Adaptive filters

* In adaptive filters the coefficients vary with time: they are changed to make
the filter comply with an unknown and possibly time-varying environment

* The optimization criterion typically is to minimize an errorsignal between the

filter output and a desiredsignal: e(n) = d(n) —y(n)

* Thedesired signal d(n) must be correlatedwith the input signal

z(n) ”

» FIR filter
Adap_tation »

algorithm
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Note: the desiredsignal is
used to generate the error
signal, but may not be the
actual desired system output
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Adaptive filters applications: system identification

» Adaptive control; layered earth modelling; vibration studies in mechanical

systems
Note: like in the case
v(n) of inverse systems,
the possible presence
z(n) d(n) of some noiseshould
———» Unknown System —— % —T— be taken into account
p.4
y(n)
Note: the unknown

—»  Adaptive FIR filter

system may be
/ e(n) (slowly) time variant
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Adaptive filters applications: adaptive noise cancellation (i)

e Cockpit noise cancellation

Signal source
(pilot)

e(m) = x(m) — v,(n)

Noise source
(cockpit noise)

valn)

vi(n)
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x(n) = d(n) + vi(n) @ = d(n) +vy(n) - :'l {n]’

Note: non-standard
variable names.
See next slide
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Adaptive filters applications: adaptive noise cancellation (ii)

Beware: variable names are different from previous slide
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Adaptive filters applications: acoustic echo cancellation
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https://it.mathworks.com/help/audio/examples
/acoustic-echo-cancellation-aec.html
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https://it.mathworks.com/help/audio/examples/acoustic-echo-cancellation-aec.html

Adaptive filters applications: active noise control
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Wiener’s optimal filter e dm)
FIR Filter |

L

x(n)

A\ 4

* It applies to stationary and zero mean signals x(n) and d(n).

* Itis based on the MMSE criterion, i.e. it provides the static filter that minimizes

Ele? ()] = E[(d(n) — y(n))"]
* Assume the filter be an FIR filter of length N and consider its vector form:
x(n) =[x(n),x(n—-1),..,x(n—N+ 1]’
= [h(0), h(D), ..., h(N = D)]"
y(n) = xT(n) h = h" x(n)
e(n) =d(n) —y(n)
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Wiener’s optimal filter

e?(n) = d*(n) — 2d(m)y(n) + y*(n)
=d?(n) — 2hT"x(n)d(n) + K" x(n)xT (n)h
Ele?(n)] = E[d?(n)] — 2 RTE[x(n)d(n)] + RTE[x(n)xT (n)]h

Note that R, = E[x(n)x"(n)] =

x(n)x(n) x(n)x(n—1) x(m)x(n—N+1) ]
£ x(n — 1)x(n) x(n—1Dx(n-1) v X(n—=1Dx(n—N+1)
x(n—N + Dx(n) x(n—N +.1)x(n -1) .. x"2(n - N+1)

is the /nputautocorrelation matrix
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Wiener’s optimal filter

* R,y = E[x(n)d(n)] = E[x(n)d(n), x(n—1d®n), .. x(n—N+1Ddn)]’
isthe (x, d) cross-correlation vector
« i.e., Ele?!(n)] =E[d*(n)]—2h"R,.;+h"R,,h
« Assuming R, and R,.; are known, we can minimize E[e?(n)] with respectto h
* Notethat E[e?(n)] is a quadratic function of the
coefficients, i.e. it is a paraboloid whose
minimum is the solution we seek
- set the gradient of E[e?(n)] to zero
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Wiener’s optimal filter

. 2 __[8E[e2(m)] 0E[e?(n)] dE[e?(n)] T _
VE[e*(n)] = [ on) ' onw " ontv-n| 0
i VE[ez(n)] = _ZRxd + 2Rxx hopt =0

* ji.e.,,wehave

hopt = Rxz Ryq

which is the Wiener-Hopf equation
* If we knew the signals statistics we could compute the Wiener optimal filter

* Unfortunately, such statistics are often unknown; moreover, the processes
can be nonstationary

* We need to estimate the signal statistics and update the optimal filter while
we observe the signal
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Least mean square (LMS) adaptive filter

« Sample by sample, it provides an estimate of the optimal filter; for stationary
signals it is proved to convergeto the Wiener filter

* Itisthe simplest and most diffused adaptive filter

« Remember that E[e?(n)] is a paraboloid in the coefficients. The optimal filter
corresponds to the minimum of the paraboloid

* The LMS algorithm moves the coefficients along the maximum gradient slope
in order to reach the minimum after a number of steps

» If the signals are not stationary, the shapeand the positionof the paraboloid
change. The LMS algorithm tracks the paraboloid minimum, always moving
along the direction of maximum slope
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Least mean square (LMS) adaptive filter

Coeffs. should move in the gradient’s

direction, opposite verse:

u
hy,i1 =h, — EVhE[ez(n)]

* Widrow and Hoff proposed a drastic
approximation:

E[e?(n)] = e*(n)

o Vhe?(n) =2e(n)Vy e(n) ot
° Vh e (1]) = Vh(d(n) — th(Tl)) — _x(n) s decrease in f

Most rapid
increase in f
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Among the earliest contributions

Least mean square (LMS) adaptive filter (1960) to machine learning
hoty = hy + pe(®) x(n) wis called
GdethIOI’) constant
e(n) = d(n) — h;, x(n) or step size

* Low computational cost (2N multiplications and 2N additions per iteration)
* For stationary signals, is proved to converge to the optimal filter provided
2
O<u<
Amax
* Since Ayax < Trace(R,,), a sufficient condition for convergence is

2
Y E[x?(n — )]

, Where Ay ax is the largest eigenvalue of R,

O<u<

which is easier to approximate
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Least mean square (LMS) adaptive filter

Leamning curves comparison [b = 0.000 average = 100]

10 . . | . . . . | .
* learning curvesfor different step R LMS 1:=0.0005
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From A. Uncini “Fundamental of adaptive signal processing”, Springer, 2015
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Least mean square (LMS) adaptive filter
Leamning curves comparnson [b = 0.900 average = 100]
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From A. Uncini “Fundamental of adaptive signal processing”, Springer, 2015
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Normalized LMS (NLMS) adaptive filter

If in the LMS adaptation
hni1 = hy +puen) x(n)
the amplitude of x(n) reduces by a factor 4, so does e(n).
- both Ah,, = h,.; — h,, and the convergence speed reduce by 4>

» |tis convenient to modify the adaptation rule:
U
) x () + 0 W *W)

* Where § is a small positive constant used to avoid divisions by zero

h,.y =h, +

* The convergence speed becomes independent of the input signal amplitude
* The algorithm converges for any value of the step size u suchthat0 < u < 2
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Normalized LMS (NLMS) adaptive filter

* The NLMS algorithm

e(n) = d(n) — hl x(n)

U
Ps = by + o e(n) x(n)

* isthe exact solution of the following optimization criterion:

Minimize the Euclidean norm of the coefficient variation Ah,, = h,,,; — h,,
imposing the a posteriori error ;.1 (n) = d(n) — hl ., x(n) to be zero, i.e.,

min{Ah? Ah,} st. e,p (n) =d®n) —hl, , x(n)=0

* The computational costs of NLMS and LMS are similar (2N multiplications and
2N additions) and also their convergence speed is similar
* Like LMS, NLMS has a poor convergence speed with correlated signals
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