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• Later in the course we shall review various 
methods of designing frequency-selective 
filters satisfying prescribed specifications

• We now describe several low-order FIR and 
IIR digital filters with reasonable selective 
frequency responses that often are 
satisfactory in a number of applications
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• FIR digital filters considered here have 
integer-valued impulse response coefficients

• These filters are employed in a number of 
practical applications, primarily because of 
their simplicity, which makes them amenable 
to inexpensive hardware implementations
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Lowpass FIR Digital Filters

• The simplest lowpass FIR digital filter is the 
2-point moving-average filter given by

• The above transfer function has a zero at      
and a pole at z = 0

• Note that here the pole vector has a unity 
magnitude for all values of 
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pole vector

zero vector
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• On the other hand, as 
 

increases from 0 to 
, the magnitude of the zero vector 

decreases from a value of 2, the diameter of 
the unit circle, to 0

• Hence, the magnitude response                  is 
a monotonically decreasing function of 

 from 
 

= 0 to 
 

= 

|)(| 0
jeH
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• The maximum value of the magnitude 
function is 1 at 

 
= 0, and the minimum 

value is 0 at 
 

= , i.e.,

• The frequency response of the above filter 
is given by
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• The magnitude response                            
can be seen to be a monotonically 
decreasing function of 
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• The frequency             at which

is of practical interest since here the gain      
in dB is given by

since the dc gain
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• Thus, the gain ( ) at             is 
approximately 3 dB less than the gain at 

 = 0

• As a result,       is called the 3-dB cutoff 
frequency

• To determine the value of       we set

which yields
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• The 3-dB cutoff frequency       can be 
considered as the passband edge frequency

• As a result, for the filter            the passband 
width is approximately /2

• The stopband is from /2 to 

• Note: has a zero at             or 
 

= , 
which is in the stopband of the filter
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• A cascade of the simple FIR filter

results in an improved lowpass frequency 
response as illustrated below for a cascade 
of 3 sections
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• The 3-dB cutoff frequency of a cascade of 
M sections is given by

• For M = 3, the above yields

• Thus, the cascade of first-order sections 
yields a sharper magnitude response but at 
the expense of a decrease in the width of the 
passband
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• A better approximation to the ideal lowpass 
filter is given by a higher-order moving- 
average filter

• Signals with rapid fluctuations in sample 
values are generally associated with high- 
frequency components

• These high-frequency components are 
essentially removed by an moving-average 
filter resulting in a smoother output 
waveform
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Highpass FIR Digital Filters

• The simplest highpass FIR filter is obtained 
from the simplest lowpass FIR filter by 
replacing z with

• This results in
1
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• Corresponding frequency response is given 

by

whose magnitude response is plotted below
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• The monotonically increasing behavior of 
the magnitude function can again be 
demonstrated by examining the pole-zero 
pattern of the transfer function

• The highpass transfer function            has a 
zero at z = 1 or 

 
= 0 which is in the 

stopband of the filter

zH1

zH1
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• Improved highpass magnitude response can 
again be obtained by cascading several 
sections of the first-order highpass filter

• Alternately, a higher-order highpass filter of 
the form

is obtained by replacing z with        in the 
transfer function of a moving average filter
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• An application of the FIR highpass filters is 
in moving-target-indicator (MTI) radars

• In these radars, interfering signals, called 
clutters, are generated from fixed objects in 
the path of the radar beam

• The clutter, generated mainly from ground 
echoes and weather returns, has frequency 
components near zero frequency (dc)
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• The clutter can be removed by filtering the 
radar return signal through a two-pulse 
canceler, which is the first-order FIR 
highpass filter

• For a more effective removal it may be 
necessary to use a three-pulse canceler 
obtained by cascading two two-pulse 
cancelers
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Lowpass IIR Digital Filters

• We have shown earlier that the first-order 
causal IIR transfer function

has a lowpass magnitude response for 
 

> 0
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• An improved lowpass magnitude response 
is obtained by adding a factor                to 
the numerator of transfer function

• This forces the magnitude response to have 
a zero at 

 
= 

 
in the stopband of the filter
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• has a real pole at z = 

• As 
 

increases from 0 to , the magnitude 
of the zero vector decreases from a value of 
2 to 0, whereas, for a positive value of , 
the magnitude of the pole vector increases 
from a value of          to

• The maximum value of the magnitude 
function is 1 at 

 
= 0, and the minimum 

value is 0 at 
 

= 

1 1

zHLP
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• i.e.,

• Therefore,                    is a monotonically 
decreasing function of 

 
from 

 
= 0 to 

 
= 

 as indicated below
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• The squared magnitude function is given by

• The derivative of                      with respect 
to 

 
is given by
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in the range                    
verifying again the monotonically decreasing 
behavior of the magnitude function

• To determine the 3-dB cutoff frequency 
we set                            

in the expression for the square magnitude 
function resulting in
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or

which when solved yields

• The above quadratic equation can be solved 
for 

 
yielding two solutions
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• The solution resulting in a stable transfer 
function              is given by

• It follows from

that              is a BR function for | | < 1
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Highpass IIR Digital Filters

• A first-order causal highpass IIR digital filter 
has a transfer function given by

where | | < 1 for stability

• The above transfer function has a zero at z = 1     
i.e., at 

 
= 

 
which is in the stopband
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• Its 3-dB cutoff frequency is given by

which is the same as that of

• Magnitude and gain responses of              
are shown below
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• is a BR function for | | < 1

• Example - Design a first-order highpass 
digital filter with a 3-dB cutoff frequency of 
0.8

• Now,                                                   and

• Therefore

zHHP
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• Therefore,
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Bandpass IIR Digital Filters

• A 2nd-order bandpass digital transfer 
function is given by

• Its squared magnitude function is
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• goes to zero at 
 

= 0 and 
 

= 

• It assumes a maximum value of 1 at             , 
called the center frequency of the bandpass 
filter, where

• The frequencies       and       where         
becomes 1/2 are called the 3-dB cutoff 
frequencies 
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• The difference between the two cutoff 
frequencies, assuming                  is called 
the 3-dB bandwidth and is given by

• The transfer function              is a BR 
function if | | < 1 and | | < 1
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• Plots of                     are shown below|)(| j
BP eH
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• Example - Design a 2nd order bandpass 

digital filter with center frequency at 0.4
 and a 3-dB bandwidth of 0.1

• Here
and

• The solution of the above equation yields: 

 
= 1.376382 and 

 
= 0.72654253
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• The corresponding transfer functions are

and

• The poles of              are at z = 0.3671712         
and have a magnitude > 1114256361j
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• Thus, the poles of              are outside the 
unit circle making the transfer function 
unstable

• On the other hand, the poles of               are 
at z =                                          and have a 
magnitude of 0.8523746

• Hence               is BIBO stable

• Later we outline a simpler stability test

zHBP

zHBP
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• Figures below show the plots of the 
magnitude function and the group delay of

zHBP

39



46
Copyright © 2010, S. K. Mitra

Simple IIR Digital FiltersSimple IIR Digital Filters

Bandstop IIR Digital Filters

• A 2nd-order bandstop digital filter has a 
transfer function given by

• The transfer function              is a BR 
function if | | < 1 and | | < 1
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• Its magnitude response is plotted below
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• Here, the magnitude function takes the 
maximum value of 1 at 

 
= 0 and 

 
= 

• It goes to 0 at            , where      , called the 
notch frequency, is given by

• The digital transfer function              is more 
commonly called a notch filter
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• The frequencies       and       where         
becomes 1/2 are called the 3-dB cutoff 
frequencies

• The difference between the two cutoff 
frequencies, assuming                  is called 
the 3-dB notch bandwidth and is given by
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Higher-Order IIR Digital Filters

• By cascading the simple digital filters 
discussed so far, we can implement digital 
filters with sharper magnitude responses

• Consider a cascade of K first-order lowpass 
sections characterized by the transfer 
function
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• The overall structure has a transfer function 
given by

• The corresponding squared-magnitude 
function is given by

K
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• To determine the relation between its 3-dB 

cutoff frequency       and the parameter , 
we set

which when solved for , yields for a stable  
:
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where

• It should be noted that the expression for 
 given earlier reduces to

for K = 1

KKC 12

c

c
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• Example - Design a lowpass filter with a 3- 
dB cutoff frequency at                  using a 
single first-order section and a cascade of 4 
first-order sections, and compare their gain 
responses

• For the single first-order lowpass filter we 
have
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• For the cascade of 4 first-order sections, we 
substitute K = 4 and get

• Next we compute
6818122 4141 KKC
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• The gain responses of the two filters are 

shown below

• As can be seen, cascading has resulted in a 
sharper roll-off in the gain response

Passband details
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Digital DifferentiatorsDigital Differentiators

• Employed to perform the differentiation 
operation on the discrete-time version of a 
continuous-time signal

• Frequency response of an ideal discrete-
time differentiator is given by

which has a linear magnitude response from 
dc to = 

jeH j )( for 0
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Digital DifferentiatorsDigital Differentiators

• A practical discrete-time differentiator is 
used to perform the differentiation operation 
in the low frequency range and is thus 
designed to have a linear magnitude 
response from dc to a frequency smaller 
than
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First-Difference Differentiator is a first-order 
FIR discrete-time system with a time-
domain input-output relation given by

• Its transfer function is given by

which is same as that of a first-order FIR 
highpass filter described earlier

]1[][][ nxnxny

11)( zzHFD
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• Main drawback of the first-difference 
differentiator is that it also amplifies the 
high frequency noise often present in many 
signals

Ideal differentiator
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Central-Difference Differentiator avoids the 

noise amplification problem of the first-
difference differentiator

• Its time-domain input-output relation is

• Its transfer function is given by

• It has a linear magnitude response in a very 
small low-frequency range
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2
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HigherHigher--Order FIR Digital Order FIR Digital 
DifferentiatorDifferentiator

• The time-domain input-output relation of a 
higher-order FIR digital differentiator is 
given by

• Its transfer function is given by

]6[]4[]2[][][
16
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HigherHigher--Order FIR Digital Order FIR Digital 
DifferentiatorDifferentiator

• Its magnitude response, scaled by a factor 
0.6 is shown below

• The frequency range of operation of this 
differentiator is from dc to = 0.34

Ideal differentiator
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Comb FiltersComb Filters

• The simple filters discussed so far are 
characterized either by a single passband
and/or a single stopband

• There are applications where filters with 
multiple passbands and stopbands are 
required

• The comb filter is an example of such 
filters
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Comb FiltersComb Filters
• In its most general form, a comb filter has a 

frequency response that is a periodic 
function of with a period 2 /L, where L is 
a positive integer

• If H(z) is a filter with a single passband
and/or a single stopband, a comb filter can 
be easily generated from it by replacing 
each delay in its realization with L delays 
resulting in a structure with a transfer 
function given by LzHzG
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Comb FiltersComb Filters

• If                exhibits a peak at      , then        
will exhibit L peaks at ,                      
in the frequency range

• Likewise, if                has a notch at      , 
then                will have L notches at           , 

in the frequency range

• A comb filter can be generated from either 
an FIR or an IIR prototype filter
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FIR Comb FiltersFIR Comb Filters
• For example, the comb filter generated from       

the prototype lowpass FIR filter                 
has a transfer function

• has L notches
at = (2k+1) /L and L
peaks at = 2 k/L,

1
2
1 1 z

zH0

LL zzHzG 1
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00
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frequency range
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FIR Comb FiltersFIR Comb Filters
• For example, the comb filter generated from        

the prototype highpass FIR filter                 
has a transfer function

• has L peaks
at = (2k+1) /L and L
notches at = 2 k/L,
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FIR Comb FiltersFIR Comb Filters

• Depending on applications, comb filters 
with other types of periodic magnitude 
responses can be easily generated by 
appropriately choosing the prototype filter

• For example, the M-point moving average 
filter

has been used as a prototype

11
1

zM
z M
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FIR Comb FiltersFIR Comb Filters

• This filter has a peak magnitude at = 0, 
and           notches at                   ,

• The corresponding comb filter has a transfer 
function

whose magnitude has L peaks at                 ,  
and                notches at                    
, 

1M M/2 11 M

L

ML

zM
zzG
1
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10 Lk 1ML

LMk/2 11 MLk
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IIR Comb FiltersIIR Comb Filters
• The transfer functions of the simplest forms 

of the prototype IIR filter are given by

where          for stability

• Note:             is a highpass filter with a zero 
at z = 1 and           is a lowpass filter with a 
zero at  

1
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IIR Comb FiltersIIR Comb Filters

• For a maximum gain of 0 dB, the scale 
factor K of             should be set equal to  

and the scale factor K of             
should be set equal to

• The corresponding transfer functions of the 
comb filters of order L are

)(0 zH
)(1 zH

2)1( /
2)1( /

L

L

z
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IIR Comb FiltersIIR Comb Filters

• Gain responses of the IIR comb filters 
generated from            and           for L = 8
are shown below

)(0 zH )(1 zH
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00 zHzG )()( 8

11 zHzG
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• A set of digital transfer functions with 
complementary characteristics often finds 
useful applications in practice

• Four useful complementary relations are 
described next along with some applications
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AllpassAllpass Complementary Complementary 
Transfer FunctionsTransfer Functions

• A set of M digital transfer functions,              ,   
, is defined to be allpass- 

complementary of each other, if the sum of 
their transfer functions is equal to an allpass 
function, i.e.,

)}({ zHi
10 Mi

)()(
1

0
zAzH

M

i
i

69

3362
Highlight

3362
Highlight



Copyright © 2010, S. K. Mitra
11

PowerPower--Complementary Complementary 
Transfer FunctionsTransfer Functions

• A set of M digital transfer functions,              ,   
, is defined to be power- 

complementary of each other, if the sum of 
their square-magnitude responses is equal to 
a constant K for all values of , i.e.,
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PowerPower--Complementary Complementary 
Transfer FunctionsTransfer Functions

• For a pair of power-complementary transfer 
functions,           and           , the frequency   
where                                                   , is 
called the cross-over frequency

• At this frequency the gain responses of both 
filters are 3-dB below their maximum 
values

• As a result,       is called the 3-dB cross- 
over frequency
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PowerPower--Complementary Complementary 
Transfer FunctionsTransfer Functions

• Example - Consider the two transfer functions     
and            given by

where              and             are stable allpass 
transfer functions

• Note that

• Hence,           and           are allpass 
complementary
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PowerPower--Complementary Complementary 
Transfer FunctionsTransfer Functions

• It can be shown that            and           are 
also power-complementary

• Moreover,            and            are bounded- 
real transfer functions
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DoublyDoubly--Complementary Complementary 
Transfer FunctionsTransfer Functions

• A pair of doubly-complementary IIR 
transfer functions,           and           , with a 
sum of allpass decomposition can be simply 
realized as indicated below
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DoublyDoubly--Complementary Complementary 
Transfer FunctionsTransfer Functions

• Example - The first-order lowpass transfer 
function

can be expressed as

where
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DoublyDoubly--Complementary Complementary 
Transfer FunctionsTransfer Functions

• Its power-complementary highpass transfer 
function is thus given by

• The above expression is precisely the first- 
order highpass transfer function described 
earlier
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DoublyDoubly--Complementary Complementary 
Transfer FunctionsTransfer Functions

• Figure below demonstrates the allpass 
complementary property and the power 
complementary property of              andzHLP

zHHP
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