.

Lemma 3 The natural extension E(A|B) is the supremum value of µ for
which there is λ ≥ 0 such that

sup [
k∑

i=1

λiGi −B(A− µ)|S(λ) ∪B] < 0. (7)

Here the supremum is not achieved: the set of µ-values which satisfy these
constraints is the open interval (−∞, E(A|B)).

PROOF. First suppose that (µ, λ, ε) satisfy the system of inequalities (6),
and η < µ. Also let S(λ) =

⋃{Bi : λi > 0}, and τ1 = min {λi : λi > 0} or
τ1 = 1 if λ = 0. Then, using (3),

∑k
i=1 λiGi−B(A−η) ≤ −ε

∑k
i=1 λiBi−B(µ−

η) ≤ −ετ1S(λ)− B(µ− η) ≤ −δ[S(λ) ∪ B], where δ = min {ετ1, µ− η} > 0.
(This holds also if λ = 0 since then S(λ) = ∅.) Thus sup [

∑k
i=1 λiGi−B(A−

η)|S(λ) ∪ B] ≤ −δ < 0, so that (η, λ) satisfy (7), for every η < µ. It follows
that the quantity defined in the lemma is at least as large as E(A|B).

For the reverse inequality, suppose that µ and λ ≥ 0 satisfy (7). Then there
is δ > 0 such that

∑k
i=1 λiGi −B(A− µ) ≤ −δ[S(λ)∪B]. (Here all the terms

are zero outside S(λ) ∪ B.) If λ � 0 then τ2 =
∑k

i=1 λi > 0, so ε = δ/τ2 > 0,
and from (3) ε

∑k
i=1 λiBi ≤ ετ2S(λ) = δS(λ) ≤ δ[S(λ)∪B]. (This also holds

if λ = 0 since then
∑k

i=1 λiBi = 0.) It follows that
∑k

i=1 λiGi − B(A − µ) ≤
−ε

∑k
i=1 λiBi, which shows that (µ, λ, ε) satisfy the system (6) that defines

E(A|B). This proves that E(A|B) is at least as large as the quantity defined
in the lemma. ♦

20

3.2 Properties of natural extension

Here we outline the most important properties of natural extension; proofs of
these results are in [34].

(a) For all events A and B, E(A|B) ≥ 0. (This was proved in subsection 3.1.)
(b) If the assessments AUL then E(A|B) ≤ 1 for all events A and B. If the

assessments incur uniform loss then there is at least one assessment P (Ai|Bi)
such that E(Ai|Bi) = ∞. This shows that AUL can be characterized in
terms of natural extension: the assessments AUL if and only if E(Ai|Bi) ≤ 1
for i = 1, . . . , k.

(c) E(Ai|Bi) ≥ P (Ai|Bi) for i = 1, . . . , k.
(d) Say that a finite collection of conditional lower probabilities is coherent if

each conditional lower probability agrees with the corresponding natural
extension of the collection. (This is equivalent to the definitions of Williams
[37] and Walley [31,33].) For example, the assessments are coherent if and
only if E(Ai|Bi) = P (Ai|Bi) for i = 1, . . . , k. For precise probabilities, co-
herence is equivalent to dF-coherence and to AUL, but for imprecise prob-
abilities coherence is stronger than AUL. If the assessments AUL and their
natural extensions E(A|B) are defined for any finite collection of conditional
events, then these natural extensions are coherent.

(e) If the assessments are coherent then E(A|B) is the minimal value of P (A|B)
that is coherent with the assessments, i.e., their minimal coherent extension.
Thus any coherent collection of conditional lower probabilities can be coher-
ently extended to any other conditional events, and E(A|B) is the minimal
coherent extension.

(f) If the assessments AUL then the natural extension is the lower envelope of all
collections of precise conditional probabilities that dominate the assessments
and AUL. (Recall that, for precise probabilities, AUL is equivalent to dF-
coherence.) Formally, let Γ index the non-empty set of all collections of
precise conditional probabilities (Pγ(A|B), Pγ(A1|B1), . . ., Pγ(Ak|Bk)) which
satisfy AUL and Pγ(Ai|Bi) ≥ P (Ai|Bi) for i = 1, . . . , k. Then E(A|B) =
min {Pγ(A|B) : γ ∈ Γ}. This property gives an indirect characterization of
natural extension, in terms of a set of precise conditional probabilities.

3.3 Making inferences from precise probability assessments

As explained earlier, m assessments of precise conditional probabilities can
be replaced by 2m equivalent assessments of conditional lower probabilities.
Suppose that the assessments are dF-coherent, which is equivalent to AUL. To
calculate what the assessments imply about a further conditional probability
P (A|B), we compute the natural extensions E(A|B) and E(Ac|B). The next

21

result shows that these two natural extensions give a complete solution to the
problem of making inferences about P (A|B). Thus natural extension solves
the Bayesian problem of inference.

Lemma 4 Suppose that all the conditional probability assessments are pre-
cise and dF-coherent. Let E(A|B) = 1 − E(Ac|B). Then the range of val-
ues P (A|B) that are dF-coherent with the assessments is the closed interval
[E(A|B), E(A|B)].

PROOF. Because the assessments are precise, any precise conditional prob-
abilities that dominate the assessments must coincide with them. Hence the
set {Pγ(A|B) : γ ∈ Γ} in 3.2(f) is the set of all values Pγ(A|B) that are dF-
coherent with the assessments. By result 3.2(f), this set has minimum value
E(A|B), and similarly its maximum is E(A|B). By applying the definition of
dF-coherence, as in [29, Lemma 5.2.1], it follows that the range of dF-coherent
values is the closed interval [E(A|B), E(A|B)]. ♦

3.4 Algorithms for computing natural extension

Suppose that the assessments AUL. (In practical applications, this should
be verified first by using the algorithms in subsection 2.3.) To compute the
natural extension E(A|B) from the definition (6), we must solve the following
problem:

maximise µ

subject to ε > 0, λ ≥ 0

and
k∑

i=1

λi(Gi + εBi) + µB ≤ AB. (8)

This is a parametric linear programming problem with scalar parameter ε.
Problems of this type, in which the parameter appears in the matrix of linear
constraints, are not easily solvable in general [11].

We now discuss some practical methods to solve this problem. The simplest
method, which will work in almost all practical applications, is to fix a suffi-
ciently small value of ε and to solve the resulting linear program (8).

Algorithm 3. Fix a very small positive value of ε and solve the linear
program (8). If ε is sufficiently small, the maximized value of µ agrees with
E(A|B) to a very close approximation.

The advice given in subsection 2.3 concerning the choice of ε applies also

22

to Algorithm 3. For fixed ε, the linear program (8) involves k + 1 variables
(µ, λ1, . . . , λk) and at most k + ||Ω|| linear constraints, where ||Ω|| denotes the
cardinality of the possibility space Ω. Because AB ≥ 0, applying the simplex
method to solve (8) does not require us to run the two-phase method (or
another method) for initialization, since a starting point is found at once by
adding the slack variables.

Again we emphasize that Algorithm 3 will give the correct value of E(A|B),
to a degree of approximation that is much better than that of the assessments,
in almost all practical problems. The maximum value produced by Algorithm
3 is guaranteed to be a lower bound for E(A|B), but again we can construct
examples in which it may not be a good approximation to the correct value.
As in Section 2, we can extend the simple (one-step) algorithm to cope with
the rare cases in which it may fail.

Let µ∗(ε) denote the maximum value of µ when (8) is solved for a fixed value of
ε. Assuming that the assessments AUL, for any fixed positive ε the supremum
µ∗(ε) is achieved by some (µ, λ), because the feasible region is closed and
non-empty (the origin is always feasible) and by property 3.2(b) the objective
function µ is bounded from above by 1. A crucial point is that, because the
strength of the constraints in (8) becomes weaker when ε decreases, µ∗(ε)
is a non-increasing function of ε. It follows that E(A|B) is the limit of the
maxima µ∗(ε) as ε → 0 from above. It also follows that this limit is no larger
than µ∗(0). Also, by a well known result from parametric linear programming
[7,10], µ∗ can have only finitely many points of discontinuity. So µ∗(ε) can
approximate E(A|B) arbitrarily closely by taking ε to be sufficiently small.

By the preceding results, µ∗(0) ≥ E(A|B) ≥ µ∗(ε) for every ε > 0. Thus we
can find upper and lower bounds for E(A|B) by solving two linear program-
ming problems of the form (8), with the values ε = 0 (to give the upper bound)
and ε = ε1 (to give the lower bound), where ε1 is the small positive value used
in Algorithm 3. If the difference between the upper and lower bounds is neg-
ligible then the upper bound can be adopted as the solution. It appears that,
in many problems, the function µ∗ is right-continuous at 0, in which case the
upper bound is the exact solution. In particular, when the natural extension
is unconditional, so that B = Ω, the exact value is E(A) = µ∗(0). More
generally, whenever the probability of B is bounded away from zero, so that
E(B) > 0, we have E(A|B) = µ∗(0). More general conditions under which
E(A|B) = µ∗(0) are given in section 3.6.

Some caution is needed when computing µ∗(0), because the corresponding
linear programming problem is not always bounded and it is possible that
µ∗(0) = +∞. For example, given the single assessment P (B) = 0 and an
event A that is logically independent of B, it can be verified from (8) that
the natural extension is E(A|B) = 0, but that µ∗(0) = +∞. A necessary and

23

sufficient condition for µ∗(0) = +∞ is that E(B|⋃k
i=1 Bi ∪B) = 0; this will

be proved in subsection 3.7.

If the difference between the upper and lower bounds µ∗(0) and µ∗(ε) is non-
negligible, so that µ∗ appears to be discontinuous at 0, Algorithm 3 (with
a sufficiently small positive ε) still gives an approximate solution. In rare
cases, Algorithm 3 may yield a poor approximation to E(A|B) because ε is
not sufficiently small; this can happen when µ∗ has a discontinuity at some
value that lies between 0 and ε. The next example, which is a modification of
Example 6, shows that this can happen even when ε is much smaller than the
‘roughness’ of the assessments.

Example 8 Suppose that six assessments of conditional upper and lower prob-
abilities are made: P (A∩T c|H∩T c) = 1/16, P (Cc∩D) = 0.01, P (F) = 0.51,
P (A|B) = 0.49, P (B|C) = 0.51, and P (D|F) = 0.51, where the events are
related by ∅ ⊂ T ⊂ A ⊂ B ⊂ C ⊂ D ⊂ F ⊂ H ⊂ Ω and ⊂ denotes strict
inclusion. We can verify that these assessments AUL, by checking that the
system (1) has no solution λ when ε = 0.

Suppose that we wish to compute the natural extension E(Hc|Hc ∪ T). If we
apply Algorithm 3 with ε = 10−8 (or a larger value), we obtain the maximum
value µ∗(10−8) = 0, which would suggest that E(Hc|Hc∪T) is close to 0. But in
fact E(Hc|Hc∪T) = µ∗(0) = 15/16, and we obtain a very close approximation
to this value by taking ε to be 10−9 or smaller. Here µ∗ is right-continuous at
0 but it has a large discontinuity at a very small value of ε, between 10−9 and
10−8. This behaviour can be detected if, after running Algorithm 3 with a very
small positive value of ε, we run it again with ε = 0. If ε has not been chosen
to be sufficiently small, the large discrepancy between µ∗(ε) and µ∗(0) warns
us to try smaller values or to use Algorithm 4.

The following theory leads to an iterative algorithm which always gives the
exact value of E(A|B). As noted earlier, E(A|B) = limε↓0 µ∗(ε) ≤ µ∗(0),
but if µ∗ is not right-continuous at 0 then E(A|B) < µ∗(0). The crucial
step in an exact algorithm to compute E(A|B) is to find a subset of the
assessments, indexed by I ⊆ {1, 2, . . . , k}, which determines E(A|B) and for
which the function µ∗

I (defined using only the subset I) is right-continuous at
0 so that E(A|B) = µ∗

I(0). Then E(A|B) can be constructed from the subset
of assessments {P (Ai|Bi) : i ∈ I}, without using the other assessments, and
we can set ε = 0 in the computations. The appropriate set I is identified in
the next lemma.

Lemma 5 Let I be the largest subset of {1, 2, . . . , k} with E(B|⋃i∈I Bi ∪ B)
> 0. (A unique largest subset exists because if two sets I1 and I2 have this
property then so does I1 ∪ I2.) Then E(A|B) is the maximum value in the
following linear program:

24

maximise µ

subject to λi ≥ 0 (i ∈ I)

and
∑
i∈I

λiGi + µB ≤ AB. (9)

PROOF. First suppose that (µ, λ) satisfy condition (7) of Lemma 3. Then
simple manipulation of (7) shows that, for some δ > 0,

sup [
k∑

i=1

λiGi − (S(λ) ∪B)(B − δ)|S(λ) ∪B] < 0.

(This holds if µ ≥ 0 in (7). If µ < 0, the same inequality can be obtained by
dividing λ by 1−µ.) This implies that E(B|S(λ)∪B) > δ > 0. It follows that,
in (7), S(λ) ⊆ ⋃

i∈I Bi, so I(λ) ⊆ I. This means that any λ which satisfies
the conditions of Lemma 3 must have λi = 0 whenever i 6∈ I. Since Lemma 3
characterizes the natural extension E(A|B), this implies that E(A|B) can be
computed by natural extension from the subset of assessments indexed by I.

Let µ∗
I(ε) denote the maximum value in the modified linear program that

is obtained from (8) by adding the constraints that λi = 0 whenever i 6∈
I. Because this is equivalent to reducing the set of assessments to I, and
E(B|⋃i∈I Bi ∪ B) > 0 by definition of I, the sufficient condition for right-
continuity of µ∗ in the later Lemma 7 implies that µ∗

I is right-continuous at 0
and hence that E(A|B) = µ∗

I(0). This gives the characterization (9). ♦

Lemma 5 shows that, given the set I, E(A|B) can be computed through the
single linear program (9). To use this result in practice, we need to be able
to determine I. It is not obvious that the definition of I given in Lemma 5 is
useful, because it requires finding the natural extensions E(B|⋃i∈J Bi ∪ B)
for various sets J . The next lemma gives some other characterizations of I
which are more useful, especially (c) which is used in Algorithm 4.

Lemma 6 The set I, defined in Lemma 5, is characterized by each of the
following conditions.

(a) I = {i : E(B|Bi ∪B) > 0, i = 1, 2, . . . , k}.
(b) I is the largest subset of {1, 2, . . . , k} for which there is λ ≥ 0 such that

sup [
∑

i∈I λiGi|
⋃

i∈I Bi ∩Bc] < 0.
(c) I is the largest subset of {1, 2, . . . , k} for which there is λ ≥ 0 such that

sup [
∑

i∈I λiGi +
∑

i∈I Bi|Bc] ≤ 0.

PROOF.

25

(a) j ∈ I implies that E(B|Bj ∪ B) > 0, since otherwise E(B|⋃i∈I Bi ∪ B) ≤
E(B|Bj∪B) ≤ 0 by coherence of the natural extensions. Conversely, suppose
that E(B|Bj ∪ B) > 0 and let J = I ∪ {j}. Using coherence of the natural
extensions, E(Bj ∪ B|⋃i∈J Bi ∪ B) ≥ E(B|⋃i∈I Bi ∪ B) > 0. Also B ⊆
Bj ∪ B ⊆ ⋃

i∈J Bi ∪ B, so it follows, again using coherence of the natural
extensions, that E(B|⋃i∈J Bi∪B) ≥ E(B|Bj ∪B) E(Bj ∪B|⋃i∈J Bi∪B)
> 0. This shows that J ⊆ I, hence j ∈ I.

(b) By definition, I is maximal such that E(B|⋃i∈I Bi∪B) > 0. Using Lemma
3, this condition is equivalent to the existence of λ ≥ 0, α > 0 and ε > 0
such that

k∑
i=1

λiGi − (∪i∈IBi ∪B)(B − α) + ε(S(λ) ∪ [∪i∈IBi] ∪B) ≤ 0. (10)

On the set B, (10) is equivalent to
∑k

i=1 λiGi + α + ε ≤ 1, and on Bc it is
equivalent to

∑k
i=1 λiGi+α

⋃
i∈I Bi+ε(S(λ)∪⋃

i∈I Bi) ≤ 0. If (λ, α, ε) satisfy
the condition on Bc then so do (δλ, δα, δε) whenever δ > 0, and by taking δ
to be sufficiently small the condition on B can also be satisfied. This shows
that the condition on B is redundant. Hence, writing I(λ) = {i : λi > 0} and
rewriting the condition on Bc, I is maximal such that there is λ ≥ 0 with
sup [

∑
i∈I(λ) λiGi|

⋃
i∈I∪I(λ) Bi ∩ Bc] < 0. But we can replace I by I ∪ I(λ)

without changing this condition, so the maximal I must contain I(λ). Hence
we obtain the characterization in (b).

(c) By (b), I is maximal such that sup [
∑

i∈I λiGi +ε
⋃

i∈I Bi|Bc] ≤ 0 for some
λ ≥ 0, ε > 0. This is equivalent to (c), as can be seen by multiplying this
inequality by kε−1 and using k

⋃
i∈I Bi ≥

∑
i∈I Bi. ♦

By using Lemma 6(c) together with the method of Algorithm 2, we can de-
termine I by an iterative procedure in at most k steps. We then use I in the
linear program (9) to determine E(A|B). This produces the following exact
algorithm.

Algorithm 4

(a) Set I = {1, 2, . . . , k}.
(b)

Maximise
∑
i∈I

τi

subject to λ ≥ 0, 0 ≤ τi ≤ 1 (i ∈ I)

and sup [
∑
i∈I

λiGi +
∑
i∈I

τiBi|Bc] ≤ 0. (11)

(c) If τi = 1 for all i ∈ I then go to (d). Otherwise, replace I by the subset
{i ∈ I : τi = 1}. If I is non-empty then return to (b).

26

(d) Solve the linear program (9). The maximized value of µ in (9) is the exact
value of E(A|B).

Algorithm 4 works in a similar way to Algorithm 2, by successively reducing
the set I. At each iteration of (b), I is replaced by its unique largest subset, I ′,
with the property that sup [

∑
i∈I λiGi +

∑
i∈I′ Bi|Bc] ≤ 0. (As in Algorithm 2,

the solution τ in (b) must have τi = 0 or τi = 1 for all i ∈ I, so τ has as many
components as possible equal to 1.) The final set I, used in step (d), satisfies
I ′ = I because τi = 1 for all i ∈ I, so I is the set characterized in Lemma 6(c).
It then follows from Lemma 5 that step (d) gives the correct value of E(A|B).

Algorithm 4 is analogous to the iterative Algorithm 2 for checking AUL. It
differs in that we do not require

∑
i∈I λiGi +

∑
i∈I τiBi ≤ 0 everywhere on Ω,

but only on Bc. Thus computing the natural extension E(A|B) is similar to
checking AUL using the reduced possibility space Bc.

Algorithm 4 can be made more efficient in many problems by first running
Algorithm 3 to determine an initial set I1 = {i : λi > 0}, and then imposing
the extra constraints τi = 1 for all i ∈ I1, in each application of the linear pro-
gram (11). (This works because the maximal set I must contain I1.) Provided
that I1 is non-empty, this reduces the number of variables involved in (11).

The modified algorithm is as follows.

Algorithm 5

(a) Use Algorithm 3 to determine I1. Set J = {1, 2, . . . , k} ∩ Ic
1. If J is empty

then go to (d).
(b)

Maximise
∑
i∈J

τi

subject to λ ≥ 0, 0 ≤ τi ≤ 1 (i ∈ J),

and sup [
∑

i∈I1∪J

λiGi +
∑
i∈I1

Bi +
∑
i∈J

τiBi|Bc] ≤ 0. (12)

If τi = 1 for all i ∈ J then go to (d).
(c) Replace J by the subset {i ∈ J : τi = 1}. If J is non-empty then return to

(b).
(d) Use I1 ∪ J instead of I in step (d) of Algorithm 4, giving E(A|B) as the

maximized value of µ in (9).

In almost all practical problems, the final set J in step (d) will be empty.

27

3.5 Numerical examples

Example 9 In the football example, the subject wishes to evaluate the prob-
ability of event A, that team X wins the tournament. First consider just the
precise probability assessments in Table 1. By applying Algorithm 3 or 4 to
compute the natural extensions E(A) = 0.325 and E(Ac) = 0.47, we obtain
the lower and upper bounds 0.325 and 0.53 for P (A). These bounds can also be
obtained quite easily by summing the probabilities of the events Ci that imply
A, and of those Ci that are consistent with A.

Now consider the effect of combining the 10 imprecise probability assessments
in Table 2 with those in Table 1. By applying Algorithm 3 or 4 again to compute
the natural extensions, we now obtain E(A) = 0.3955 and E(A) = 0.4945. Al-
though the 10 extra assessments are quite imprecise, they substantially reduce
the interval [E(A), E(A)]. Again the LP algorithms were not really needed
here: because of the simple structure of the events involved, the natural ex-
tensions could have been calculated through the simple formulae E(A) =∑27

i=1 P (A|Ci)P (Ci) and E(A) =
∑27

i=1 P (A|Ci)P (Ci).

Example 10 Consider the six assessments of precise unconditional probabili-
ties that were given in Example 1. Using Algorithm 3 or 4, we can compute the
natural extensions to any conditional or unconditional events. For example,
we obtain the natural extensions E(A3) = 0.4 and E(A3) = 0.8 concern-
ing A3, and E(A4|A3) = 0.375 and E(A4|A3) = 0.75 concerning A4|A3.
By Lemma 7, all these values can be computed by setting ε = 0 in Algorithm
3, because in each case the conditioning event has positive lower probability.
Further examples, including natural extensions which cannot be obtained by
setting ε = 0, are given in Example 12.

3.6 Continuity of µ∗ at zero

When the function µ∗ is right-continuous at 0, the natural extension is given
by E(A|B) = µ∗(0), which can be found by setting ε = 0 in (8) and solving the
linear program. Continuity of µ∗ at 0 therefore simplifies the computational
problem. First we give an example to show that µ∗ can be discontinuous at 0,
so that the problem cannot always be simplified in this way.

Example 11 Suppose that the only assessment is P (Bc|Ac) = 1, where ∅ ⊂
A ⊂ B ⊂ Ω, and we wish to compute E(A|B). To do so we find µ∗(ε), which,
by (8), is the maximum value of µ such that B(A−µ) ≥ λ(G+εAc) for some
λ ≥ 0, where G = Ac(Bc − 1). By considering the values on Bc, B ∩ Ac and

28

A, we obtain the three inequalities:

0 ≥ λε, −µ ≥ λ(−1 + ε), 1− µ ≥ 0. (13)

Because λ ≥ 0 and ε > 0, the first inequality gives λ = 0 and then the second
inequality gives µ ≤ 0. Hence we obtain µ∗(ε) = 0 for all ε > 0, giving the
natural extension E(A|B) = 0. The assessment is completely uninformative
about P (A|B).

But setting ε = 0 in (13) gives µ ≤ λ and µ ≤ 1, and hence µ∗(0) = 1. Thus
the function µ∗ has a large discontinuity at 0.

Next we give sufficient conditions for µ∗ to be right-continuous at 0. (Note
that we cannot simply apply the sufficient conditions given in the operations
research literature [1] for continuity of the maximum µ∗, because the optimal-
ity region and feasible region for our problem (in the variables µ and λ) are
not always bounded.) The following results show that right-continuity at 0 de-
pends essentially on the new conditioning event B having positive probability
conditional on (∪k

i=1Bi ∪ B). In many problems, ∪k
i=1Bi ∪ B = Ω, and then

the results require that B has positive unconditional (lower) probability.

Lemma 7 Assume that the assessments AUL. Then a sufficient condition for
E(A|B) = µ∗(0), i.e., for right-continuity of µ∗ at 0, is that E(B| ∪k

i=1 Bi ∪
B) > 0. Hence it is sufficient that E(B) > 0.

PROOF. Let γ = µ∗(0). First assume that γ is finite. In that case the supre-
mum γ is achieved, and hence there is ρ ≥ 0 such that B(A−γ) ≥ ∑

i∈I ρiGi.
Assuming that E(B| ∪k

i=1 Bi ∪ B) > 0, there is λ ≥ 0 and τ > 0 such that
B−τ(∪k

i=1Bi∪B) ≥ ∑
i∈I λiGi. Given any δ > 0, let ε = k−1δτ/max {ρi+δλi :

i = 1, . . . , k}, so ε > 0. Then B(A−γ +δ) ≥ ∑
i∈I(ρi +δλi)Gi +δτ(∪k

i=1Bi) ≥∑
i∈I(ρi + δλi)(Gi + εBi). (This holds also if all values of ρi and λi are zero,

since then the last term is zero for all ε > 0.) By definition of the natural
extension, E(A|B) ≥ γ − δ. Since δ is arbitrarily small, E(A|B) ≥ γ, and it
follows that E(A|B) = γ = µ∗(0) since always E(A|B) ≤ µ∗(0). Thus µ∗ is
right-continuous at zero. The same argument shows that µ∗(0) must be finite,
because otherwise γ can be chosen to be arbitrarily large and then E(A|B) ≥ γ
contradicts E(A|B) ≤ 1. The second statement in the lemma follows from the
coherence property E(B| ∪k

i=1 Bi ∪B) ≥ E(B|Ω) = E(B). ♦

Alternatively, Lemma 7 can be derived from the necessary and sufficient condi-
tion for continuity of µ∗ at 0 that is stated in subsection 3.7. Compare the suf-
ficient condition in Lemma 7 with the weaker condition E(B| ∪k

i=1Bi∪B) > 0,
which is necessary for continuity of µ∗ at 0 (assuming that the assessments

29

AUL). In fact, if this condition fails then µ∗(0) = ∞. (That is easy to verify
from the definition of natural extension.)

To check the condition in Lemma 7, we must compute a natural extension.
The following stronger condition is much easier to verify.

Corollary 1 Assume that the assessments AUL. A sufficient condition for
right-continuity of µ∗ at 0 is that B contains ∪k

i=1Bi. Hence it is sufficient
that B = Ω, i.e., that we are computing an unconditional natural extension.

It follows that, in the case B = Ω, the problem of computing the natural
extension to an unconditional lower probability E(A) requires just the single
linear program (8) with ε = 0. In this case, the natural extension is given by
the formulae E(A) = sup {µ : µ ≤ A − ∑k

i=1 λiGi, λ ≥ 0} = sup {inf [A −∑k
i=1 λiGi|Ω] : λ ≥ 0}. Several examples of such computations have been given

in subsection 3.5.

Assuming that the assessments AUL, it can be shown that a necessary and
sufficient condition for µ∗ to be right-continuous at zero is that, if we add the
extra precise assessment P (A|B) = E(A|B) to the k given assessments, the
natural extension of these k + 1 assessments satisfies E(B| ∪k

i=1 Bi ∪B) > 0.
An equivalent condition is that there is ε > 0 such that adding the extra
assessment P (B| ∪k

i=1 Bi ∪B) = ε to the given assessments does not increase
the natural extension E(A|B). However, these conditions are relatively difficult
to verify.

In the special case where the assessments AUL and a precise probability
P (B|∪k

i=1 Bi∪B) is assessed, or is precisely determined by the assessments, it
is necessary and sufficient for right-continuity of µ∗ at 0 that this probability
is positive. In this case, again we can set ε = 0 in the linear program (8).

Example 12 Consider again the six assessments in Example 1. Here we
investigate the continuity of µ∗ at zero, for three events of interest: A =
(A1 ∩ A2)

c, B = (A1 ∩ A2) ∪ (Ac
1 ∩ Ac

2), and the conditional event A|B. To
investigate the behaviour of µ∗, we solved the LP problem (8) for several val-
ues of ε, including zero. The results are reported in Table 3.

First consider the results for A. The second column of the table shows that
E(A) = 1 and that µ∗ is continuous at zero, which is as expected from the
preceding results since this is an unconditional natural extension. The values of
µ∗(ε) for small ε are very good approximations to E(A). The result E(A) = 1
implies that E(A1∩A2) = 0, hence every coherent extension of the assessments
must give precise probability zero to A1 ∩ A2.

The third column of the table shows that E(B) = 0 and again, because we
are computing an unconditional natural extension, µ∗ is continuous at zero.

30

Table 3
Values of µ∗(ε) for different values of ε in Example 1, with A = (A1 ∩ A2)c and
B = (A1 ∩A2) ∪ (Ac

1 ∩Ac
2).

A B A|B

ε = 10−1 0.8 0 0

10−2 0.98 0 0

10−3 0.998 0 0

10−4 0.9998 0 0

10−5 0.99998 0 0

10−6 0.999998 0 0

10−7 0.9999998 0 0

0 1 0 1

In both these cases it would have been sufficient to compute just µ∗(0).

The third example, concerning A|B, involves conditioning on an event of lower
probability zero. From the fourth column of Table 3, the result is E(A|B) = 0,
which means that E(A1 ∩ A2|B) = 1. Here µ∗ has a large discontinuity at 0.

3.7 The dual problem

As seen in subsection 3.6, it is useful to study the LP problem obtained from
(8) by setting ε = 0. The dual of this LP problem is closely related to the algo-
rithm of Pelessoni and Vicig [27]. To simplify the formulae in this subsection,
we consider computing the natural extension of the assessments to E(A0|B0).
Let s = ||Ω||.

By applying a general form of the duality theorem of linear programming [28,
p. 91,eq. 22], the dual problem is

minimize
s∑

j=1

xjA0(ωj)B0(ωj) (14)

subject to
s∑

j=1

Bi(ωj) [Ai(ωj)− P (Ai|Bi)] xj ≥ 0 (i = 1, . . . , k) (15)

s∑
j=1

B0(ωj)xj = 1 (16)

and xj ≥ 0 (j = 1, . . . , s). (17)

31

Every vector (x1, . . . , xs) in the feasible region of this LP problem is propor-
tional to a conditional probability distribution P , and xj = P (ωj|

⋃k
i=0 Bi)/

P (B0|
⋃k

i=0 Bi) (j = 1, . . . , s). Using this fact, the inequalities (15) impose
the dominance conditions P (Ai|Bi) ≥ P (Ai|Bi) (i = 1, . . . , k), while (16)
implies that P (B0|

⋃k
i=0 Bi) > 0. The feasible region of the problem iden-

tifies the set M of probability distributions dominating P and such that
P (B0|

⋃k
i=0 Bi) > 0. It also follows that the objective function in (14), which

is minimized over all P ∈ M, is equal to P (A0|B0). (See [27] for details and
also for the sequel. In [27] it is assumed that A0|B0 is included in the set
of conditional events for which assessments are made, but this assumption
is not restrictive because, if it is not satisfied, we can add an uninformative
assessment P (A0|B0) = 0 without changing the problem.)

By the well-known strong duality theorem, if the LP problem (14–17) is feasi-
ble then its optimal value and that of its primal problem are equal. Hence, the
following characterization of continuity of µ∗ at zero follows: µ∗ is continuous
at zero if and only if there exists a probability distribution P ≥ P such that
P (B0|

⋃k
i=0 Bi) > 0 and P (A0|B0) = E(A0|B0).

When problem (14–17) is infeasible, it follows from the meaning of the fea-
sible region and from property 3.2(f) that P (B0|

⋃k
i=0 Bi) = 0. Conversely,

if P (B0|
⋃k

i=0 Bi) = 0 for every P ≥ P , then M is empty. It follows from
duality theory that the primal problem (which is always feasible) must be
upper unbounded, which means that µ∗(0) = +∞. We therefore obtain the
characterization of unboundedness of µ∗ at zero that was given in section 3.4.

Finding a solution of problem (14–17) is the final step in the Pelessoni-Vicig
algorithm [27] if and only if all probability distributions P that dominate P
have P (B0|

⋃k
i=0 Bi) > 0. (This condition is checked in the algorithm through

a LP problem.) If not, a finite sequence of LP problems finds the exact value
for E(A0|B0). The latter alternative happens also in instances when µ∗ is
continuous at zero. In all cases, the number of LP problems that need to be
solved in Algorithm 4 is less than or equal to the number required in the
Pelessoni-Vicig algorithm.

3.8 Checking coherence of imprecise probability assessments

By 3.2(d), the lower probability assessments P (Ai|Bi) = ci (i = 1, . . . , k) are
coherent if and only if E(Ai|Bi) = ci for i = 1, . . . , k. To check coherence
of the assessments, it therefore suffices to compute the natural extensions
E(Ai|Bi) (i = 1, . . . , k). This involves k problems of the form (8), one for each
assessment. Using Algorithm 3, it requires solving k linear programs.

This method of checking coherence can be simplified slightly, using result

32

3.2(c) that E(Ai|Bi) ≥ P (Ai|Bi) for i = 1, . . . , k. Hence it suffices to check
that E(Ai|Bi) ≤ ci for i = 1, . . . , k. Using the definition of natural extension,
this is true if and only if the system of inequalities ε > 0, λ ≥ 0 and
Gj − εBj ≥

∑k
i=1 λi(Gi + εBi) has no solution (ε, λ), for each j = 1, . . . , k.

Again this can be determined in practice by k applications of Algorithm 3.

If the assessments include both precise and imprecise (lower probability) as-
sessments, to check coherence of the whole system it suffices to check AUL
of the system and to check that E(Ai|Bi) ≤ P (Ai|Bi) for each of the lower
probability assessments.

Example 13 Consider the assessments for the football example given in Ta-
bles 1 and 2, which are equivalent to a system of 64 lower probability assess-
ments. To check the coherence of this system, (a) we used Algorithm 1 to
verify that the assessments AUL, and (b) we used Algorithm 3 to compute the
natural extensions E(A|Ci) and E(Ac|Ci) corresponding to each of the lower
and upper probabilities in Table 2. For (b), in each application of Algorithm 3
we can set ε = 0, since we know from Table 1 that each conditioning event Ci

has positive probability. We cannot set ε = 0 in step (a), because precise prob-
ability assessments are involved and therefore problem (1) has solutions for
ε = 0 (see the comments following Example 4). We find that all the natural
extensions agree with the corresponding upper or lower probabilities in Table
2, and therefore the 64 assessments are coherent.

If the assessments AUL then their natural extensions {E(Ai|Bi) : i = 1, . . . , k}
are always coherent. If the assessments AUL but they are not coherent then
their natural extensions can be regarded as coherent ‘corrections’ of the as-
sessments, in the sense that at least one lower probability assessment must
be increased (or an upper probability decreased) to achieve coherence. In fact
the natural extensions are produced by making the minimal corrections of this
type that achieve coherence.

Example 14 Consider the 10 assessments of conditional upper and lower
probabilities for the football example, given in Table 2, plus one further assess-
ment that P (A|B) = 0.625, where A and B are defined in Example 7. We
can check that the 11 assessments AUL, by using Algorithm 1 or checking that
(1) has no solution for ε = 0. But we find, using Algorithm 3 or 4, that the
natural extension E(A|(L, W, L)) is 0.625, which differs from the assessment
P (A|(L, W, L)) = 1. Thus the 11 assessments are incoherent. Reducing the
assessment to P (A|(L, W, L)) = 0.625 does achieve coherence.

Another way of achieving coherence in this example is to increase the assess-
ment of P (A|B) slightly, from 0.625 to 0.65. It can be verified, using the same
procedure, that these 11 assessments are coherent. In particular, we now ob-
tain E(A|(L, W, L)) = P (A|(L, W, L)) = 1. Here E(A|(L, W, L)) is computed

33

via E(Ac|(L, W, L)), which produces another example of a function µ∗ that is
discontinuous at zero.

3.9 Theoretical approaches to the computational problem

The problem (8) is a LP parametric problem in the scalar parameter ε. For-
mally, it is a special case of the following parametric linear program

maximise cTx (18)

subject to H(ε)x ≤ b (19)

where each element of the matrix H is function of the scalar parameter ε
(typically a linear or polynomial function). Let us call this problem P(ε), and
let f(ε) be the optimum value of P(ε) as a function of ε. Problem P(ε) is
usually hard to solve (see [11] for a review, and also [12]).

Much of the work in the literature has focused on the problem of the continu-
ity of f(ε), and several sufficient conditions have been proposed [1,23,36]. A
customary requirement for them is that the optimality region or the feasible
region of the problem is bounded. These conditions do not always hold in our
case, as shown in the following example.

Example 15 Suppose that assessments are given for Ai|Bi (i = 1, . . . , k) and
that

⋃k
i=1 Bi ⊂ Ac. Then, the inequalities in (8) become

∑k
i=1 λi(Gi + εBi) ≤ 0

when B = 0,
∑k

i=1 λi(Gi + εBi) ≤ −µ when B = 1 and A = 0,
∑k

i=1 λi(Gi +
εBi) ≤ 1 − µ when AB = 1. Observing that the third inequality reduces to
µ ≤ 1 and that µ ≥ 0, it is easily seen that if (µ, λ1, . . . , λ2) is an optimal
solution of (8), then so is (µ, tλ1, . . . , tλ2), for all t > 1.

Some of the sufficient conditions for the continuity of the optimal value have
some probabilistic meaning when applied to our problem and this helps in
showing that they may be too weak in our framework. For instance, it can be
checked that the conditions given in [36] imply but are more restrictive than
the condition P (B|⋃k

i=1 Bi ∪ B) > 0, which in turn is sufficient to solve the
natural extension problem in one step by means of the algorithm proposed in
[27].

Another way of tackling a parametric linear programming problem is the sen-
sitivity analysis approach: given a solution of the problem for a given ε, to
which corresponds an optimal basis β in the simplex method, the critical re-
gion Rβ = {ε : β is an optimal basis for P(ε)} is defined. It has been shown
in [7,10,11,35] that

34

Proposition 1 For each optimal basis β, Rβ is a finite union of intervals;
further, if ε is an interior point of Rβ, f is continuous at ε.

Corollary 2 The number of points of discontinuity of f is finite.

A procedure for determining all Rβ is given in [35], for the case, which includes
our problem, where the matrix H is a polynomial function of ε. It requires
employing symbolic computations and finding the real roots of polynomials of
possibly high degrees, roots which form the elements of the set E =

⋃
β Eβ,

where Eβ is the set of the endpoints of the intervals in Rβ and the union is
over all the optimal bases β.

An alternative method is suggested in [10] to detect whether a given value
of ε belongs to E. This could be applied to ε = 0, but the computational
burden remains anyway high, and further, even if ε belongs to E this does not
necessarily imply that the optimal value is discontinuous at ε. For instance, ε
might belong to Eβ for some optimal basis β, being an interior point of the
critical region for some other optimal basis.

This survey suggests that the method for solving our problem outlined in 3.4
seems to be a good compromise amongst theoretical needs, practical viability
and precision of the results obtained.

4 Conclusions

We have described several direct algorithms for checking consistency of condi-
tional probability or lower probability assessments and for making inferences
from them. The algorithms are quite general, but there is scope for further
generalization in the following respects.

(a) From probabilities to previsions: Instead of assuming that conditional
lower probabilities P (Ai|Bi) are assessed, we can allow any assessments of
conditional lower previsions P (Xi|Bi), where Xi is a simple random variable
(one which has only finitely many possible values). This formulation is more
general, because the lower probability of an event A can be identified with
the lower prevision of its indicator function. Similarly we may need to calcu-
late the natural extension of the assessments to a lower prevision E(X|B).
In fact, it follows from results in [31] that this more general problem can be
solved by the methods described in this paper: the definitions of AUL and
natural extension can be generalized from events to simple random variables
by replacing Ai by Xi in (1) and (6), and replacing A by X in (6) [33].

(b) Independence judgements: The algorithms need to be generalized to
allow judgements of independence or conditional independence [31,32], as

35

well as conditional probability assessments. We are currently investigating
algorithms of this kind.

(c) Infinitely many assessments: We may want to allow infinitely many
assessments of conditional lower probabilities or previsions. This introduces
new complications because the definitions of AUL and natural extension
should be generalized to include conglomerative conditions [31].

(d) Very large LP problems: When the number of assessments is large, the
possibility space Ω that they generate (as outlined in subsection 1.3) may
be so large that the LP problems become intractable. In such cases, it may
be useful to combine our algorithms with ‘row generation’ methods which
are dual to the column generation methods in [20], to enable us to solve the
LP problems without specifying Ω explicitly.

Acknowledgements

Peter Walley wishes to thank Dipartimento di Matematica Applicata ‘B. de
Finetti’, Università di Trieste, for supporting a visit to Trieste in 1998, when
most of this research was carried out, and also FAPESP and Escola Politécnica,
Universidade de São Paulo, for support in the later stages of this project.

References

[1] B. Bereanu, The continuity of the optimum in parametric programming and
application to stochastic programming, Journal of Optimization Theory and
Applications, 18 (1976) 319–333.

[2] G. Boole, An Investigation of the Laws of Thought, on which are Founded the
Mathematical Theories of Logic and Probabilities (Macmillan, London, 1854).
Reprinted in 1958 by Dover, New York.

[3] G. Boole, On the conditions by which solutions of questions in the theory
of probabilities are limited, The London, Edinburgh and Dublin Philosophical
Magazine and Journal of Science 4 (8) (1854) 91–98.

[4] G. Bruno and A. Gilio, Applicazione del metodo del simplesso al teorema
fondamentale per le probabilità nella concezione soggettiva, Statistica 40 (1980)
337–344.

[5] G. Coletti, Coherent numerical and ordinal probabilistic assessments, IEEE
Transactions on Systems, Man and Cybernetics 24 (1994) 1747–1754.

[6] G. Coletti and R. Scozzafava, Characterization of coherent conditional
probabilities as a tool for their assessment and extension, International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 4 (1996) 103–127.

36

[7] W. Dinkelbach, Sensitivitätsanalysen und Parametrische Programmierung
(Springer-Verlag, Berlin, 1969).

[8] B. de Finetti, Problemi determinati e indeterminati nel calcolo delle probabilità,
Rendiconti Reale Accademia dei Lincei 6 (1930) 367–373.

[9] B. de Finetti, Theory of Probability, Volume 1 (Wiley, London, 1974).

[10] R. M. Freund, Postoptimal analysis of a linear program under simultaneous
changes in matrix coefficients, Mathematical Programming Study 24 (1985) 1–
13.

[11] T. Gal, Linear parametric programming - a brief survey, Mathematical
Programming Study 21 (1984) 43–68.

[12] T. Gal, Postoptimal Analyses, Parametric Programming and Related Topics (de
Gruyter, Berlin, 1995).

[13] A. Gilio, Algorithms for precise and imprecise conditional probability
assessments, in: G. Coletti, D. Dubois and R. Scozzafava, eds., Mathematical
Models for Handling Partial Knowledge in Artificial Intelligence (Plenum Press,
New York, 1995) 231–254.

[14] A. Gilio, Algorithms for conditional probability assessments, in: D.A. Berry,
K.M. Chaloner and J.K. Geweke, eds., Bayesian Statistics and Econometrics
(Wiley, New York, 1996) 29–39.

[15] T. Hailperin, Best possible inequalities for the probability of a logical function
of events, American Mathematical Monthly 72 (1965) 343–359.

[16] T. Hailperin, Boole’s Logic and Probability, second enlarged edition. Studies
in Logic and the Foundations of Mathematics 85 (North-Holland, Amsterdam,
1986).

[17] P. Hansen and B. Jaumard, Probabilistic satisfiability, Technical Report G-96-
31, Les Cahiers du GERAD, Montréal (1996).

[18] P. Hansen, B. Jaumard and M. Poggi de Aragão, Boole’s conditions of possible
experience and reasoning under uncertainty, Discrete Applied Mathematics 60
(1995) 181–193.

[19] S. Holzer, On coherence and conditional prevision, Boll. Un. Mat. Ital. Serie
VI (IV-C) (1985) 441–460.

[20] B. Jaumard, P. Hansen and M. Poggi de Aragão, Column generation methods
for probabilistic logic, ORSA Journal on Computing 3 (1991) 135–148.

[21] F. Lad, Operational Subjective Statistical Methods (Wiley, New York, 1996).

[22] F. Lad, J. M. Dickey and M. A. Rahman, The fundamental theorem of prevision,
Statistica 50 (1990) 19–38.

[23] D. H. Martin, On the continuity of the maximum in parametric linear
programming, Journal of Optimization Theory and Applications 17 (1975) 205–
210.

37

[24] N. J. Nilsson, Probabilistic logic, Artificial Intelligence 28 (1986) 71–87.

[25] N. J. Nilsson, Probabilistic logic revisited, Artificial Intelligence 59 (1993) 39–
42.

[26] G. Paass, Probabilistic logic, in: P. Smets, A. Mamdani, D. Dubois and H.
Prade, eds., Non-Standard Logics for Automated Reasoning (Academic Press,
London, 1988) 213–251.

[27] R. Pelessoni and P. Vicig, A consistency problem for imprecise conditional
probability assessments, in: Proceedings of IPMU’98 (E.D.K., Paris, 1998) 2,
1478–1485.

[28] A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York,
1986).

[29] P. Vicig, An algorithm for imprecise conditional probability assessments in
expert systems, in: Proceedings of IPMU’96 (Proyecto Sur de Ediciones,
Granada, 1996) 1, 61–66.

[30] P. Vicig, Upper and lower bounds for coherent extensions of conditional
probabilities given on finite sets, Quad. n.7/97, Dip. Mat. Appl. ‘B. de Finetti’,
Univ. di Trieste (1997).

[31] P. Walley, Statistical Reasoning with Imprecise Probabilities (Chapman and
Hall, London, 1991).

[32] P. Walley, Measures of uncertainty in expert systems, Artificial Intelligence 83
(1996) 1–58.

[33] P. Walley, Coherent upper and lower previsions, The Imprecise Probabilities
Project (1997) http://ensmain.rug.ac.be/∼ipp/documentation/

[34] P. Walley, An introduction to the theory of natural extension, unpublished
manuscript (1998).

[35] E. Weickenmeier, Zur Lösung parametrischer linearer Programme mit
polinomischen Parameterfunktionen, Zeitschrift für Operation Research 22
(1978) 131–149.

[36] A. C. Williams, Marginal values in linear programming, J. Soc. Indust. Appl.
Math. 11 (1963) 82–94.

[37] P. M. Williams, Notes on conditional previsions, Research Report, School of
Math. and Phys. Science, University of Sussex (1975).

38

