Simple Digital Filters

Later in the course we shall review various
methods of designing frequency-selective
filters satistying prescribed specifications

We now describe several low-order FIR and
IIR digital filters with reasonable selective
frequency responses that often are
satisfactory in a number of applications
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Simple FIR Digital Filters

* FIR digital filters considered here have
integer-valued impulse response coefficients

» These filters are employed in a number of
practical applications, primarily because of
their simplicity, which makes them amenable
to inexpensive hardware implementations
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Simple FIR Digital Filters

Lowpass FIR Digital Filters

* The simplest lowpass FIR digital filter 1s the
2-point moving-average filter given by

_ z+1
Hy(z)=1+z")="""

2z
e The above transfer function has a zero at

z=—land apoleatz=20

* Note that here the pole vector has a unity
3 magnitude for all values of ®

Copyright © 2010, S. K. Mitra
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Simple FIR Digital Filters

Imz
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Simple FIR Digital Filters

* On the other hand, as o increases from 0O to
n, the magnitude of the zero vector
decreases from a value of 2, the diameter of
the unit circle, to 0

» Hence, the magnitude response | H(e’®)| is
a monotonically decreasing function of ®
fromo=0towm=mn

Copyright © 2010, S. K. Mitra



Simple FIR Digital Filters

* The maximum value of the magnitude
function 1s 1 at ® = 0, and the minimum

value1s 0 at ® = m, 1.¢e.,
[Ho(e/")=1,  |Hy(e!™)

=0

* The frequency response of the al
1s given by

bove filter

Hy(e’®)=e /"2 cos(w/2)

Copyright © 2010, S. K. Mitra



Simple FIR Digital Filters

» The magnitude response | H, (ej ) =cos(w/2)
can be seen to be a monotonically
decreasing function of ®

First-order FIR lowpass filter

0 0.2 0.4 0.6 0.8 1
o/nt . .
Copyright © 2010, S. K. Mitra



Simple FIR Digital Filters

The frequency ® = ®, at which

H (ejmc)

= }21{ 0 (ejo)‘

is of practical interest since here the gain G(o,)

in dB 1s given by

G(o.)= 2010%10‘H (e’™)
=20log;o H(e’") —20log;p 2 = -3 dB

since the dc gain ((0) = ZOIOgIOH(eJO) =0

Copyright © 2010, S. K. Mitra




Simple FIR Digital Filters

 Thus, the gain G(w) at ® = ®,. 1s
approximately 3 dB less than the gain at ®
=0

* As aresult, @, 1s called the 3-dB cutoff
frequency

 To determine the value of @, we set
|Hy(e/®)*=cos* (o, /2) :;

which yields ®, =7/2

Copyright © 2010, S. K. Mitra
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Simple FIR Digital Filters

The 3-dB cutoff frequency ®_. can be
considered as the passband edge frequency

As a result, for the filter H(z) the passband
width 1s approximately /2

The stopband 1s from /2 to

Note: Hy(z) hasazeroatz=—-1 or o =,
which 1s 1n the stopband of the filter

Copyright © 2010, S. K. Mitra
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Simple FIR Digital Filters

* A cascade of the simple FIR filter
Hy(z)=1(1+z7

results 1n an improved lowpass frequency
response as 1llustrated below for a cascade
of 3 sections

First-order FIR lowpass filter cascade

1

Magnitude
O )
: g

©
~

e
o

=

0.2 04 0.6 0.8 1

S

What are the
coeffs. of the
impulse
response of
this filter ?

o/t Copyright © 2010, S. K. Mitra
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Simple FIR Digital Filters

* The 3-dB cutoff frequency of a cascade of

M sections 1s given by

®, = 2cos (2_1/2M)

» For M =3, the above yields ®,. =0.302n

e Thus, the cascade of first-order sections
yields a sharper magnitude response but at
the expense of a decrease 1n the width of the
passband

12
Copyright © 2010, S. K. Mitra
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Simple FIR Digital Filters

A better approximation to the ideal lowpass
filter 1s given by a higher-order moving-

average filter Compare the two filters using Matlab

* Signals with rapid fluctuations in sample
values are generally associated with high-
frequency components

» These high-frequency components are

essentially removed by an moving-average
filter resulting in a smoother output
waveform

Copyright © 2010, S. K. Mitra
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Simple FIR Digital Filters

Highpass FIR Digital Filters

* The simplest highpass FIR filter 1s obtained
from the simplest lowpass FIR filter by

replacing z with —z|  lie.: exp(jw) =
» This results in - exp(@) = exp((@+ 7))

Hy(z)=)(1-z7")

First derivative filter (backward)

14
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Simple FIR Digital Filters

* Corresponding frequency response 1s given
by | |
H,(e’®)= je 7 %sin(w/2)
whose magnitude response 1s plotted below

First-order FIR highpass filter

**********************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

——————————————————————————————————————————————
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Simple FIR Digital Filters

I'he monotonically increasing behavior of

ne magnitude function can again be

C

emonstrated by examining the pole-zero

pattern of the transfer function H;(z)

The highpass transfer function H(z) has a
zero at z =1 or ® = 0 which 1s 1n the
stopband of the filter

Copyright © 2010, S. K. Mitra



Simple FIR Digital Filters

* Improved highpass magnitude response can
again be obtained by cascading several
sections of the first-order highpass filter

» Alternately, a higher-order highpass filter of
the form

1 _
Hi(z) = Allzf: o (=D)'z7"
1s obtained by replacing z with —z 1n the

transfer function of a moving average filter
17
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Simple FIR Digital Filters

* An application of the FIR highpass filters 1s
in moving-target-indicator (MTI) radars

 In these radars, interfering signals, called
clutters, are generated from fixed objects 1n
the path of the radar beam

* The clutter, generated mainly from ground
echoes and weather returns, has frequency
components near zero frequency (dc)

Copyright © 2010, S. K. Mitra



Simple FIR Digital Filters

* The clutter can be removed by filtering the
radar return signal through a two-pulse
canceler, which 1s the first-order FIR
highpass filter Hy(z)=1(1-z"")

* For a more effective removal 1t may be
necessary to use a three-pulse canceler
obtained by cascading two two-pulse

cancelers |.e.: derivative of the derivative

19 --> second derivative filter
Copyright © 2010, S. K. Mitra
19
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Simple |IR Digital Filters

Lowpass IIR Digital Filters

e We have shown earlier that the first-order
causal IIR transfer function

Ho= X o0<a<l

1 — ocz_1

has a lowpass magnitude response for o > 0

20
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Simple |IR Digital Filters

* An improved lowpass magnitude response
1s obtained by adding a factor (1+z ) to
the numerator of transfer function

Kd+zhH

- U<ax<l

H(z)=

l-az
» This forces the magnitude response to have
a zero at ® = 7 1n the stopband of the filter

21
Copyright © 2010, S. K. Mitra
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« H;p(z) hasareal pole atz =«

Simple IR Digital Filters” T

VA

As o 1ncreases from 0 to «, the magnitude
of the zero vector decreases from a value of
2 to 0, whereas, for a positive value of .,
the magnitude of the pole vector increases
fromavalueof l-a tol+

The maximum value of the magnitude
function 1s 1 at ® = 0, and the minimum
valueisOato=mn

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters
e e, [Hpp(e/) =1,  |[Hp(e/™)|=0

e Therefore, |[H;p (ej )| is a monotonically
decreasing function of ® fromow=0tow ==
as indicated below

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

* The squared magnitude function 1s given by

1, ()2 = (170 (1+cosw)

2(1+ o —20.cos ®)

» The derivative of |H; p(e’®)|* with respect
to ® 1S given by
d |[H;p(e®)* —(1-0)*(1+20+0”)sino
dw B 2(1-20cosm+a?)?

30
Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

d |HLP(ej®)|2/d(x) <0 intherange 0<w<mw
verifying again the monotonically decreasing
behavior of the magnitude function

To determine the 3-dB cutoff frequency

we set , ol
|H p(e!™) 25

in the expression for the square magnitude
function resulting in

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

(1—0c)2(1+cosa)c) 1

2(1+a* —20.cos®,) 2

or

(1- oc)z(l +cosw,) =1+ o’ — 20.cos M,
which when solved yields
20,

1+ o

* The above quadratic equation can be solved
for a yielding two solutions

COS M, = >

32
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Simple |IR Digital Filters

* The solution resulting in a stable transfer
function H; p(z)1s given by

_l-smno,
- COsSm,

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

Highpass IIR Digital Filters

» A first-order causal highpass IIR digital filter
has a transfer function given by

Hpp(z) =

1+«

( 1_

2

\1 — OCZ_1

where |a| < 1 for stability

from the LP filter:
Z & -Z and

redefine

e The above transfer function has a zero atz =1

34

1.e., at ® = 0 which is 1n the stopband

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

* Its 3-dB cutoff frequency ®, 1s given by
a=(l-sinm,)/coswm,
which 1s the same as that of H;p(z2)
e Magnitude and gain responses of H gp(z)
are shown below

o
©

o
Gain, dB
S

Magnitude

°o o
N

1

(S

9]

)
S

o/n

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

« Hpyp(z)is a BR function for |a| < 1

« Example - Design a first-order highpass
digital filter with a 3-dB cutoff frequency of
0.81

* Now,sin(®,) =sin(0.87) =0.587785 and
c0s(0.8m) =—-0.80902

 Theretore
a=(-sinw,.)/cosw, =—0.5095245

36
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Simple |IR Digital Filters

e Therefore,

-l
HHP(Z):1+05[1 z 1)

2 \1—-az”

B —1
—(0.245238 1=z :
14+0.5095245 2"

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

Bandpass IIR Digital Filters

o A@@d-order bandpass digital transfer

function 1s given by

can be also expressed
as a LP+HP cascade

2

* [ts squared magnitude function 1s

L2
Hpp (ejm)

1—a 11—z
Hpgp(z) = [

(1- oc)2 (1-cos2w)

1-B(1+a) z7 4 Oczzj

38

2[1+ [32 (1+ oc)2 +a’— 2B(1+ oc)2 COSM+20.coS2m]
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Simple IR Digital Filters

. |1LIBP(ej°°)|2 goestozeroatw=0and w=m

* It assumes a maximum value of 1 at o=, ,
called the center frequency of the bandpass
filter, where

®, = cos | (B)
* The frequencies ®.and ®.,where |Hgp (ej (D)Iz

becomes 1/2 are called the 3-dB cutoff

frequencies

39
Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

 The difference between the two cutotff

frequencies, assuming ., > ®_; 1s called
the 3-dB bandwidth and 1s given by

1 2«
B,=®., -0, =cos ( 2)
1+

* The transfer function Hzp(z) 1s a BR
function if |o| <1 and |B| < 1

40
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Simple |IR Digital Filters

* Plots of |H Bp(ej(”)| are shown below

Magnitude
Magnitude

41
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Simple IR Digital Filters

« Example - Design a 2nd orc

er bandpass

digital filter with center frequency at 0.4n

and a 3-dB bandwidth of 0.1

T

* Here B =cos(w,)=co0s(0.41) =0.309017

and
200

1+ o

2

= cos(B,,) =cos(0.1m) =0.9510565

* The solution of the above equation yields:
o = 1.376382 and o = 0.72654253

42
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Simple IR Digital Filters

* The corresponding transfer functions are

-2
Hgp(z)=—0.18819 : = -
1-0.7343424z7" +1.37638z
and
|-z 2

Hyp(z)=0.13673

1-0.533531z "1 +0.7265425322

* The poles of Hzp(z)are at z=0.3671712 £
j1.11425636 and have a magnitude > 1

43
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Simple IR Digital Filters

Thus, the poles of Hpp(z) are outside the
unit circle making the transfer function
unstable

On the other hand, the poles of Hgp(z) are
at z= 0.2667655 £ j0.8095546 and have a
magnitude of 0.8523746

Hence Hgp(z) is BIBO stable
Later we outline a simpler stability test

Copyright © 2010, S. K. Mitra
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Simple |IR Digital Filters

* Figures below show the plots of the
magnitude function and the group delay of

Magnitude

Hpp(z)

o/m

Group delay, samples

0 0.2 04 0.6 0.8 1
o/n

Copyright © 2010, S. K. Mitra



40

Simple IR Digital Filters

Bandstop IIR Digital Filters

* A 2nd-order bandstop digital filter has a
transfer function given by

l+of 1-2Bz'+z7
HBS (Z) — B 1 i)
2 (1-B(l+0)z +oz
 The transter function Hz¢(z)1s a BR
function if |o| < 1 and |B| <1

46
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Simple |IR Digital Filters

* [ts magnitude response 1s plotted below

0.8

Q Q
o o
206 2
= E
3] 3]
= 0.4/ =

47
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Simple IR Digital Filters

* Here, the magnitude function takes the
maximum valueof lat@=0and ® ==

* It goes to 0 at =, , where @, called the
notch frequency, 1s given by

®, =cos” (B)

* The digital transfer function H gg(z) 1s more
commonly called a notch filter

48
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Simple IR Digital Filters

» The frequencies ®,; and ®,., where |Hpg (ej 0))|2
becomes 1/2 are called the 3-dB cutoff
frequencies

» The difference between the two cutoff
frequencies, assuming ®., > ®,; 1s called
the 3-dB notch bandwidth and 1s given by

B 1 2w
B,=0., -0, =cos ( 2)
1+a

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

Higher-Order IIR Digital Filters

* By cascading the simple digital filters
discussed so far, we can implement digital
filters with sharper magnitude responses

* Consider a cascade of K first-order lowpass
sections characterized by the transfer

function 1 —
- z
HLP (Z) — [ 1)

50 2 \l—-oaz™
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Simple IR Digital Filters

e The overall structure has a transfer function

given by N
l-a 1+z
GLP (Z) = E ' IJ

2 l-az

* The corresponding squared-magnitude
function 1s given by

G, (&) = (1—)*(1+cos®)
. _2(1+oc2 —20.c08 W) |

K

Copyright © 2010, S. K. Mitra
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Simple IR Digital Filters

* To determine the relation between its 3-dB
cutoff frequency ®, and the parameter a,

we set
— 2 _K
(1-a) (I+cosw,) 1

2
2(1+a”—20cosm,) | 2

which when solved for a, yields for a stable
Gp(2).

1+(1-C)cosm, —sinoocJZC— C?

- 1-C+cosm,

(04

Copyright © 2010, S. K. Mitra
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Simple |IR Digital Filters

where
C = 2K-D/K

* It should be noted that the expression for o,
given earlier reduces to

_l-smno,
- COsSm,

for K=1

Copyright © 2010, S. K. Mitra



Simple IR Digital Filters

« Example - Design a lowpass filter with a 3-
dB cutoff frequency at o, = 0.4m using a
single first-order section and a cascade of 4
first-order sections, and compare their gain

responses
* For the single first-order lowpass filter we
have . .
o l+sinm, _ 1+ s1n(0.4m) _0.1584

o COS M, c0s(0.4m)

48
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Simple IR Digital Filters

* For the cascade of 4 first-order sections, we
substitute K =4 and get

C =2 DR _p-D7% _1 6818

* Next we compute

_1+(1-C)cosw, —sinoocJ2C—C2
1-C+cosm,

04

_1+(1-1.6818)cos(0.4m) - sin(0.47)+/2(1.6818) — (1.6818)?

1-1.6818+ cos(0.4m)
55 =-0.251

Copyright © 2010, S. K. Mitra
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Gain, dB

Simple IR Digital Filters

The gain responses of the two filters are
shown below

As can be seen, cascading has resulted 1n a
sharper roll-off 1n the gain response

Passband details

0 s
N vt
L R i S S -
B Rt e e e R
20

10°

o/t
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Digital Differentiators

* Employed to perform the differentiation
operation on the discrete-time version of a
continuous-time signal

* Frequency response of an 1deal discrete-
time differentiator 1s given by

H(e’®)=jo for 0<|o<mn
which has a linear magnitude response from
dctoo=m

Copyright © 2010, S. K. Mitra
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Digital Differentiators

A practical discrete-time differentiator 1s
used to perform the differentiation operation
in the low frequency range and 1s thus
designed to have a linear magnitude
response from dc to a frequency smaller
than

Copyright © 2010, S. K. Mitra
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Simple FIR Digital Differentiators

First-Difference Differentiator 1s a first-order
FIR discrete-time system with a time-
domain input-output relation given by

yln]=x[n]=x[n-1]
* Its transfer function is given by
HFD(Z) II—Z_I
which 1s same as that of a first-order FIR
highpass filter described earlier

Copyright © 2010, S. K. Mitra
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Simple FIR Digital Differentiators

» Main drawback of the first-difference
differentiator 1s that it also amplifies the
high frequency noise often present in many

signals
| Mo @y SR — Ideal differentiator
DIFF = ]
7 T Hey (e
9 15} e -
8 g jo
= o Hp@®)]
& RN
> ‘ |HCD(6 )|
0.5 '
O L L L L
0 0.2 0.4 0.6 0.8 1
/T
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Simple FIR Digital Differentiators

Central-Difference Differentiator avoids the
noise amplification problem of the first-
difference differentiator

o [ts time-domain input-output relation 1s
yn] =1 (x[n] - xn—2])
* [ts transfer function 1s given by
Hep(z)=1(1-27%)
* It has a linear magnitude response 1n a very
small low-frequency range

Can be derived also as the cascade of
a basic lowpass and a basic highpass:
h(n) = conv([1 1], [1 -1])
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Higher-Order FIR Digital
Differentiator

* The time-domain input-output relation of a
higher-order FIR digital differentiator 1s
given by

yln]= —116x[n] +x[n—-2]—x[n—4]+ 116x[n —6]

* Its transfer function 1s given by

6

H]D(Z):_116+Z — +1162

12
56
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Higher-Order FIR Digital
Differentiator

 [Its magnitude response, scaled by a factor
0.6 1s shown below

* The frequency range of operation of this
differentiator 1s from dc to m = 0.34

e Ideal differentiator
27 [Hpe (@) ==
_ - |H el O®
3 15 e ()]
E } ' |HID(GJ(0)|

2 < |HCD(eJ0))|
0.5 '
O | | | |

0 0.2 0.4 0.6 0.8 1

/Tt Copyright © 2010, S. K. Mitra
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Comb Filters

» The simple filters discussed so far are
characterized either by a single passband
and/or a single stopband

* There are applications where filters with
multiple passbands and stopbands are
required

* The comb filter is an example of such
filters

Copyright © 2010, S. K. Mitra
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Comb Filters

* In its most general form, a comb filter has a
frequency response that 1s a periodic
function of w with a period 2rn/L, where L 1s
a positive integer

» If H(z) 1s a filter with a single passband
and/or a single stopband, a comb filter can
be easily generated from it by replacing
cach delay 1n 1ts realization with L delays
resulting in a structure with a transfer

function given by G(z)=H (z") [For @in [0, 2] we
move L times along
the unit circle
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Comb Filters

. If |H(e’®)| exhibits a peak at @, , then |G(e/®)
will exhibit L peaks at o k/L ,0<k <L -1
in the frequency range 0 < w< 27

» Likewise, if |H (e/®)| has a notch at @_,
then |G(e/®)| will have L notches at o, k/L,
0 <k <L-11nthe frequency range 0 < w < 2w

* A comb filter can be generated from either
an FIR or an IIR prototype filter

Copyright © 2010, S. K. Mitra
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FIR Comb Filters

* For example, the comb filter generated from
the prototype lowpass FIR filter Hy(z) =
(1 +z ) has a transfer function Impulse

Go(z)=Hy(z") =
¢ |Gy(e’®)| has L notches

at ® = (2k+1)n/L and L °

peaks at ® =2m k/L, =°°
0<k<L-1,inthe ="
frequency range 02
0<mw<2rm 0

response”?

Y4z

Comb filter fro mlowpass prototype
I I

0.5 1 1.5 2
o/t
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FIR Comb Filters

* For example, the comb filter generated from
the prototype highpass FIR filter H(z) =
1 (1 z ) has a transfer function

Gi(z)=Hy(z")=1(1-z7")

Comb filter from hi ghpass prototype
I I

|G1(e “) has L peaks
at ® = (2k+1)n/L and L™
notches at @ = 27 k/L, ="

0<k<L-1,1nthe
frequency range

0<w<27 " 1 i 1 2

o/t

Copyright © 2010, S. K. Mitra
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FIR Comb Filters

* Depending on applications, comb filters
with other types of periodic magnitude
responses can be easily generated by
appropriately choosing the prototype filter

e For example, the M-point moving average

filter iy

H _ -z
(2) M-z

has been used as a prototype

Copyright © 2010, S. K. Mitra
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FIR Comb Filters

» This filter has a peak magnitude at @ = 0,
and M —1notches ato=2nl/ M 1</ <M -1

* The corresponding comb filter has a transfer

function
—LM

_ 11—z
G2)= M1-z"5)

whose magnitude has L peaks at 0 = 2mwk/L,
0<k<L-1and L(M —1) notches at

w=2nk/LM 1<k < L(M —1)

Copyright © 2010, S. K. Mitra
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IR Comb Filters

» The transfer functions of the simplest forms
of the prototype IIR filter are given by

—1
. Hy(z)=K 1772

—1
HO(Z):K =z 1
l—az

l—qz !
where | < 1 for stability

* Note: Hy(z) 1s a highpass filter with a zero
atz=1and H;(z)1s a lowpass filter with a
zero at z =—1

Copyright © 2010, S. K. Mitra
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IR Comb Filters

* For a maximum gain of 0 dB, the scale
factor K of H(z) should be set equal to
(1+a)/2 and the scale factor K of H{(z)
should be set equal to (1—-a)/2

» The corresponding transfer functions of the
comb filters of order L are

1_o" 1+ ,"
Gy(z2) =K —*—> G(z)=K =
l—oz -0z
Beware: poles get
closer to the unit circle! Copyright © 2010, S. K. Mitra
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IR Comb Filters

» Gain responses of the IIR comb filters
generated from H(z) and Hy(z)for L = &
are shown below

or 1 or 1

-10p 1 lOﬂ D

d—ZO J -20T1 1
'5‘ g
<

=30 O -30t |

- 40} — ~a0} <

50

Go(2) = Hy(2%) G(z) = Hi(z°)

dB
dB

Copyright © 2010, S. K. Mitra



Complementary Transfer
Functions

* A set of digital transfer functions with
complementary characteristics often finds
useful applications 1n practice

. useful complementary relations are
described next along with some applications

Copyright © 2010, S. K. Mitra
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Allpass Complementary
Transfer Functions

* A set of M digital transter functions, {H,(z)} ,
0<i<M —1, 1s defined to be allpass-
complementary of each other, 1f the sum of
their transfer functions 1s equal to an allpass
function, 1.e.,

M—1
ZHi (z)=A(z2)
i=0

Copyright © 2010, S. K. Mitra
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Power-Complermentary
Transfer Functions

* A set of M digital transfer functions, {H;(z)} ,
0<i<M —1, 1s defined to be power-
complementary of each other, 1f the sum of
their square-magnitude responses 1s equal to
a constant K for all values of m, 1.e.,

M- Ch
> Hi(e/®) =K,  forallo
=0

Copyright © 2010, S. K. Mitra
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Power-Complermentary
Transfer Functions

* For a pair of power-complementary transfer
functions, H(z) and H,(z), the frequency w,
where |Hy(e/®)|? =|H,(e/®)|?> =0.5, is
called the cross-over frequency

At this frequency the gain responses of both

filters are 3-dB below their maximum
values

* Asaresult, ®, is called the 3-dB cross-
over frequency

Copyright © 2010, S. K. Mitra



Power-Complermentary
Transfer Functions

« Example - Consider the two transfer functions
HO (Z) and Hl (Z) given by
Ho(2) = L[ Ag(2) + Ay (2)]
Hy(2) = [ Ay(z) - A(2)]
where A,(z) and A;(z) are stable allpass
transfer functions

 Note that Hy(z)+ H{(z) =A((z)

» Hence, Hy(z)and H;(z)are allpass
4 complementary

(2

Copyright © 2010, S. K. Mitra
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Power-Complermentary
Transfer Functions

* It can be shown that H,(z) and H,(z) are
also power-complementary

* Moreover, H,(z) and H{(z) are bounded-
real transfer functions

Copyright © 2010, S. K. Mitra



Doubly-Complementary
Transfer Functions

* A pair of doubly-complementary IIR
transfer functions,Hy(z) and H,(z), with a
sum of allpass decomposition can be simply
realized as indicated below

1/2

X(2) ||/ o

Ho(z) =

17
74

" Ap(2) H— Yy(2)
1Ai(2) B Yi(2)
Yo(z2) Y1(2)
X(2) H(z) = X(2)

Copyright © 2010, S. K. Mitra
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Doubly-Complementary
Transfer Functions

Example - The first-order lowpass transfer

function 1 1
— 1 _
HLP(Z): 2(1( Tz 1)

l-oz

can be expressed as

Hyp(z)= é(lf%zllj = é[ﬂo(z) + A (2)]

l-az

where

Ay(z)=1, Ayz)="%*"7

l—-az

—1
1

Copyright © 2010, S. K. Mitra



Doubly-Complementary
Transfer Functions

* [ts power-complementary highpass transfer
function 1s thus given by

Hyp(z)= ) [ AW2) - A(2)] = (1__%211)

l-az
_l+of 1=z
2 \1—az!

* The above expression 1s precisely the first-
order highpass transfer function described
earlier

Copyright © 2010, S. K. Mitra
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Doubly-Complementary
Transfer Functions

* Figure below demonstrates the allpass

complementary property and the power
complementary property of H;p(z) and

HHP(Z)

o o) jON[2 jON |2
| |HLP(e1 )+HHP(eJ )| - | |HLP(el )N+ |HHP(el )| -
~ _ g
\ e - 10 \ e -
0.8 ~ H_ ()] 0.8 N / .
3 < £ N PG
2 =] HP
0.6} N 0.6 7
g g S H (@) g <
0.4} / o 1 0.4 N
/ ~ / N |
O\[2
021 / ~_ 1 021 e NG
~ ~LF
~_ /S T
0 | | | | ~ 0/ | | | o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
/T /T
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