LTI Discrete-Time Systemns in
the iz-Transform|Domain

* An LTI discrete-time system 1s completely
characterized in the time-domain by its
impulse response sequence {h[n]}

* Thus, the transform-domain representation
of a discrete-time signal can also be equally
applied to the transform-domain
representation of an LTI discrete-time
system
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LTI Discrete-Time Systemns in
the z-Transform|Domain

Such transform-domain representations
provide additional 1nsight into the behavior
of such systems

It 1s easier to design and implement these
systems 1n the transform-domain for certain
applications

We consider now the use of the DTFT and

the z-transform 1n developing the transform-
domain representations of an LTI system
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Finite-Dimensional LTI
Discrete-Time Systems

In this course we shall be concerned with
LTI discrete-time systems characterized by
linear constant coefficient difference
equations of the form:

N M
> diyln—kl= > pixln—k]
k=0 k=0
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Finite-Dimensional LTI

Discrete-Time Systems

* Applying the z-transform to both sides of
the difference equation and making use of
the linearity and the time-invariance
properties of Table 62 we arrive at

Al k A k
Ydiz"Y(2)= D prz " X(2)
k=0 k=0

where Y(z) and X(z) denote the z-transforms
of y[n] and x[#] with associated ROC:s,
respectively
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Finite-Dimensional LTI
Discrete-Time Systems

A more convenient form of the z-domain
representation of the difference equation 1s
given by

N M
[ dezij(z) = ( Zpkz_k jX(Z)
k=0 k=0
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The Transfer Function

* A generalization of the frequency response
function

* The convolution sum description of an LTI
discrete-time system with an impulse
response A[n] 1s given by

ylnl= > hlk]x[n—k]

k=—o0
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The Transfer Function

» Taking the z-transforms of both sides we get

Y(2)= Synlz "= Y ( Zh[k]x[n—k]jz

Nn=—00 n=—o0 \ k=—00

= i h[k]( ix[n—k]zn]
k=—00 N=—00

k=—0o0

Z h[k][ Zx[é]z(“k)]
/
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The Transfer Function

. Or, Y(z)= Z h[k][ Zx[é]zgj K
14

k=—0o0 % /
X (Z )
e Therefore, Y(z)= ( Zh[k]z_k )X (2)
f - _ . Practically
H(z) FIR systems.

* Thus, Y(z) = H(z)X(2)
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The Transfer Function

 Hence,
H(z)=Y(z)/ X(2)

* The function H(z), which 1s the z-transform of
the impulse response A[n] of the LTI system,
1s called the transfer function or the system
function

 The inverse z-transform of the transfer
function H(z) yields the impulse response /[#7]

Copyright © 2010, S. K. Mitra



10

10

The Transfer Function

Consider an LTI discrete-time system
characterized by a difference equation

Z;cv:odky[n _ k] — ZKO ka[n — k]

Its transfer function 1s obtained by taking
the z-transform of both sides of the above

equation
Thus

H(z)=

ZM Z—k Transfer function
k=0 Pk < [for IR systems

N —k
Zk:o dyz
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The Transfer Function

* Or, equivalently as
M
—M) Zk:o Pk“
Z;CV:O deN—k

* An alternate form of the transfer function 1s
given by
M —1
_po 1Lm(0=6kz )
H(z)= g S =

M-k
H(z)= N

11
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The Transfer Function

Or, equivalently as
H(z)= PO JN-MD) [Tesi(z=&0)
dO Hk 1(Z ﬂ*k)

* &, &,...,&,, are the finite zeros, and

Ay Aoy Ay ATC the finite poles of H(z)
If N> M, there are additional (N — M) zeros
atz=20

If N <M, there are additional (M — N)poles
atz=10

Copyright © 2010, S. K. Mitra
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The Transfer Function

* For a causal IIR digital filter, the impulse
response 1s a causal sequence

e The ROC of the causal transfer function

H(Z) p() (N M) Hk 1(Z fk)

dO H fo— 1(2 /Ik)
1s thus exterior to a circle going through the
pole furthest from the origin

e Thus the ROC is given by |z > ml?X\K ol
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14

The Transfer Function

» Example - Consider the M-point moving-
average FIR filter with an impulse response

i = /M, 0<n<M -1
[n]= 0, otherwise

* [ts transfer function 1s then given by

1 M -1 M ZM—I

l—z—
H(z)=— Y z7" = =
2 M,ZO MA-zY M[ZM(z-D)]
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The Transfer Function

The transfer function has M zeros on the
unit circle at z = efz’tk/M, 0<k<M-1

There are M —1 poles at z=0 and a single

pole atz=1 M=3

The pole atz=1
exactly cancels the
zero atz =1

The ROC 1s the entire . i

z-plane except z =0 105 0 05

Real Part

0.5¢

Imaginary Part
o
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The Transfer Function

( Example) A causal LTI IIR digital filter is

described by a constant coefficient

C

1fference equation given by

yin]l=x[n—-1]-12x[n-2]+x[n-3]+1.3y[n—-1]

—1.04y|n—-2]+0.222 y[n—3]

e Its transfer function 1s therefore given by

16
16

z 1 127724773
1-13z71+1.04272-0.222273

Copyright © 2010, S. K. Mitra
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The Transfer Function

* Alternate forms:
z2 —12z+1

z3-1.3z2+1.04z-0.222
~ (z-0.6+0.8)(z—0.6— j0.8)
(z—-0.3)(z-0.5+;0.7)(z-0.5-0.7)

H(z)=

e Note: Poles farthest from g%
z =0 have a magnitude £ °— |
/0.74 -0.5 X/@/
1t | | \\\‘\T“//‘ |
17 ° ROC ‘Z‘ > A/0.74 1 05 Rea?Paﬂ 05 1

Copyright © 2010, S. K. Mitra
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Frequency Response from

Transfer Function

 If the ROC of the transfer function H(z)
includes the unit circle, then the frequency
response H (e/?)of the LTI digital filter can
be obtained simply as follows:

H(e/*)=H(z),_,jo

» For a real coefficient transfer function H(z)
it can be shown that

H(e/®)” = H(e/)H * (e/)
= H(e/®)H (e /)= H(2)H(z _1)‘z=eﬂ’°

Copyright © 2010, S. K. Mitra
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Frequency Response from
Transfer Function

For a stable rational transfer function in the
form

H(Z) pO (N—M) Hk I(Z fk)
dO Hk I(Z /Ik)

the factored form of the frequency response
1s given by

H(e/®) = Po , jo(N-M) Hk (e’ 7O —&)
4o [T (e =)

Copyright © 2010, S. K. Mitra
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Frequency Response from
Transfer Function

It 1s convenient to visualize the contributions
of the zero factor (z —§,; )and the pole factor
(z—A;) from the factored form of the
frequency response

The magnitude function 1s given by

H(el®) = 53

‘ejoo(N—M)‘

Hiil\ej“’ — ik‘

H;(V=1‘ejm — kk‘
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Frequency Response from
Transfer Function

which reduces to

H;ﬁl\eﬂ” — EBk‘

‘H(ej@)‘ — 5(())

H;cvzl‘ejw — kk‘

» The phase response for a rational transfer

function 1s of the form
arg H(e/®) =arg(py/dy) +o(N —M)

+ Y arg(el® —g;) — Yarg(el® 1)

k=1

k=1
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Frequency Response from
Transfer Function

* The magnitude-squared function of a real-
coefficient transfer function can be
computed using

H(e™)" =

22
22

Po

2T (o — g ) (e o — &)

dy

[T, (7 =) (e 7@ =%

Matlab 04 2 and 04 3: examples
In the Laplace and z domains
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Geometric Interpretation of
Frequency Response Computation

* The factored form of the frequency
response

H(eJ®) = PO gjo(N-M) [Ti- (e~ &)
dy Hk 1(8]0) M)

1s convenient to develop a geometric
interpretation of the frequency response
computation from the pole-zero plot as w
varies from 0 to 27 on the unit circle

23
23
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Geometric Interpretation of
Frequency Response Computation

* The geometric interpretation can be used to
obtain a sketch of the response as a function
of the frequency

A typical factor in the factored form of the
frequency response 1s given by

(e/” —pe/?)
where pe’ % is a zero if it is zero factor or is
a pole 1f 1t 1s a pole factor

Copyright © 2010, S. K. Mitra



25

25

Geometric Interpretation of
Frequency Response Computation

* As shown below 1n the z-plane the factor
(/@ —pe’/?) represents a vector starting at
the point z = pe/® and ending on the unit
circle at z = e/®

jlm z

-
i
7
(1))
P e
1\)1
—J
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Geometric Interpretation of
Frequency Response Computation

* As o 1s varied from 0 to 27, the tip of the
vector moves counterclockise from the
point z = 1 tracing the unit circle and back
to the point z = 1

26
26
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Geometric Interpretation of
Frequency Response Computation

* As indicated by |
[T;5e" —&
joy _ |[Po| L 1k=1 k
0 szl‘ef N kk‘
the magnitude response [H (e/®)| at a

specific value of w 1s given by the product
of the magnitudes of all zero vectors
divided by the product of the magnitudes of
all pole vectors
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Geometric Interpretation of
Frequency Response Computation

e Likewise, from
arg H(e/®) =arg(py/dy) +o(N —M)
+ 2 plarg(e’” =) -2 arg (e — )
we observe that the phase response
at a specific value of o 1s obtained by
adding the phase of the term py/d, and the
linear-phase term (N — M) to the sum of

the angles of the zero vectors minus the

angles of the pole vectors
28

28
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Geometric Interpretation of
Frequency Response Computation

* Thus, an approximate plot of the magnitude
and phase responses of the transfer function
of an LTI digital filter can be developed by
examining the pole and zero locations

* Now, a zero (pole) vector has the smallest
magnitude when @ = ¢

Copyright © 2010, S. K. Mitra



Geometric Interpretation of
Frequency Response Computation

* To highly attenuate signal components in a
specified frequency range, we need to place
zeros very close to or on the unit circle in
this range

» Likewise, to highly emphasize signal
components in a specified frequency range,

we need to place poles very close toM
the unit circle 1n this range

30
30
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Stability Condition in Terms of
the Pole Locations

» A causal LTI digital filter 1s BIBO stable 1f
and only 1f 1ts impulse response A|n] 1s
absolutely summable, 1.¢.,

S = Z‘h[n]‘ < o0
N=—00
 We now develop a stability condition in
terms of the pole locations of the transfer

function H(z)
31
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Stability Condition in Terms of
the Pole Locations

* The ROC of the z-transform H(z) of the
impulse response sequence A|n] 1s defined
by values of |z| = r for which A[n]r~" is
absolutely summable

* Thus, 1f the ROC includes the unit circle |z|
= 1, then the digital filter 1s stable, and vice
versa

32
32
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Stability Condition in Terms of
the Pole Locations

 In addition, for a stable and causal digital

filter for which A[n] 1s a right-sided
sequence, the ROC will include the unit

circle and entire z-plane including the point
Z=00

* An FIR digital filter with bounded impulse

response 1s always stable
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Stability Condition in Terms of
the Pole Locations

* On the other hand, an IIR filter may be
unstable 1f not designed properly

* In addition, an originally stable IIR filter
characterized by infinite precision
coefficients may become unstable when
coefficients get quantized due to
implementation

34
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Stability Condition in Terms of
the Pole Locations

« Example - Consider the causal IIR transfer
function

H(z)=

1
1-1.8452z"1 +0.8505862 2

» The plot of the impulse response coefficients
1s shown on the next slide

35
35
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Stability Condition in Terms of
the Pole Locations

C@%@@E%

(D]
<

4+r
2 9 %@a
(@ Q) 4o
g
<

0 10 20 30 40 50 60 70
Time index n

* As can be seen from the above plot, the
impulse response coefficient A#[n] decays
rapidly to zero value as »n increases

Copyright © 2010, S. K. Mitra

36
36



37

37

Stability Condition in Terms of
the Pole Locations

The absolute summability condition of A[n]
1s satisfied

* Hence, H(z) 1s a stable transfer function

 Now, consider the case when the transfer
function coetficients are rounded to values

with 2 digits after the decimal point:
1

1-1.85z71 +0.85272

Copyright © 2010, S. K. Mitra
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Stability Condition in Terms of
the Pole Locations

* A plot of the impulse response of iz\[n] 1S
shown below

0 10 20 30 40 50 60 70
Time index n
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Stability Condition in Terms of
the Pole Locations

* In this case, the impulse response coetticient
h[n] increases rapidly to a constant value as
7 INCreases

* Hence, the absolute summability condition of
1s violated

e Thus, b2 (z) 1s an unstable transfer function
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Stability Condition in Terms of

the Pole Locations

» The stability testing of a IIR transfer
function 1s therefore an important problem

* In most cases it 1s difficult to compute the
infinite sum

S= Z;O:_Oo‘h[n]‘ < 0

e For a causal IIR transfer function, the sum S
can be computed approximately as

Sk = Z;{f:_ol‘h[n]‘

Copyright © 2010, S. K. Mitra
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Stability Condition in Terms of
the Pole Locations

» The partial sum 1s computed for increasing
values of K until the difference between a
series of consecutive values of S 1s
smaller than some arbitrarily chosen small
number, which is typically 107°

e For a transfer function of very high order
this approach may not be satistactory

* An alternate, easy-to-test, stability condition
1s developed next
41
41
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Stability Condition in Terms of
the Pole Locations

* Consider the causal IIR digital filter with a
rational transfer function H(z) given by

M _

Zk:o Pz K
N _

Zk:o dyz .

o [Its impulse response {/[n]} 1s a right-sided
sequence

 The ROC of H(z) 1s exterior to a circle
going through the pole furthest from z =0

H(z)=
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Stability Condition in Terms of
the Pole Locations

* But stability requires that {4[n]} be

absolutely summable

» This in turn implies that the DTFT H (e/?)

of {h[n]} exists

* Now, if the ROC of the z-transform H(z)

includes the unit circle, then
H(e/®)=H(z)

z=e/®

Copyright © 2010, S. K. Mitra
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Stability Condition in Terms of
the Pole Locations

* Conclusion: All poles of a causal stable
transfer function H(z) must be strictly inside

the unit circle

* The stability region (shown shaded) in the
z-plane 1s shown below

jlmz
/]X stability region
1 / 1 Rez
unit circle = :
—J Copyright © 2010, S. K. Mitra




Stability Condition in Terms of
the Pole Locations

« Example - The factored form of

1
H(z) =
(2) = | 0.8452110.8505862

1S
H(z) = 1
- (1-0.902z71(1-0.943z71)
which has a real pole at z = 0.902 and a real

pole at z=0.943

* Since both poles are inside the unit circle,
H(z) 1s BIBO stable

45
45
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Stability Condition in Terms of
the Pole Locations

« Example - The factored form of
1

1-1.85271+0.85272
A 1
H(z) =
()= o y1-0.855-1)
which has a real pole on the unit circle at z
= 1 and the other pole inside the unit circle

H(z)=
1S

» Since both poles are not inside the unit

Ny circle, H(z) 1s unstable

46
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