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LTI DiscreteLTI Discrete--Time Systems in Time Systems in 
the Transform Domainthe Transform Domain

• An LTI discrete-time system is completely 
characterized in the time-domain by its 
impulse response sequence {h[n]}

• Thus, the transform-domain representation 
of a discrete-time signal can also be equally 
applied to the transform-domain 
representation of an LTI discrete-time 
system
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LTI DiscreteLTI Discrete--Time Systems in Time Systems in 
the Transform Domainthe Transform Domain

• Such transform-domain representations 
provide additional insight into the behavior 
of such systems 

• It is easier to design and implement these 
systems in the transform-domain for certain 
applications

• We consider now the use of the DTFT and 
the z-transform in developing the transform- 
domain representations of an LTI system
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• In this course we shall be concerned with 
LTI discrete-time systems characterized by 
linear constant coefficient difference 
equations of the form:
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• Applying the z-transform to both sides of 
the difference equation and making use of 
the linearity and the time-invariance 
properties of Table 6.2 we arrive at

where Y(z) and X(z) denote the z-transforms 
of y[n] and x[n] with associated ROCs, 
respectively
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• A more convenient form of the z-domain 
representation of the difference equation is 
given by
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The Transfer FunctionThe Transfer Function

• A generalization of the frequency response 
function

• The convolution sum description of an LTI 
discrete-time system with an impulse 
response h[n] is given by
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The Transfer FunctionThe Transfer Function

• Taking the z-transforms of both sides we get
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The Transfer FunctionThe Transfer Function

• Or,

• Therefore,

• Thus, Y(z) = H(z)X(z)
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The Transfer FunctionThe Transfer Function
• Hence,

• The function H(z), which is the z-transform of 
the impulse response h[n] of the LTI system, 
is called the transfer function or the system 
function

• The inverse z-transform of the transfer 
function H(z) yields the impulse response h[n]
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The Transfer FunctionThe Transfer Function
• Consider an LTI discrete-time system 

characterized by a difference equation

• Its transfer function is obtained by taking 
the z-transform of both sides of the above 
equation

• Thus
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The Transfer FunctionThe Transfer Function

• Or, equivalently as

• An alternate form of the transfer function is 
given by
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The Transfer FunctionThe Transfer Function
• Or, equivalently as

• are the finite zeros, and                    
are the finite poles of H(z)

• If N > M, there are additional               zeros 
at z = 0

• If N < M, there are additional               poles 
at z = 0
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The Transfer FunctionThe Transfer Function
• For a causal IIR digital filter, the impulse 

response is a causal sequence

• The ROC of the causal transfer function

is thus exterior to a circle going through the 
pole furthest from the origin

• Thus the ROC is given by
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The Transfer FunctionThe Transfer Function

• Example - Consider the M-point moving- 
average FIR filter with an impulse response

• Its transfer function is then given by
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The Transfer FunctionThe Transfer Function
• The transfer function has M zeros on the 

unit circle at                    ,

• There are           poles at z = 0 and a single 
pole at z = 1

• The pole at z = 1                                                
exactly cancels the                                          
zero at z = 1

• The ROC is the entire                                  
z-plane except z = 0
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The Transfer FunctionThe Transfer Function

• Example - A causal LTI IIR digital filter is 
described by a constant coefficient 
difference equation given by

• Its transfer function is therefore given by
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The Transfer FunctionThe Transfer Function
• Alternate forms:

• Note: Poles farthest from                                  
z = 0 have a magnitude

• ROC:                                   
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Frequency Response from Frequency Response from 
Transfer FunctionTransfer Function

• If the ROC of the transfer function H(z) 
includes the unit circle, then the frequency 
response              of the LTI digital filter can 
be obtained simply as follows:

• For a real coefficient transfer function H(z) 
it can be shown that
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Frequency Response from Frequency Response from 
Transfer FunctionTransfer Function

• For a stable rational transfer function in the 
form

the factored form of the frequency response 
is given by
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Frequency Response from Frequency Response from 
Transfer FunctionTransfer Function

• It is convenient to visualize the contributions 
of the zero factor and the pole factor 

from the factored form of the 
frequency response

• The magnitude function is given by 
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Frequency Response from Frequency Response from 
Transfer FunctionTransfer Function

which reduces to

• The phase response for a rational transfer 
function is of the form
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Frequency Response from Frequency Response from 
Transfer FunctionTransfer Function

• The magnitude-squared function of a real- 
coefficient transfer function can be 
computed using
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• The factored form of the frequency 
response 

is convenient to develop a geometric 
interpretation of the frequency response 
computation from the pole-zero plot as 

 varies from 0 to 2
 

on the unit circle

N
k k

j

M
k k

j
MNjj

e

e
e

d
p

eH
1

1)(

0

0

)(

)(
)(

23

3362
Highlight



24
Copyright © 2010, S. K. Mitra

Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• The geometric interpretation can be used to 
obtain a sketch of the response as a function 
of the frequency

• A typical factor in the factored form of the 
frequency response is given by

where          is a zero if it is zero factor or is 
a pole if it is a pole factor
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• As shown below in the z-plane the factor        
represents a vector starting at 

the point                and ending on the unit 
circle at
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• As 
 

is varied from 0 to 2 , the tip of the 
vector moves counterclockise from the 
point z = 1 tracing the unit circle and back 
to the point z = 1
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• As indicated by

the magnitude response               at a 
specific value of 

 
is given by the product 

of the magnitudes of all zero vectors 
divided by the product of the magnitudes of 
all pole vectors
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• Likewise, from

we observe that the phase response                 
at a specific value of 

 
is obtained by 

adding the phase of the term            and the 
linear-phase term                  to the sum of 
the angles of the zero vectors minus the 
angles of the pole vectors
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• Thus, an approximate plot of the magnitude 
and phase responses of the transfer function 
of an LTI digital filter can be developed by 
examining the pole and zero locations

• Now, a zero (pole) vector has the smallest 
magnitude when 

 
= 
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Geometric Interpretation of Geometric Interpretation of 
Frequency Response ComputationFrequency Response Computation

• To highly attenuate signal components in a 
specified frequency range, we need to place 
zeros very close to or on the unit circle in 
this range

• Likewise, to highly emphasize signal 
components in a specified frequency range, 
we need to place poles very close to or on 
the unit circle in this range
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• A causal LTI digital filter is BIBO stable if 
and only if its impulse response h[n] is 
absolutely summable, i.e.,

• We now develop a stability condition in 
terms of the pole locations of the transfer 
function H(z)
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• The ROC of the z-transform H(z) of the 
impulse response sequence h[n] is defined 
by values of |z| = r for which              is 
absolutely summable

• Thus, if the ROC includes the unit circle |z| 
= 1, then the digital filter is stable, and vice 
versa
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• In addition, for a stable and causal digital 
filter for which h[n] is a right-sided 
sequence, the ROC will include the unit 
circle and entire z-plane including the point

• An FIR digital filter with bounded impulse 
response is always stable
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• On the other hand, an IIR filter may be 
unstable if not designed properly

• In addition, an originally stable IIR filter 
characterized by infinite precision 
coefficients may become unstable when 
coefficients get quantized due to 
implementation
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• Example - Consider the causal IIR transfer 
function

• The plot of the impulse response coefficients 
is shown on the next slide
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• As can be seen from the above plot, the 
impulse response coefficient h[n] decays 
rapidly to zero value as n increases

h[n]
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• The absolute summability condition of h[n] 
is satisfied

• Hence, H(z) is a stable transfer function

• Now, consider the case when the transfer 
function coefficients are rounded to values 
with 2 digits after the decimal point:
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• A plot of the impulse response of          is 
shown below
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• In this case, the impulse response coefficient        
increases rapidly to a constant value as 

n increases

• Hence, the absolute summability condition of       
is violated

• Thus,          is an unstable transfer function
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• The stability testing of a IIR transfer 
function is therefore an important problem

• In most cases it is difficult to compute the 
infinite sum

• For a causal IIR transfer function, the sum 
 can be computed approximately as
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• The partial sum is computed for increasing 
values of K until the difference between a 
series of consecutive values of        is 
smaller than some arbitrarily chosen small 
number, which is typically

• For a transfer function of very high order 
this approach may not be satisfactory

• An alternate, easy-to-test, stability condition 
is developed next
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• Consider the causal IIR digital filter with a 
rational transfer function H(z) given by

• Its impulse response {h[n]} is a right-sided 
sequence

• The ROC of H(z) is exterior to a circle 
going through the pole furthest from z = 0
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• But stability requires that {h[n]} be 
absolutely summable

• This in turn implies that the DTFT             
of {h[n]} exists

• Now, if the ROC of the z-transform H(z) 
includes the unit circle, then
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• Conclusion: All poles of a causal stable 
transfer function H(z) must be strictly inside 
the unit circle 

• The stability region (shown shaded) in the 
z-plane is shown below
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• Example - The factored form of

is

which has a real pole at z = 0.902 and a real 
pole at z = 0.943

• Since both poles are inside the unit circle, 
H(z) is BIBO stable
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Stability Condition in Terms of Stability Condition in Terms of 
the Pole Locationsthe Pole Locations

• Example - The factored form of

is

which has a real pole on the unit circle at z 
= 1 and the other pole inside the unit circle

• Since both poles are not inside the unit 
circle, H(z) is unstable
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zĤ

46




