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Abstract

Because of their simplicity, risk measures are
often employed in financial risk evaluations
and related decisions. In fact, the risk mea-
sure ρ(X) of a random variable X is a real
number customarily determining the amount
of money needed to face the potential losses
X might cause. At a sort of second-order
level, the adequacy of ρ(X) may be inves-
tigated considering the part of the losses it
does not cover (its shortfall). This may sug-
gest employing a further, more prudential
risk measure, taking the shortfall of ρ(X) into
account. In this paper a family of shortfall-
dependant risk measures is proposed, inves-
tigating its consistency properties and its
utilization in insurance pricing. These re-
sults are obtained and subsequently extended
within the framework of imprecise previsions,
of which risk measures are an instance. This
also leads us to investigate properties of a
rather weak consistency notion for imprecise
previsions, termed 1–convexity.

Keywords: Risk Measures, Imprecise Pre-
visions, Shortfall.

1 Introduction

Risk measures are an important and widely studied
tool in the field of financial evaluations and decisions.
In spite of their significant relationships with other un-
certainty theories, in particular with precise and im-
precise previsions [2, 14], steps towards bridging the
gap and enabling cross-fertilization between these re-
search areas have been taken only relatively recently
(see for instance [8, 9, 13]). In this paper we contribute
to this effort with focus on shortfall-dependant risk
measures, and, in particular, on the so-called Dutch
risk measures.

To give a quick idea of the whole context, we first recall
that, among its interpretations, the risk measure ρ(X)
of a random variable X supplies a real number deter-
mining how much money should be reserved to face po-
tential losses arising from X . Several kinds of consis-
tency requirements have been considered in the litera-
ture in order to ensure that ρ(X) is “sound” (in some
sense). Defining (and satisfying) these requirements is
particularly important (and not so obvious) when the
domain of a risk measure is a set of random quanti-
ties. Consistency requirements, in general, allow more
alternative risk measures. Selecting a specific measure
is, in a sense, arbitrary and may reflect the risk atti-
tude or other subjective features of the agent evaluat-
ing the risk. For instance, a coherent but extremely
cautious choice for ρ(X) is ρ(X) = − inf X . Clearly,
this is questionable from another point of view, since
it is likely to reserve an excessive amount of money.
For this reason, it is rather common (and reasonable)
that the chosen risk measure does not entirely cover
all potential losses.

The amount of losses not covered by a risk measure is
called its shortfall. Given a random variable X and a
risk measure ρ, the shortfall is a non-negative random
variable which is a function of X and ρ(X) and quan-
tifies the possible losses exceeding ρ(X). Given a risk
measure, a derived risk measure can then be defined
which depends on the original one by taking account
of its shortfall in some way. Examples of motivations
for defining this kind of “second-order” risk measure
(which can be regarded as an adjustment of the first
one) will be better discussed in Section 3.3. A signifi-
cant class of shortfall-dependant risk measures is rep-
resented by Dutch risk measures, which can be given a
practically important interpretation in the domain of
insurance pricing.

This paper provides some new definitions and results
concerning shortfall-dependant risk measures and pre-
visions and their consistency properties.

After recalling basic concepts and results about pre-



visions and risk measures in Section 2, we define in
Section 3 a generalized family of Dutch risk measures,
relate it to a family of lower previsions and inves-
tigate its consistency properties. In particular, we
show that this family of measures preserves the consis-
tency property of coherence (alternatively convexity)
provided that the original measure and the measure
evaluating its shortfall satisfy it. In insurance pricing,
generalized Dutch risk measures allow (unlike previous
proposals) certain premium policies (double loading),
while preserving the above mentioned properties; this
is discussed in Section 3.3. In Section 4 we provide a
result concerning the ability of “Dutch-like” imprecise
previsions to preserve the weaker consistency property
of 1-convexity. In this context, we also explore some
properties of 1-convexity, including its close relation-
ships with the notions of capacity and niveloid.

2 Preliminaries

2.1 Precise and imprecise previsions

Let D be an arbitrary (non-empty) set of bounded ran-
dom variables (unbounded variables will not be consid-
ered in this paper). We shall use the term prevision to
denote a mapping P : D → R which is understood to
be, unless otherwise stated, a coherent (precise) previ-
sion in the sense of de Finetti [2]. As well known, this
means that P satisfies a certain no-arbitrage condi-
tion in an idealized betting scheme. For each X ∈ D,
P (X) “summarizes” X , also meaning that whenever
an expectation E(X) is given, P (X) = E(X).

In many practical situations it may be more appropri-
ate to assess an imprecise evaluation on each X ∈ D:
a lower (P ) or an upper (P ) prevision. A precise
prevision, coherent or not, corresponds to the special
case P (X) = P (X) = P (X), ∀X ∈ D. The upper
(lower) prevision P (X) (P (X)) for X has been given
in [14] the meaning of infimum selling price (supremum
buying price) for X ; this interpretation is relevant
also in relating imprecise previsions and risk measures
[8]. Consistency requirements for imprecise previsions
were proposed in [9, 14] by modifying de Finetti’s bet-
ting scheme. In all instances, it is sufficient to refer
to either lower or upper previsions only (on D or on
D− = {X : −X ∈ D}, respectively) because of the
conjugacy equality

P (X) = −P (−X). (1)

In particular, coherent lower previsions may be defined
as follows [14]:

Definition 1 P is a coherent lower prevision on D iff
∀n ∈ N

+, ∀X0, . . . , Xn ∈ D, ∀s0, . . . , sn ≥ 0, defining

G =
∑n

i=1 si(Xi − P (Xi)) − s0(X0 − P (X0)), it holds
that sup G ≥ 0.

The weaker notion of lower prevision that avoids sure
loss [14] may be regarded as a minimal consistency
requirement. The concept of centered convex (or C-
convex ) lower prevision was introduced in [9], and is
somewhat intermediate between those of lower previ-
sion that is coherent and that avoids sure loss. The
definition of the still weaker notion of convexity is ob-
tained from Definition 1 by adding there the constraint∑n

i=1 si = s0.

Definition 2 P is a convex lower prevision on D iff
∀n ∈ N

+, ∀X0, . . . , Xn ∈ D, ∀s0, . . . , sn ≥ 0 such that∑n
i=1 si = s0, defining G =

∑n
i=1 si(Xi − P (Xi)) −

s0(X0 − P (X0)), it holds that sup G ≥ 0.

A convex lower prevision such that (0 ∈ D and)
P (0) = 0 is C-convex.

Recalling that, given an event A, its lower probability
P (A) is interpreted as the lower prevision of the in-
dicator function of A, the extra assumption P (0) = 0
is quite natural: P (0) represents just the lower uncer-
tainty evaluation we would assign to the impossible
event ∅.
Referring to [2, 9, 14] for a detailed study of the notions
presented in this subsection, we recall now some results
for later use:

Proposition 1 Let µ : D → R.

a) Let µ be a prevision (alternatively, a coher-
ent, convex or C-convex lower prevision). Whatever
is D′ ⊃ D, there exists an extension of µ on D′ which
is a prevision (alternatively, which is a coherent,
convex or C-convex lower prevision, respectively).

b) When D is a linear space, µ is a coherent
lower prevision on D iff:

b1) µ(X) ≥ inf X, ∀X ∈ D

b2) µ(λX) = λµ(X), ∀X ∈ D, λ > 0

b3) µ(X + Y ) ≥ µ(X) + µ(Y ), ∀X, Y ∈ D

c) When D is a linear space containing real constants,
µ is a convex lower prevision on D iff:

c1) µ(X +k) = µ(X)+k, ∀X ∈ D, ∀k ∈ R (trans-
lation invariance)

c2) ∀X, Y ∈ D, if X ≤ Y then µ(X) ≤ µ(Y )
(monotonicity)

c3) µ(λX + (1 − λ)Y ) ≥ λµ(X) + (1 − λ)µ(Y ),
∀X, Y ∈ D, ∀λ ∈ [0, 1] (concavity)

d) If µ1 and µ2 are both coherent (alternatively, convex
or C-convex) lower previsions then µ = λµ1+(1−λ)µ2,



λ ∈ [0, 1] is a coherent (alternatively, convex or C-
convex) lower prevision.

It ensues from Proposition 1 that the conditions in c),
in particular c1) and c2), are necessary for convexity
of a lower prevision P even when D is not a linear
space but the relevant quantities are well-defined. In
fact, if P is convex it allows for a convex extension on
a linear space L ⊃ D where c1) and c2) must hold.
Since coherence implies convexity, c1) and c2) hold
for coherent lower previsions, and for previsions too.
It can be shown that b1) (but generally not b2), nor
b3)) holds for any C-convex P . Precise previsions are
linear: P (X +Y ) = P (X)+P (Y ) whenever X, Y, X +
Y ∈ D. Using (1), the results of Proposition 1 can
be easily restated in their specular version for upper
previsions.

Coherent imprecise previsions are characterized as en-
velopes of (precise) previsions, by means of envelope
theorems [14]. We recall the result for coherent upper
previsions:

Proposition 2 Let P : D → R, M = {P :
P (X) ≤ P (X), ∀X ∈ D, P is a prevision on D}.
Then P is a coherent upper prevision on D iff P (X) =
maxP∈M{P (X)}, ∀X ∈ D.

Generalizations of Proposition 2 characterize similarly
convex and C-convex previsions [9].

2.2 Risk measures

The risk measure ρ(X) of a random variable X is a
real number measuring how “risky” X is. Usually X
is the future value, in some currency, of a financial
asset and ρ(X) corresponds to the amount of money
to be reserved to cover losses potentially arising from
(negative values of) X . When ρ(X) < 0, this means
that we could add ρ(X) to X , i.e. subtract |ρ(X)|
from X , keeping the resulting X − |ρ(X)| desirable
(no reserving is believed to be necessary to cover risks
from X−|ρ(X)|). A risk measure ρ on D is thus a real
map ρ : D → R. A risk measure is a relatively simple
tool to take basic financial decisions, and this explains
the popularity of such instruments in risk theory and
practice. Hence risk measures have been extensively
studied, but their relationship with other uncertainty
theories was mostly overlooked. It was shown in [8]
that the risk measure ρ(X) can be interpreted as an
upper prevision for −X , being the infimum price one
would ask to shoulder X , or to sell −X . Because of
this and (1), the following fundamental equality holds

ρ(X) = P (−X) = −P (X) (2)

This equality lets us transfer results from risk mea-
sures to upper or lower previsions or vice versa. In

Section 3 most statements are given for risk measures,
but proven in their corresponding version for lower pre-
visions, following the prevailing custom in the relevant
literature. Given equation (2), the consistency notions
of coherence, convexity and C-convexity are easily re-
worded for risk measures [8, 9]. Thus, for instance:

Definition 3 ρ : D → R is a coherent risk measure
on D iff ∀n ∈ N

+, ∀X0, . . . , Xn ∈ D, ∀s0, . . . , sn ≥ 0,
defining Gρ =

∑n
i=1 si(Xi + ρ(Xi))− s0(X0 + ρ(X0)),

it holds that sup Gρ ≥ 0.

Definition 3 includes as a special case the notion of
coherent risk measure defined in [1] through a set of
axioms and assuming that the domain is a linear space.
Analogously, the concept of convex risk measure [9],
obtained adding condition

∑n
i=1 si = s0 in Definition

3, generalizes to arbitrary domains a notion developed
in [5] for linear spaces only. For an overview of the
many interactions between imprecise previsions and
risk measures, see [13].

3 Shortfall-based risk measures

Whatever the risk measure ρ is, it might be inadequate
to fully cover losses. Suppose for instance we assess
a priori ρ(X) = 5 while a posteriori X assumes the
value −8: ρ covers only partly the loss arising from
X , since there remains a residual loss or shortfall of
3 in absolute value, after employing the reserve money
of 5. If instead, a posteriori, X = −2, the protection
ensured by ρ(X) = 5 is full and the shortfall assumes
the value 0.

Formally, given a random variable X and a risk mea-
sure ρ(X), the shortfall of ρ(X) is the random variable
max(−ρ(X) − X, 0).

In the following we will use the shortened nota-
tion (Y )+ � max(Y, 0) where Y is a random vari-
able. Accordingly the shortfall will be denoted as
(−ρ(X) − X)+. We will also use the dual notation
(Y )− � min(Y, 0).

In this paper we focus on risk measures which take ac-
count of the shortfall arising from a previously assessed
risk measure. More specifically, we shall generalize the
family of Dutch risk measures.

3.1 Dutch risk measures

Suppose a (precise) prevision P0 is assessed on D. We
call Dutch risk measure the measure

ρD(X) = P0(−X)+ cP1[(P0(X)−X)+], c ∈ [0, 1] (3)

where P1 is a prevision on a set D1 such that (3) is
well-defined (in particular the set D1 must include the



random variables (P0(X) − X)+, ∀X ∈ D). Since
P0(X) − X = −P0(−X) − X , (P0(X) − X)+ is the
shortfall arising from using the prevision P0 as a risk
measure for X (ρ(X) = P0(−X)). It is intuitively
clear that this choice for ρ is inadequate since a risk
measure should be typically asymmetric, giving higher
weight to lower values of X . However, P0 can be taken
as a basis for building a more appropriate risk measure.
The new risk measure takes account of the former one
through prevision P1, which evaluates the size of ρ’s
shortfall. Thus P1 should typically be assessed inde-
pendently of P0, at a later stage and on a possibly
different domain D1. The measure ρD(X) is coherent:
a direct proof may be found in [13]. An earlier version
of (3), to be discussed in Section 3.3, appeared in [6]
and later in [3, 7]. The measures discussed in these
papers may be written as

ρ′D(X) = E(−X)+ cE[(dE(X)−X)+], c ∈]0, 1], d > 0
(4)

In (4), P0 and P1 are replaced by an expectation. It
was shown in [3] that if c = d = 1, ρ′D is defined on a
linear space, and the expectations are computed with
respect to a common probability measure, then ρ′D is
coherent.

A distinguishing feature of (3) with respect to (4) is
its emphasizing that the uncertainty evaluations P0

and P1 could be assessed independently, while this is
not possible in (4) if the same underlying probability is
used to compute all expectations. To highlight the rel-
evance of this distinction, let us consider the following
extreme example.

Example. Let D = {X}, X ≤ 0 and assign ρ(X) =
P0(−X) = P0(X) = 0. This is a coherent but highly
unbalanced choice: no reserve money is required in a
case where no gain is possible, whatever value X will
have. Here (P0(X) − X)+ = −X , hence using (3)
we may correct the evaluation if P1[(P0(X) − X)+] =
P1(−X) > 0. However no correction is possible if we
require that P0 = P1, D = D1, since then P1(−X) =
P0(−X) = 0.

3.2 Generalized Dutch risk measures

We introduce now a new family of risk measures, which
generalizes the risk measures in (3) in a twofold way.
First, a natural idea is to replace P0(−X) with a risk
measure ρ(X). Further, we might be unable to pre-
cisely evaluate the shortfall (−ρ(X) − X)+, therefore
P1 could be substituted by an imprecise evaluation:
given that the new risk measure, say ρc(X), should be
a prudential correction of ρ(X), an upper prevision P
seems more appropriate than a lower one. We there-
fore propose

ρc(X) = ρ(X) + cP [(−ρ(X) − X)+], c ∈ [0, 1] (5)

What are the consistency properties of ρc(X)? We
shall now prove the following proposition.

Proposition 3 Let ρ be a coherent risk measure on
D, P a coherent upper prevision on a set DU such
that (5) is well-defined . Then ρc(X) as defined by (5)
is a coherent risk measure on D.

We shall prove Proposition 3 in its corresponding ver-
sion for lower previsions which, using (2) and elemen-
tary properties of max and min, is stated as follows:

Proposition 4 Let P 1, P 2 be two coherent lower pre-
visions on D1, D2 ⊃ {Y : Y = min(X + h, k), X ∈
D1, h, k ∈ R} respectively. Then

P c(X) = P 1(X) + cP 2[(X − P 1(X))−], c ∈ [0, 1] (6)

is a coherent lower prevision on D1.

The proof relies on the following Lemma.

Lemma 1 Given P 1, P 2 as in Proposition 4,

P ∗(X) = P 2[min(X, P 1(X))] (7)

is a coherent lower prevision on D1.

Proof. By Proposition 1,a), there exist coherent lower
previsions extending, respectively, P 1 and P 2 on some
linear space L ⊃ D1 ∪ D2. Using such extensions and
(7), P ∗ may be extended on L too. Consider one such
extension (also named P ∗): if it is coherent on L, its
restriction on D1 (our starting P ∗) is coherent too.

Coherence of P ∗ on L may be proved by checking the
axioms in Proposition 1,b). Recall for this that (the
extensions of) P 1 and P 2, being coherent on L, satisfy
all axioms listed in Proposition 1, b) and c).

To check b1) for P ∗, we apply b1) to P 1, c2) to P 2

and property P 2(k) = k, ∀k ∈ R ([14], sec. 2.6.1,(b)).
Then P ∗(X) = P 2[min(X, P 1(X))] ≥
P 2[min(X, inf X)] = P 2(inf X) = inf X .

To check b2) for P ∗, apply b2) to P 1, P 2: P ∗(λX) =
P 2[min(λX, P 1(λX))] = P 2[λmin(X, P 1(X))] =
λP ∗(X), ∀λ > 0.

Finally we check b3) for P ∗, using b3), c2) and prop-
erty

min(a + b, c + d) ≥ min(a, c) + min(b, d). (8)

Then, P ∗(X + Y ) = P 2[min(X + Y, P 1(X +
Y ))] ≥ P 2[min(X + Y, P 1(X) + P 1(Y ))] ≥
P 2[min(X, P 1(X))] + P 2[min(Y, P 1(Y ))] = P ∗(X) +
P ∗(Y ). �

Proof of Proposition 4. Using, at the second equal-
ity, c1) (with k = P 1(X)) and property min(f, 0)+k =



min(f + k, k), we can write (6) as follows:
P c(X) = (1 − c)P 1(X) + cP 1(X) + cP 2[(X −
P 1(X))−] = (1 − c)P 1(X) + cP 2[(X − P 1(X))− +
P 1(X)] = (1 − c)P 1(X) + cP 2[min(X, P 1(X))] =
(1 − c)P 1(X) + cP ∗(X). Hence P c is coherent, by
Proposition 1,d). �

The result in Proposition 3 can be further generalized
to the case of convex or C-convex ρ and P .

Proposition 5 Let ρ be a convex risk measure on D,
P a convex upper prevision on D1. Then ρc(X) defined
by (5) is a convex risk measure. If ρ and P are C-
convex, ρc(X) is C-convex too.

Proof. The proof resembles that of Proposition 3: we
prove that if P 1 and P 2 are convex P c(X) in (6) is
convex too, by preliminarily proving that P ∗(X) in
(7) is convex. Much like the proof of Lemma 1, we
can check convexity of an extension of P ∗ on a linear
space containing real constants L ⊃ D1 ∪ D2. This
is tantamount to verifying the axioms in Proposition
1,c) for the extended P ∗.

As for c1), we get P ∗(X +k) = P 2[min(X +k, P 1(X +
k))] = P 2[min(X, P 1(X)) + k] = P ∗(X) + k.

To prove c2), let X ≤ Y . Then P 1(X) ≤
P 1(Y ), min(X, P 1(X)) ≤ min(Y, P 1(Y )) and c2)
follows from monotonicity of P 2, which implies
P 2[min(X, P 1(X))] ≤ P 2[min(Y, P 1(Y ))].

To prove c3), apply: c3) itself, properties of min
(including (8)) and c2), getting: P ∗(λX + (1 −
λ)Y ) = P 2[min(λX +(1−λ)Y, P 1(λX +(1−λ)Y ))] ≥
P 2[min(λX + (1 − λ)Y, λP 1(X) + (1 − λ)P 1(Y ))] ≥
P 2[λmin(X, P 1(X)) + (1 − λ)min(Y, P 1(Y ))] ≥
λP ∗(X) + (1 − λ)P ∗(Y ).

Having thus established that P ∗ is convex, we write,
as in the proof of Proposition 4,

P c(X) = (1 − c)P 1(X) + cP ∗(X). (9)

We can do this because the only property of impre-
cise previsions exploited in the derivation of (9) is c1),
which holds for convex lower previsions too. From (9),
convexity of P c is immediate using Proposition 1,d).
Finally, it is trivial to see that if P 1 and P 2 are C-
convex then P c(0) = 0. �

3.3 Implications for insurance pricing

From the preceding subsection we know that (5) can be
employed to get a sort of “second-order” risk measure
ρc(X) from a previously assessed ρ(X), taking account
of the potential inadequacy of ρ(X) to cover residual
losses. The measure ρc(X) is coherent, alternatively
convex, if ρ(X) and P are so. There may be many
reasons for applying (5): for instance, the use of ρ(X)

may be imposed by some regulatory authority but an
agent may wish to consider a different, even more pru-
dential measure for certain purposes. Or, conversely,
it is the regulatory authority that computes ρc(X) on
the basis of its own evaluation P of the shortfall of the
measure ρ adopted by the firm management. This sit-
uation is not uncommon, since the management may
tend to reserve little money, favouring more profitable
(and risky) investments.

To explore yet another interpretation of (5), recall
that ρ(X) has the meaning of the infimum price an
agent would ask to shoulder X [8], and suppose now
X ≤ 0. This is not unusual in insurance, where the
insurer asks for a premium to run the risk of paying
−X ≥ 0. Here ρ(X) represents the premium and a
rule for determining it is named premium principle.
A common procedure to obtain a premium principle
starts from a fair value for −X (i.e. an expectation
or prevision P (−X)) and introduces a loading, often
in a multiplicative form, getting in this case a final
price P (−X) = (1 + k)P (−X), k > 0. In [6], the term
Dutch premium principle identifies a “double loading”
rule, which in our setting can be written as:

ρDL = (1+k)E[min(−X, dX)]+(1+c)E[(−X−dX)+]
(10)

with k, c ≥ 0.

The idea in (10) is that the risk ensuing from X is split
between an insurer, which is liable until the threshold
dX , and a reinsurer liable for the residual risk, and
both ask for their own loading to be payed by the in-
sured. It is shown in [6] that requiring some reasonable
properties reduces ρDL to ρ′D with d = 1 in (4) and
dX = E(−X), k = 0 in (10).

The last constraint, k = 0, was interpreted in [6] as im-
possibility of double loading without violating a condi-
tion (no rip-off ) corresponding to b1) in Proposition
1.

What does Equation (5) tell us about this problem?
If ρ(X) is greater than the fair value P (−X) it incor-
porates a loading on X . Then double loading is feasi-
ble while obtaining a final measure ρc(X) (a premium)
which is either coherent or convex, under the assump-
tions of Propositions 3 or 5, respectively. That is, un-
der these assumptions ρc(X) is guaranteed to keep ad-
equate consistency properties and is a generalization
of the Dutch risk measure. It is intuitively plausible
that the condition for double loading, ρ(X) > P (−X),
should hold. The argument may be made more precise
when ρ is coherent. In fact, ρ(X) is an upper prevision
for −X , ρ(X) = P (−X). From Proposition 2 we know
that ρ(X) ≥ P (−X), ∀P ∈ M, where M is naturally
interpreted as a set containing the “true” (although
possibly unknown) prevision P0 for −X . Thus typi-



cally ρ(X) > P0(−X).

Let us now consider the risk measure ρ′D(X) in (4),
with d 	= 1, which was also employed in some papers,
including [7]. It is known that ρ′D(X) satisfies the
translation invariance property c1) in Proposition 1 if
and only if d = 1 [6]. Therefore this measure does not
meet the consistency requirement of convexity if d 	= 1.
Further, its not following translation invariance pre-
vents ρ′D(X) (and potential analogous generalizations
of (5) with −dρ(X) replacing −ρ(X)) from meeting
even the much weaker (and in a sense minimal, since it
generalizes properties of capacities) consistency notion
of centered 1-convexity considered in the next section.
Therefore, this kind of generalization does not seem
adequate for risk measurement.

Finally, we note that putting d = 1 in (4) reduces
the second expectation to E[(E(X) − X)+], which is
also a (mild generalization of a) deviation measure,
following [12]. The correspondence is not necessarily
true for the more general term P [(−ρ(X) − X)+] in
(5); for instance it does not hold when P is C-convex.

4 1-convex and shortfall-dependant
imprecise previsions

In the realm of imprecise previsions, the shortfall-
dependant measures ρc obtained by equation (5) cor-
respond to the lower previsions P c defined by equation
(6). Thus equation (6) displays a method for getting a
more prudential lower prevision P c from and by means
of a previously assessed P 1.

We might employ for instance (6) when P 1 is someone
else’s prevision, considered not fully reliable by us.

The question we are concerned with in this section is:
can Proposition 4 be generalized, meaning that asking
P 1, P 2 to obey weaker consistency requirements than
coherence (or convexity), P c satisfies the same consis-
tency conditions? We shall see that the answer is af-
firmative for a rather mild consistency notion, namely
(centered) 1-convexity.

Definition 4 A map P : D → R is a 1-convex lower
prevision on D iff, ∀X, Y ∈ D

sup[(X − P (X)) − (Y − P (Y ))] ≥ 0 (11)

A 1-convex lower prevision is centered if (0 ∈ D and)
P (0) = 0.

We chose the wording “1-convex”, exhibiting some
alikeness with “1-coherence” in [14](Appendix B), be-
cause Definition 4 is actually obtained by imposing
n = 1 in Definition 2 (putting s0 = s1 = 1 instead
of s0 = s1 = k > 0 is immaterial for the condition

sup G ≥ 0), i.e. it corresponds to checking convexity
only when n = 1 (similarly, 1-coherence requires n = 1
in Definition 1, plus an extra condition not involved
here).

There are other ways of expressing 1-convexity:

Lemma 2 Given P : D → R,
a) Condition (11) is equivalent to:

X ≥ Y + c ⇒ P (X) ≥ P (Y ) + c, ∀X, Y ∈ D, ∀c ∈ R

(12)

b) if D is a linear space, condition (11) is equivalent to
translation invariance plus monotonicity, i.e. axioms
c1) and c2) in Proposition 1.

Proof. We prove a) (a proof of b) was given in [4]).
Suppose (12) holds. Applying it to X − sup(X −Y ) ≤
Y we get P (X) − sup(X − Y ) ≤ P (Y ), from which
(11) follows.

Conversely, let X ≥ Y +c, hence −c−P (Y )+P (X) ≥
Y −P (Y )−(X−P (X)). Using also (11), −c−P (Y )+
P (X) ≥ sup[(Y − P (Y )) − (X − P (X))] ≥ 0, which
implies (12). �

Condition (12) is helpful in making a direct compar-
ison between 1-convexity and coherence when D is a
convex cone. In fact, in this instance coherence of P is
equivalent to its jointly satisfying conditions b2), b3)
(cf. Proposition 1, b)) and (12) (see [14], p.76).

A remarkable consequence of Lemma 2 is that:

Proposition 6 Let P be a centered 1-convex lower
prevision defined on the powerset 2Ω of a finite par-
tition Ω of events. Then P is a capacity.

Proof. Since P is centered, P (0) = 0. By putting
X = 1 and Y = 0 (0, 1 are the indicators of ∅, Ω) in
Definition 4, we get easily P (1) ≤ 1, whilst the reverse
inequality is established by interchanging X and Y .
Hence P (1) = 1. Monotonicity is implied by Lemma
2,a), with c = 0. �

Since the proof above is independent of the domain on
which P is defined, any centered 1-convex P is nor-
malized and monotone. It is however not necessarily
lower or upper semicontinuous, thus being generally
not a fuzzy measure when Ω is infinite.

Functionals defined from a linear space into the com-
pact real line R = R∪{−∞, +∞} and for which trans-
lation invariance and monotonicity hold were termed
niveloids in [4]. By Lemma 2,b) finite-valued niveloids
are 1-convex previsions.

In order to generalize Proposition 4, we preliminarily
check whether the results needed for its proof hold for
1-convex previsions too.



It is easy to realize that:

Lemma 3 If P 1, P 2 are 1-convex (or centered 1-
convex) on D, then so is P = λP 1 + (1 − λ)P 2,
λ ∈ [0, 1] (cf. Proposition 1,d)).

Proof. Condition (11) in Definition 4 is equivalent to
P (X)−P (Y ) ≤ sup(X −Y ) and holds for P 1 and P 2.
Then, since P (X)−P (Y ) = λ(P 1(X)−P 1(Y ))+(1−
λ)(P 2(X)−P 2(Y )) ≤ λ sup(X −Y )+(1−λ) sup(X−
Y ) = sup(X − Y ), ∀X, Y ∈ D, condition (11) holds
also for P . �

The corresponding generalization of Proposition 1,a)
is less immediate. We cannot simply apply an exten-
sion theorem for niveloids given in [4] to 1-convex lower
previsions, because it does not guarantee that the ex-
tension is finite, as we need it to be. We proceed then
by proving that there always exists a special extension,
the 1-convex natural extension (the notion resembles
that of natural extension in [14] or of convex natural
extension in [9]):

Definition 5 Given P : D → R and a linear space
L ⊃ D, define, for each Z ∈ L,
L(Z) = {α ∈ R | Z − α ≥ X − P (X), for some X ∈
D}.
E(Z) = supα L(Z) is the 1-convex natural extension
of P on Z (E(Z) = −∞ if L(Z) = ∅).
When P is 1-convex, it is easy to prove that the no-
tion of 1-convex natural extension coincides with that
of upper projection of a niveloid given in [4] and, there-
fore, E is a niveloid such that E(X) = P (X), ∀X ∈ D.
We prove that E(Z) ∈ R ∀Z ∈ L, hence E is a 1-
convex extension of P to L.

Proposition 7 Given a 1-convex lower prevision P :
D → R, and a linear space L ⊃ D, E(Z) ∈ R ∀Z ∈ L
and E is a 1-convex extension of P .

Proof. Let Z ∈ L, X ∈ D and α = inf Z − sup X +
P (X). Hence, Z − α = Z − inf Z + supX − P (X) ≥
X − P (X), which implies α ∈ L(Z) (hence L(Z) is
non-empty) and E(Z) ≥ inf Z− supX +P (X) > −∞.
We show now that E(Z) < +∞. If α ∈ L(Z), there
exists X ∈ D such that Z − α ≥ X − P (X). There-
fore, for any Y ∈ D, sup Z − α ≥ sup X − P (X) =
sup(X− inf Y )−P (X)+inf Y ≥ sup(X−Y )−P (X)+
inf Y ≥ P (X)−P (Y )−P (X)+ inf Y = inf Y −P (Y ),
where (11) is employed in the last inequality. It fol-
lows E(Z) ≤ sup Z + P (Y ) − inf Y < +∞. Since E is
a niveloid coinciding with P on D [4] and E(Z) ∈ R

∀Z ∈ L, E is a 1-convex extension of P to L. �

We can now prove the final result of the section.

Proposition 8 Let P 1, P 2 be two 1-convex lower pre-
visions on D1, D2 ⊃ {Y : Y = min(X + h, k), X ∈

D1, h, k ∈ R} respectively.
Then P c(X) = P 1(X)+cP2[(X−P 1(X))−], c ∈ [0, 1]
is a 1-convex lower prevision on D1. If P 1 and P 2 are
centered, then so is P c.

Proof. We can follow the guidelines of the proof of
Proposition 5. Observe first that we can always sup-
pose that the relevant 1-convex lower previsions are
defined and 1-convex on a linear space L by extend-
ing them to L, if necessary. By Proposition 7, there
exists a 1-convex extension to L of a 1-convex lower
prevision. Thus P ∗(X) in equation (7) may be de-
fined on L with P 1, P 2 1-convex on L. Then P ∗(X) is
1-convex by Lemma 2,b), because it satisfies c1) and
c2) (a proof for this fact is already contained in the
proof of Proposition 5). We note then that P c(X)
can be decomposed as in (9) when P 1 and P ∗ are 1-
convex. Hence P c is 1-convex by Lemma 3. Finally, if
P 1(0) = P 2(0) = 0 then also P ∗(0) = P c(0) = 0. �

5 Conclusions

Resorting to the theory of imprecise previsions, we
have generalized a method, originally devised in an
insurance pricing framework, for obtaining a second–
choice uncertainty measure on the basis of the poten-
tial inadequacy of a formerly defined measure.

In particular, as shown in Section 3.1, it is possible
(and convenient) to assess independently the initial
measure and the measure of its shortfall, which jointly
determine the final measure through equation (5).

As a further advantage, the resulting measure con-
forms to the well established consistency notions of
coherence or (centered) convexity, provided that the
other measures in the procedure comply with the same
(or more stringent) requirements.

As a practical application in the framework of insur-
ance pricing, this approach provides a formal support
to the policy of double loading, while ensuring the
desirable properties guaranteed by the various consis-
tency notions.

The choice of the consistency criterion to be employed
may depend on many factors. Undoubtedly coher-
ence seems preferable [1, 14], but arguments in favour
of convexity or centered convexity were also brought
forth [5, 9]. 1–convexity is probably too weak for risk
measurement, but could be useful for other kinds of
applications in the realm of imprecise previsions. It
is anyway interesting to notice that the method sum-
marized by (5) can be applied as far as to consider
1-convexity. The generalization of (5) in Proposition
8 seems the largest operationally relevant: 1-convexity
is a really minimal consistency requirement, as can be
seen from the displayed comparisons with the concepts



of capacity and niveloid.

Further extensions of this work should therefore ad-
dress different questions. An appealing and largely
unexplored area is that of investigating shortfall-based
conditional risk measures (and previsions). Here the
set D should be made of conditional random variables
like X |B, where B is a non-impossible event and the
conditioning events for the variables in D are gener-
ally different. Notions of coherence and C-convexity
with related fundamental properties are available in
such a framework [10, 11, 14], and equation (2) eas-
ily generalises to ρ(X |B) = P (−X |B) = −P (X |B).
The point is how should equation (5) be generalised
to guarantee some properties that are similar to those
of Propositions 4 and 5. An immediate difficulty is
that the proof of these propositions relies on Proposi-
tion 1 d), which is known to admit no analogue in the
conditional environment.
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