
Adaptive filters

• In adaptive filters the coefficients vary with time: they are changed to make 
the filter comply with an unknown and possibly time-varying environment

• The optimization criterion typically is to minimize an error signal between the 
filter output and a desired signal:  𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)

• The desired signal 𝑑(𝑛) must be correlated with the input signal

Note: the desired signal is 
used to generate the error 
signal, but may not be the 
actual desired system output
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Adaptation 

algorithm



Adaptive filters applications: system identification

• Adaptive control;  layered earth modelling;  vibration studies in mechanical 
systems
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Adaptive FIR filter
Note: the unknown 
system may be 
(slowly) time variant

Note: like in the case 
of inverse systems, 
the possible presence 
of some noise should 
be taken into account



Adaptive filters applications: adaptive noise cancellation (i)

• Cockpit noise cancellation
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Note: non-standard 
variable names. 
See next slide



Adaptive filters applications: adaptive noise cancellation (ii)
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Beware: variable names are different from previous slide

Adaptive 

FIR filter



Adaptive filters applications: acoustic echo cancellation
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https://it.mathworks.com/help/audio/examples
/acoustic-echo-cancellation-aec.html

https://it.mathworks.com/help/audio/examples/acoustic-echo-cancellation-aec.html


Adaptive filters applications: active noise control
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Wiener’s optimal filter

• It applies to stationary and zero mean signals 𝑥(𝑛) and 𝑑 𝑛 . 

• It is based on the MMSE criterion, i.e. it provides the static filter that minimizes

𝐽 = 𝐸 𝑒2 𝑛 = 𝐸[ 𝑑 𝑛 − 𝑦 𝑛
2
]

• Assume the filter be an FIR filter of length 𝑁 and consider its vector form:

𝒙 𝑛 = 𝑥 𝑛 , 𝑥 𝑛 − 1 ,… , 𝑥 𝑛 − 𝑁 + 1 𝑇

𝒉 = ℎ 0 , ℎ 1 , … , ℎ 𝑁 − 1 𝑇

𝑦 𝑛 = 𝒙𝑇 𝑛 𝒉 = 𝒉𝑇 𝒙 𝑛

𝑒 𝑛 = 𝑑 𝑛 − 𝑦(𝑛)

FIR Filter
𝑥(𝑛) y(𝑛)

+

d(𝑛)
- +
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Wiener’s optimal filter

𝑒2 𝑛 = 𝑑2 𝑛 − 2𝑑 𝑛 𝑦 𝑛 + 𝑦2 𝑛

= 𝑑2 𝑛 − 2𝒉𝑇𝒙 𝑛 𝑑 𝑛 + 𝒉𝑇𝒙 𝑛 𝒙𝑇 𝑛 𝒉

𝐸 𝑒2 𝑛 = 𝐸 𝑑2 𝑛 − 2 𝒉𝑇𝐸 𝒙 𝑛 𝑑 𝑛 + 𝒉𝑇𝐸 𝒙 𝑛 𝒙𝑇 𝑛 𝒉

Note that 𝑹𝑥𝑥 = 𝐸 𝒙 𝑛 𝒙𝑇 𝑛 =

𝐸

𝑥 𝑛 𝑥(𝑛) 𝑥 𝑛 𝑥(𝑛 − 1) … 𝑥 𝑛 𝑥(𝑛 − 𝑁 + 1)

𝑥 𝑛 − 1 𝑥(𝑛) 𝑥 𝑛 − 1 𝑥(𝑛 − 1) … 𝑥 𝑛 − 1 𝑥(𝑛 − 𝑁 + 1)
⋮ ⋮ ⋮

𝑥 𝑛 − 𝑁 + 1 𝑥(𝑛) 𝑥 𝑛 − 𝑁 + 1 𝑥(𝑛 − 1) … 𝑥^2(𝑛 − 𝑁 + 1)

is the input autocorrelation matrix
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Wiener’s optimal filter

• 𝑹𝑥𝑑 = 𝐸 𝒙 𝑛 𝑑 𝑛 = 𝐸 𝑥 𝑛 𝑑 𝑛 , 𝑥 𝑛 − 1 𝑑 𝑛 , … 𝑥 𝑛 − 𝑁 + 1 𝑑(𝑛) T

is the (x , d ) cross-correlation vector

• i.e.,

• Assuming 𝑹𝑥𝑥 and 𝑹𝑥𝑑 are known, we can minimize 𝐸 𝑒2 𝑛 with respect to 𝒉

• Note that 𝐸 𝑒2 𝑛 is a quadratic function of the 

coefficients, i.e. it is a paraboloid whose

minimum is the solution we seek

 set the gradient of 𝐸 𝑒2 𝑛 to zero
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𝐸 𝑒2 𝑛 = 𝐸 𝑑2 𝑛 − 2 𝒉𝑇𝑹𝑥𝑑 + 𝒉𝑇𝑹𝑥𝑥𝒉



Wiener’s optimal filter

• 𝛻𝐸 𝑒2 𝑛 =
𝜕𝐸 𝑒2 𝑛

𝜕ℎ 0
,
𝜕𝐸 𝑒2 𝑛

𝜕ℎ 1
, … ,

𝜕𝐸 𝑒2 𝑛

𝜕ℎ 𝑁−1

𝑇

= 0

• 𝛻𝐸 𝑒2 𝑛 = −2𝑹𝑥𝑑 + 2𝑹𝑥𝑥 𝒉opt = 0

• i.e., we have
𝒉opt = 𝑹𝑥𝑥

−1 𝑹𝑥𝑑

which is the Wiener-Hopf equation

• If we knew the signals statistics we could compute the Wiener optimal filter

• Unfortunately, such statistics are often unknown; moreover, the processes 
can be nonstationary

• We need to estimate the signal statistics and update the optimal filter while 
we observe the signal
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Least mean square (LMS) adaptive filter

• Sample by sample, it provides an estimate of the optimal filter; for stationary 
signals it is proved to converge to the Wiener filter

• It is the simplest and most diffused adaptive filter

• Remember that 𝐸 𝑒2 𝑛 is a paraboloid in the coefficients. The optimal filter 
corresponds to the minimum of the paraboloid

• The LMS algorithm moves the coefficients along the maximum gradient slope
in order to reach the minimum after a number of steps

• If the signals are not stationary, the shape and the position of the paraboloid  
change. The LMS algorithm tracks the paraboloid minimum, always moving 
along the direction of maximum slope
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Least mean square (LMS) adaptive filter

• Coeffs. should move in the gradient’s
direction,  opposite verse:

𝒉𝑛+1 = 𝒉𝑛 −
𝜇

2
𝛻𝒉𝐸[𝑒

2 𝑛 ]

• Widrow and Hoff proposed a drastic 
approximation: 

𝐸 𝑒2 𝑛 ≃ 𝑒2(𝑛)

• 𝛻𝒉𝑒
2(𝑛) = 2 e (n) 𝛻𝒉 e (n)

• 𝛻𝒉 e (n) = 𝛻𝒉 𝑑 𝑛 − 𝒉𝑇𝒙 𝑛 = −𝒙 𝑛
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Least mean square (LMS) adaptive filter 

𝒉𝑛+1 = 𝒉𝑛 + 𝜇 𝑒 𝑛 𝒙 𝑛

𝑒 𝑛 = 𝑑 𝑛 − 𝒉𝑛
𝑇 𝒙 𝑛

• Low computational cost (2𝑁 multiplications and 2𝑁 additions per iteration)
• For stationary signals, is proved to converge to the optimal filter provided 

0 < 𝜇 <
2

𝜆max
,   where 𝜆max is the largest eigenvalue of 𝑹𝑥𝑥.

• Since  𝜆max ≤ Trace(𝑹𝑥𝑥) , a sufficient condition for convergence is

0 < 𝜇 <
2

σ𝑖=0
𝑁−1𝐸[𝑥2 𝑛 − 𝑖 ]

which is easier to approximate
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𝜇 is called 
adaptation constant
or step size

Among the earliest contributions
(1960) to machine learning



Least mean square (LMS) adaptive filter 

• learning curves for different step 
sizes 𝜇 (input: white noise) 

• Large 𝜇 yields fast convergence 
but large oscillations around the 
optimal solution

• The lowest MSE bound depends 
on the ability of the LMS filter to 
cope with the unknown system 
(length N=?) and on the presence 
of noise

From A. Uncini “Fundamental of adaptive signal processing”, Springer, 2015
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Least mean square (LMS) adaptive filter 

• Drawback: low convergence 
speed if input signal has high 
autocorrelation

• With a narrowband moving 
average colored input:    

From A. Uncini “Fundamental of adaptive signal processing”, Springer, 2015
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Normalized LMS (NLMS) adaptive filter 

• If in the LMS adaptation 

𝒉𝑛+1 = 𝒉𝑛 + 𝜇 𝑒 𝑛 𝒙 𝑛

the amplitude of 𝑥 𝑛 reduces by a factor A , so does 𝑒 𝑛 .

 both  ∆𝒉𝑛 = 𝒉𝑛+1 − 𝒉𝑛 and the convergence speed reduce by 𝑨𝟐

• It is convenient to modify the adaptation rule:

𝒉𝑛+1 = 𝒉𝑛 +
𝜇

𝒙𝑇 𝑛 𝒙 𝑛 + 𝛿
𝑒 𝑛 𝒙 𝑛

• Where 𝛿 is a small positive constant used to avoid divisions by zero

• The convergence speed becomes independent of the input signal amplitude

• The algorithm converges for any value of the step size 𝜇 such that 0 < 𝜇 < 2
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Normalized LMS (NLMS) adaptive filter 

• The NLMS algorithm
𝑒 𝑛 = 𝑑 𝑛 − 𝒉𝑛

𝑇 𝒙(𝑛)

𝒉𝑛+1 = 𝒉𝑛 +
𝜇

𝒙𝑇 𝑛 𝒙 𝑛 + 𝛿
𝑒 𝑛 𝒙 𝑛

• is the exact solution of the following optimization criterion:

Minimize the Euclidean norm of the coefficient variation ∆𝒉𝑛 = 𝒉𝑛+1 − 𝒉𝑛
imposing the a posteriori error 𝑒𝑛+1 𝑛 = 𝑑 𝑛 − 𝒉𝑛+1

𝑇 𝒙 𝑛 to be zero, i.e.,

min{∆𝒉𝑛
𝑇 ∆𝒉𝑛} s.t. 𝑒𝑛+1 𝑛 = 𝑑 𝑛 − 𝒉𝑛+1

𝑇 𝒙 𝑛 = 0

• The computational costs of NLMS and LMS are similar (2𝑁 multiplications and 
2𝑁 additions) and also their convergence speed is similar

• Like LMS, NLMS has a poor convergence speed with correlated signals
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