Types of Transfer Functions

LTI
x[n]—  hln] > y[n]
X(z) H(z) ¥(2)
yin]= 2 hlk]x[n—k]
k=—0o0

Y(z)=H(2)X(z)
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Types of Transfer Functions

* The time-domain classification of an LTI
digital transfer function 1s based on the
length of its impulse response A[n]:

- Finite impulse response (FIR) transfer
function

- Infinite impulse response (IIR) transfer
function

Copyright © 2010, S. K. Mitra
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Types of Transfer Functions

* In the case of digital transfer functions with
frequency-selective frequency responses,
there are two types of classifications

* (1) Classitication based on the shape ot the
magnitude function|H (e/®)

 (2) Classification based on the the form of
the phase function 6(w)
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Classification Based on
Magnitude Characteristics

e One common classification is based on an
1deal magnitude response

» A digital filter designed to pass signal
components of certain frequencies without
distortion should have a magnitude response
equal to one at these frequencies, and
should have a magnitude response equal to
zero at all other frequencies
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ldeal Filters

* The range of frequencies where the
magnitude response takes the value of one
1s called the passband

» The range of frequencies where the
magnitude response takes the value of zero
1s called the stopband
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ldeal Filters

* Frequency responses of the four popular types
of 1deal digital filters with real impulse
response coefficients are shown below:

Hyp(el®) Hyp(@®)
1
—_— 1 —
' : .
-T -0, 0 O, T @ O 0 O 7 N
Lowpass Highpass
HBP(ejm) HBS(ejm)

1 1

(O]

0}

T —0p W1 0 O W T - W) 01 0 Oy OH T

Bandpass Bandstop
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ldeal Filters

* Lowpass filter: Passband - 0 <o <,
Stopband - ®, <O T

* Highpass filter: Passband - ®, <@ <

Stopband - 0<w< o,
* Bandpass filter: Passband - o, o< 0.,
Stopband - 0w <@, jand .y <O T
Stopband - ®,; <®<®,.»

Passband -0<ow<w, and ®., <®O<T
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ldeal Filters

* The frequencies ., ®_; ,
the cutoff frequencies

and ., are called

* An ideal filter has a magnitude response
equal to one 1n the passband and zero 1n the
stopband, and has a zero phase everywhere
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ldeal Filters

» Earlier in the course we derived the inverse
DTFT of the frequency response H; p(e/®)
of the 1deal lowpass filter:

SIN M .7
hppln]=——"5, —0o<n<owo
™

* We have also shown that the above impulse
response 1s not absolutely summable, and

hence, the corresponding transfer function
1s not BIBO stable
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ldeal Filters

* Also, h; p[n] 18 not causal and 1s of doubly
infinite length

* The remaining three ideal filters are also
characterized by doubly infinite, noncausal
impulse responses and are not absolutely
summable

* Thus, the 1deal filters with the 1deal “brick

wall” frequency responses cannot be
realized with finite dimensional LTI filter

Copyright © 2010, S. K. Mitra
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‘cleat Filters

* To develop stable and realizable transfer
functions, the i1deal frequency response
specifications are relaxed by including a
transition band between the passband and
the stopband

* This permits the magnitude response to
decay slowly from its maximum value in
the passband to the zero value in the
stopband
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{desal Filters

* Moreover, the magnitude response 1s
allowed to vary by a small amount both 1n
the passband and the stopband

* Typical magnitude response specifications
of a lowpass filter are shown below

12
12
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Bounded Real Transfer
Functions

* A causal stable real-coefficient transfer
function H(z) 1s defined as a bounded real
(BR) transfer function if

H(e’®)|<1 for all values of ®

* Let x[n] and y[n] denote, respectively, the
input and output of a digital filter
characterized by a BR transfer function H(z)
with X (e/®) and Y(e’®) denoting their
DTFTs
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Bounded Real Transfer
Functions
» Then the condition |H (e/®)|<1implies that

Y(e'®) < X ()’

* Integrating the above from —r to m, and
applying Parseval’s theorem we get

> ylnl® < ¥ |xln]’

14
14
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Bounded Real Transfer
Functions

* Thus, for all finite-energy mnputs, the output
energy 1s less than or equal to the mput
energy implying that a digital filter
characterized by a BR transfer function can
be viewed as a passive structure

o If|H (ej “)|=1, then the output energy is

equal to the input energy, and such a digital
filter 1s therefore a lossless system
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Bounded Real Transfer
Functions

e A causal stable real-coefficient transfer

function H(z) wit ‘m thus
edreal (LBR)

\
called a lossless boundec
transfer function

 The BR and LBR transfer functions are the
keys to the realization of digital filters with
low coefficient sensitivity

16
16
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Bounded Real Transfer
Functions

- Consider the causal stable 1IR

transfer function
Hiz)=— & 0<o<I
-0z
where K and o are real constants

e [ts square-magnitude function 1s given by
2
K

(1+oc2)—20ccosoo

JjO

H(®) = HHE)

=€

Copyright © 2010, S. K. Mitra


3362
Oval


18

18

Bounded Real Transfer
Functions

« The maximum value of |H(e/®)|? is
obtained when 2o.cos ® 1n the denominator
1S a maximum and the minimum value 1s
obtained when 2o.cos ® 1S a minimum

: Fomaximum value of 2a.cos ® is

equal to 2o at ® = 0, and minimum value 1s
—200at® =T
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Bounded Real Transfer
Functions

e Thus, for o > 0, the maximum value of
[H(e!®)| is equal to K2 /(1-a)? at @ =0
and the minimum value 1s equal to
K?/(l+a)” at ®@=m

* On the other hand, fothe maximum
value of 2acos® 1sequalto —2a atw =

and the minimum value 1s equal to 2o at ®
=0
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Bounded Real Transfer
Functions

e Here, the maximum value of |H(e’ m)\z is
equal to K? /(11— oc)2 at ® = 1 and the
minimum value 1s equal to K 2/ (1+ oc)2 at
® =0

 Hence, the maximum value can be made
equal to 1 by choosing K =+(1-a), In
which case the minimum value becomes
(1-o)? /(1+a)?

20
20
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Bounded Real Transfer

Functions
 Hence,
Hiz= ., 0<lo/<l
l—oaz

1s a BR function for K =+(1—-a)

* Plots of the magnitude function for a =+0.5
with values of K chosen to make H(z) a BR
function are shown,on the next slide

l.e.: y[n] is a weighted average (K>0)
or a "weighted difference" (K<0)
of x[n] and y[n-1]
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Magnitude

Bounded Real Transfer
Functions

K=x05 a=05 K=+0.5 a=-05

Magnitude
o
(e}

0.2

0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
/7 /7

Lowpass Filter Highpass Filter
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Allpass Transfer Function

Definition

« An IIR transfer function “A(z) with unity
magnitude response for all frequencies, 1.e.,

AP =1, forall
1s called an allpass transfer function

* An M-th order causal real-coefficient
allpass transfer function 1s of the form

—1 —M +1 -M
Ay (2)=1%

dy +dy_1z +-+dz +z

—M +1

1+d12_1—|—---+dM_12 +dMZ_M

23
23
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Allpass Transfer Function

» [f we denote the denominator polynomial of
.ﬂM (Z) das DM(Z):

Dy (z)=1+ dlz_l fee dM_lz_M+1

+ dMZ_M

then 1t follows that “A4,,(z)can be written as:

zMp (Z_l)
— + M
Au(2)=+ Dy (2) .
o Note from the above that if z=re/? is a

pole of a real coefficient allpass transfer

function, then it has a zero at z=le™/ ¢

Copyright © 2010, S. K. Mitra
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Allpass Transfer Function

* The numerator of a real-coefficient allpass
transfer function 1s said to be the mirror-
image polynomial of the denominator, and
VICE versa

» We shall use the notation Dy, (z) to denote
the mirror-image polynomial of a degree-M
polynomial Dy, (z), 1.e.,

Dy(z)=2"" Dy (z7)

Copyright © 2010, S. K. Mitra
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Asz(z)=

26

Allpass Transfer Function

* The expression
Ay, (2)= _I_Z_MDM (Z_l)
- M Dy (2)
implies that the poles and zeros of a real-

coefficient allpass function exhibit mirror-
image symmetry in the z-plane

1.5}
O

1,

g 05 [ ///

~0.2+0.1827" +0.427 +27 £ o
1+0.4z71 40182720227 =%

-1¢F

-1.5¢

i 0 i 2
Real Part
Copyright © 2010, S. K. Mitra

3



3362
Line

3362
Line


27

27

Allpass Transfer Function

» To show that | 4,,(e/®)|=1we observe that

Ay (2= iZMDM(Z)
Dy (z7h
 Therefore

Ay (2) Ay (27 =

e Hence

Ay ()= Ay(2)Ay(z) . =1

z=e/®
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Allpass Transfer Function

* Now, the poles of a causal stable transfer
function must lie inside the unit circle in the
z-plane

* Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit
circle 1n a mirror-image symmetry with its
poles situated inside the unit circle

28
28
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Allpass Transfer Function

* Figure below shows the principal value of
the phase of the 3rd-order allpass function
A= "02+0. 1827 +0.4z 2 +27°
1(2) =

1+0.4z7 +0,182-0.2z
 Note the discontinuity by the amount of 2x

in the phase 6(®)

Principal value of phase
\ \

,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

29 ‘40 02 0.4 0.6 0.8

29

1
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Allpass Transfer Function

 [f we unwrap the phase by removing the
discontinuity, we arrive at the unwrapped
phase function 0_.(w) indicated below

* Note: The unwrapped phase function 1s a
continuous function of ®

Unwrapped phase
\ \

30 - S S
0 0.2 04 0.6 0.8

30

1
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Allpass Transfer Function

» The unwrapped phase function of any
arbitrary causal stable allpass function 1s a
continuous function of ®

Properties

* (1) A causal stable real-coefficient allpass
transfer function 1s a lossless bounded real
(LBR) function or, equivalently, a causal
stable allpass filter 1s a lossless structure

31

31
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Allpass Transfer Function

* (2) The magnitude function of a stable
allpass function A(z) satisfies:

<1, forl|z|>1
A(z)s=1, for |z =1
>1, for z <1

* (3) Let t(w) denote the group delay function
of an allpass filter A(2), i.e.,

()= 2 [0, ()

Copyright © 2010, S. K. Mitra



Allpass Transfer Function

* The unwrapped phase function 0, (w)of a
stable allpass function 1s a monotonically
decreasing function of ® so that t(w) 1s
everywhere positive 1in the range 0 < < 1

» The group delay of an M-th order stable
real-coefficient allpass transfer function
satisfies:

[t(@)do =M
33 0

33
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Imaginary Part

W
N

-1

..........

-1

Real Part

Imaginary Part

Real Part

Phase rotation forw =0 =2 m:
Single pole:
T

Pole pair:
n+a+f + -0 =2n

Single zero:
0

Zero pair:
y-v=0
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Allpass Transfer Function

A Simple Application

* A simple but often used application of an
allpass filter 1s as a delay equalizer

* Let G(z) be the transfer function of a digital
filter designed to meet a prescribed
magnitude response

* The nonlinear phase response of G(z) can be
corrected by cascading 1t with an allpass
filter A(z) so that the overall cascade has a
constant group delay in the band of interest
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Allpass Transfer Function

—  G(2)

e Since [A(e’®)|=1, we have

+ A(2)

G(e/”) A(e”™)|=|G(e”)
* Overall group delay 1s the given by the sum
of the group delays of G(z) and “A(z)

35
36
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Allpass Transfer Function

Figure below shows the group
delay of a 4" order elliptic filter with the

following specifications: ®, =0.3m
6,=1dB, 5, =35dB (see slide 12)

Original Filter

15

—_
o
T
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

(¢}

Group delay, samples

O | L 1
0 0.2 0.4 0.6 0.8 1
/T

36
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Allpass Transfer Function

* Figure below shows the group delay of the
original elliptic filter cascaded with an 8
order allpass section designed to equalize
the group delay 1n the passband

Group Delay Equalized Filter

N
g O

—_
o

Group delay, samples

o

o

MATLAB
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Classification Based on Phase
Characteristics

A second classification of a transfer
function i1s with respect to its phase
characteristics

* In many applications, it 1s necessary that the
digital filter designed does not distort the
phase of the mput signal components with
frequencies in the passband

38
39
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39

Zero-Phase Transfer Function

* One way to avoid any phase distortion is to

make the frequency response of the filter
real and nonnegative, 1.e., to design the
filter with a zero phase characteristic

* However, it 1s not possible to design a

causal digital filter with a zero phase
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Zero-Phase Transfer Function

* For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

* One zero-phase filtering scheme 1s sketched
below

x[n]— H(z) — vin] uln] — H(z) —— wln]

uln]=v[-n],  yln]=wl-n]
40

41
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Zero-Phase Transfer Function

* [t 1s easy to verify the above scheme 1n the

frequency domain

o Let X(ej“)), V(e/®) ,U(e/?),W(e/®), and

Y(e’/®) denote the DTFTs of x[n], v[n],
u[n], wln], and y[n], respectively

* From the figure shown earlier and making

use of the symmetry relations we arrive at
the relations between various DTFTs as
given on the next slide
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Zero-Phase Transfer Function

xX[n] =

H(z)

— v[n]

V(e/®)=H(e/*)X(e/),

uln

U(e/®)=V*(e/®),
* Combining the above equations we get
Y(e/®)=W*(e/®) = H *(e/®)U *(e/®)
= H*(e/*)V (e/®) = H*(e/”) H(e/®) X(e/®)

Note: Replacing a desired H with
|H|*2 Is ok for many specifications

like the one in slide 12

uln] — H(z)

— w|n]

J=v[-nl,  yln]=wi-n]
W (e/®)=H(e/*)U(e/)

Y(e/®) =W*(e/®)

= H(e®) X (e/®)
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Zero-Phase Transfer Function

* The function £i1tfilt implements the
above zero-phase filtering scheme

* In the case of a causal transfer function with
a nonzero phase response, the phase
distortion can be avoided by ensuring that
the transfer function has a unity magnitude
and a linear-phase characteristic in the
frequency band of interest
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Linear-Phase Transfer Function

o A full-band |filter with a

linear phase has a frequency response given
by

H(e/®) = e~ JOD
which has a linear phase from ® =0 to ® =
2T
* Note also ‘H (ej‘”)‘ =1
T(w)=D

44
45
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Linear-Phase Transfer

Function

* The output y[n] of this filter to an input
x[n]= Ae/®" is then given by
y[n] — o= JOD,jon _ Aejo)(n—D)

 If x,(¢)and y,(¢) represent the continuous-
time signals whose sampled versions,
sampled at ¢ = nT, are x[n] and y[n] given
above, then the delay between x,(¢) and y,, (¢)
1s precisely the group delay of amount D
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Linear-Phase Transfer
Function

« If D is an integer, then y[n] 1s 1dentical to
x[n], but delayed by D samples

* If D 1s not an integer, y[n], being delayed by
a fractional part, 1s not identical to x[#]

 In the latter case, the waveform of the
underlying continuous-time output is
identical to the waveform of the underlying
continuous-time mput and delayed D units
of time
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Linear-Phase Transfer
Function

 [f1it1s desired to pass mput signal
components 1n a certain frequency range
undistorted 1n both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response 1n the band of interest
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Linear-Phase Transfer
Function

* Figure below shows the frequency response
of a lowpass filter with a linear-phase
characteristic in the passband

Hp ("jw)|

48
49
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Linear-Phase Transfer
Function

* Since the signal components in the stopband
are blocked, the phase response in the
stopband can be of any shape

* Example - Determine the impulse response
of an 1deal lowpass filter with a linear phase

response:

HLP(€j®)={e

0% <o < o,
0, o.<o<n
49
50
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Linear-Phase Transfer
Function

Applying the frequency-shifting property of
the DTFT to the impulse response of an
1deal zero-phase lowpass filter we arrive at

SIN®.(n—n
hLP[”]: C( 0), —o0o<n<o
w(n—n,)

As betore, the above filter 1s noncausal and
of doubly infinite length, and hence,
unrealizable
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Linear-Phase Transfer
Function

* By truncating the impulse response to a
finite number of terms, a realizable FIR
approximation to the ideal lowpass filter
can be developed
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Linear-Phase Transfer
Function

 If we choose n,= N/2 with N a positive

integer, the truncated and shifted

approximation
;’LP[n] _ smmc(n—N/Z), 0<n<N
n(n—N/2)

will be a length N+1 causal linear-phase
FIR filter
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Linear-Phase Transfer
Function

* Figure below shows the filter coefficients
obtained using the function sinc for two

different values of N

N=12 N=13
0.6 ‘ ‘ ‘ ‘ ‘ 0.6 w ; ‘
©)
© ©
04 0.4
502 30.2
g g
) T t ) o 9 T T ¢ 9
' ) ) : ! b&

- | | | | L _O L L | | L L
@ 2 4 6 8 10 12 @ 2 4 6 8 10 12
5 3 Time index n Time index n
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LEfO-THESETIESHOAS5E

Because of the symmetry of the impulse
response coefficients as indicated in the two
figures, the frequency response of the
truncated approximation can be expressed as:

AN . N A . . ~
Hyp(e/®)= Y hyp[nle /" =e /N2 H | p(o)
n=0

where H ;1 p(®), called the zere-phase
respoense or amplitude response, is a real

function of ®

(Further design details in Sec.04.5)
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Minimum-Phase and Maximum-
Phase Transfer Functions

e Consider the two 1st-order transfer functions:

_z+b __ bz+1
Hi(z)= et H,(z)= . a\ <1, b\ <1
* Both transfer functions have a pole inside the
unit circle at the same location z = —aq and are

stable

* But the zero of H,(z) 1s inside the unit circle
at z=-b , whereas, the zero of H,(z) is at
z =—, situated 1n a mirror-image symmetry

1
b

Copyright © 2010, S. K. Mitra


3362
Highlight


57

56

Minimum-Phase and Maximum-
Phase Transfer Functions

* Figure below shows the pole-zero plots of
the two transfer functions

Unit circle Unit circle

H)(2) Hy(z)

Note: numerator in H, should more properly be (z + 1/b).
A gain factor is introduced in the notation used above
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Minimum-Phase and Maximum-
Phase Transfer Functions

 However, both transfer functions have an
1dentical magnitude function as

Hy()H,(z) = Hy())H,(z )
* The corresponding phase functions are

JoNT _ -1 sino -1 sinw
arg[ H(e’")] =tan Freos AL Tl

JoNT _ -1 bsino -1 sinw
arg[HZ (e )] = tan 1+bcosw tan a+Ccos®
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Minimum-Phase and Maximum-
Phase Transfer Functions

* Figure below shows the unwrapped phase

responses of the two transfer functions for
a=0.8and b= —0.5

Normalized Frequency (< rad/sample) Normalized Frequency (x = rad/sample)

o
o
]
8

Phase (degrees)
s 2
\
Phase (degrees)
s &
/’/
/
/
/
//

M
o
n
(=]

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized Frequency (xx rad/sample) Normalized Frequency (xm rad/sample)

<O
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Minimum-Phase and Maximum-
Phase Transfer Functions

* From this figure 1t follows that H,(z) has
an excess phase lag with respect to H{(z)

» The excess phase lag property of H,(z)
with respect to H(z) can also be explained
by observing that we can write

H2(2)2b2+1:(z+bj(bz+lj

z4+a z+a/)\ z+b

— Y~
Hy(z) A(z)
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Minimum-Phase and Maximum-
Phase Transfer Functions

where A(z)=(bz+1)/(z+b) 1s a stable
allpass function

» The phase functions of H{(z)and H,(z)
are thus related through

arg[H,(e’™)] = arg[H,(e’”)]+ arg[ A(e’™)]
* As the unwrapped phase function of a stable

first-order allpass function 1s a negative

function of m, 1t follows from the above that

H,(z) has indeed an excess phase lag with
s0  respectto Hy(z)

61
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Minimum-Phase and Maximum-
Phase Transfer Functions

 Generalizing the above result, let H, (z) be
a causal stable transfer function with all
zeros 1nside the unit circle and let H(z) be
another causal stable transfer function
satisfying H(e/”) = H,, (e/”)

» These two transfer functions are then

related through H(z)=H,, (z)A(z)where
A(z) is a causal stable allpass function

61
62
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Minimum-Phase and Maximum-
Phase Transfer Functions

* The unwrapped phase functions of A, (z)
and H(z) are thus related through

arg[H(e’")] = arg[H,, (¢’*)] +arg[A(e’)]
* H(z) has an excess phase lag with respect to
,(z)
* A causal stable transfer function with all

zeros inside the unit circle 1s called a
minimum-phase transfer function

62
63
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Minimum-Phase and Maximum-
Phase Transfer Functions

e A causal stable transfer function with all
zeros outside the unit circle 1s called a
maximum-phase transfer function

A causal stable transfer function with zeros
inside and outside the unit circle 1s called a
mixed-phase transfer function
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Minimum-Phase and Maximum-
Phase Transfer Functions

* Example — Consider the mixed-phase

transfer function

H(z)=

21+0.3z71)0.4-z71

* We can rewrite H(z) as i
21+0.3z ) (1-0.4z71

H(z) =

- (1-02z"Ha+05z7"

64 Minimum-phase function

65

|

1-0.2z"H1+0.5z7h

—1
04—z
-1
1-0.4z
Allpass?unction
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