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The Frequency ResponseThe Frequency Response
•  Discrete-time signals encountered in prac-

tice can be represented as a linear combina-
tion of a very large, maybe infinite, number 
of sinusoidal discrete-time signals
of different angular frequencies

• Thus, knowing the response of the LTI 
system to a single sinusoidal signal, we can
determine its response to more complicated 
signals by making use of the superposition 
property
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EigenEigen FunctionFunction

• An important property of an LTI system is 
that for certain types of input signals, called 
eigen functions, the output signal is the 
input signal multiplied by a complex 
constant

• We consider here one such eigen function 
as the input
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EigenEigen FunctionFunction

• Consider the LTI discrete-time system with 
an impulse response {h[n]} shown below

• Its input-output relationship in the time- 
domain is given by the convolution sum

x[n] h[n] y[n]
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EigenEigen FunctionFunction

• If the input is of the form

then it follows that the output is given by

• Let
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EigenEigen FunctionFunction

• Then we can write

• Thus for a complex exponential input signal  
, the output of an LTI discrete-time 

system is also a complex exponential signal 
of the same frequency multiplied by a 
complex constant

• Thus           is an eigen function of the system
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The Frequency ResponseThe Frequency Response

• The quantity              is called the frequency 
response of the LTI discrete-time system 

• provides a frequency-domain 
description of the system

• is precisely the DTFT of the impulse 
response {h[n]} of the system
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The Frequency ResponseThe Frequency Response
• , in general, is a complex function 

of 
 

with a period 2

• It can be expressed in terms of its real and 
imaginary parts

or, in terms of its magnitude and phase,

where
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The Frequency ResponseThe Frequency Response

• The function                is called the 
magnitude response and the function           
is called the phase response of the LTI 
discrete-time system

• Design specifications for the LTI discrete- 
time system, in many applications, are 
given in terms of the magnitude response or 
the phase response or both
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The Frequency ResponseThe Frequency Response

• In some cases, the magnitude function is 
specified in decibels as 

where ( ) is called the gain function

• The negative of the gain function

is called the attenuation or loss function

dBeH j )(log20)( 10
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The Frequency ResponseThe Frequency Response
• Note: Magnitude and phase functions are 

real functions of , whereas the frequency 
response is a complex function of 

• If the impulse response h[n] is real then it 
follows from Table 3.2 that the magnitude 
function is an even function of :

and the phase function is an odd function of 
:

)()( jj eHeH
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The Frequency ResponseThe Frequency Response
• Likewise, for a real impulse response h[n], 

is even and                  is odd

• Example - Consider the M-point moving 
average filter with an impulse response 
given by

• Its frequency response is then given by
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The Frequency ResponseThe Frequency Response

• Or,
Mn
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The Frequency ResponseThe Frequency Response

• Thus, the magnitude response of the M-point 
moving average filter is given by

and the phase response is given by
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Frequency Response Frequency Response 
Computation Using MATLABComputation Using MATLAB

• The function 
 

can be used 
to determine the values of the frequency 
response vector 

 
at a set of given 

frequency points 

• From , the real and imaginary parts can be 
computed using the functions 

 
and 

, and the magnitude and phase 
functions using the functions 

 
and 
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Frequency Response Frequency Response 
Computation Using MATLABComputation Using MATLAB

• Example - Program 3_2.m can be used to 
generate the magnitude and gain responses 
of an M-point moving average filter as 
shown below
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Frequency Response Frequency Response 
Computation Using MATLABComputation Using MATLAB

• The phase response of a discrete-time 
system when determined by a computer 
may exhibit jumps by an amount 2

 
caused 

by the way the arctangent function is 
computed

• The phase response can be made a 
continuous function of 

 
by unwrapping the 

phase response across the jumps
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Frequency Response Frequency Response 
Computation Using MATLABComputation Using MATLAB

• To this end the function 
 

can be 
used, provided the computed phase is in 
radians

• The jumps by the amount of 2
 

should not 
be confused with the jumps caused by the 
zeros of the frequency response as indicated 
in the phase response of the moving average 
filter

17

3362
Highlight



Copyright © 2010, S. K. Mitra
18

SteadySteady--State ResponseState Response
• Note that the frequency response also 

determines the steady-state response of an 
LTI discrete-time system to a sinusoidal 
input

• Example - Determine the steady-state 
output y[n] of a real coefficient LTI 
discrete-time system with a frequency 
response              for an input

nnAnx o ),cos(][

)( jeH
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SteadySteady--State ResponseState Response

• We can express the input x[n] as

where

• Now the output of the system for an input          
is simply
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SteadySteady--State ResponseState Response

• Because of linearity, the response v[n] to an 
input g[n] is given by

• Likewise, the output v*[n] to the input g*[n] 
is

njjj oo eeHAenv )(][
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SteadySteady--State ResponseState Response

• Combining the last two equations we get
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2
1

2
1

][*][][ nvnvny

nojjojnojjojoj eeeeeeeHA )()()(
2
1

21



Copyright © 2010, S. K. Mitra
22

SteadySteady--State ResponseState Response

• Thus, the output y[n] has the same sinusoidal 
waveform as the input with two differences:

(1)  the amplitude is multiplied by , 
the value of the magnitude function at

(2) the output has a phase lag relative to the 
input by an amount           , the value of the 
phase function at

)( ojeH
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• The expression for the steady-state response 
developed earlier assumes that the system is 
initially relaxed before the application of 
the input x[n]

• In practice, excitation x[n] to a causal LTI 
discrete-time system is usually a right-sided 
sequence applied at some sample index

• We develop the expression for the output 
for such an input

onn
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• Without any loss of generality, assume          
for n < 0

• From the input-output relation

we observe that for an input

the output is given by
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• Or,

• The output for n < 0 is y[n] = 0

• The output for          is given by
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• Or,

• The first term on the RHS is the same as 
that obtained when the input is applied at 
n = 0 to an initially relaxed system and is 
the steady-state response:
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• The second term on the RHS is called the 
transient response:

• To determine the effect of the above term 
on the total output response, we observe
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• For a causal, stable LTI IIR discrete-time 
system, h[n] is absolutely summable

• As a result, the transient response           is a 
bounded sequence

• Moreover, as            ,

and hence, the transient response decays to 
zero as n gets very large
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Response to a Causal Response to a Causal 
Exponential SequenceExponential Sequence

• For a causal FIR LTI discrete-time system 
with an impulse response h[n] of length 
N + 1, h[n] = 0 for n > N

• Hence,                 for

• Here the output reaches the steady-state       
value                                   at n = N

0][nytr 1Nn
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The Concept of FilteringThe Concept of Filtering

• One application of an LTI discrete-time 
system is to pass certain frequency 
components in an input sequence without 
any distortion (if possible) and to block 
other frequency components

• Such systems are called digital filters and 
one of the main subjects of discussion in 
this course
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The Concept of FilteringThe Concept of Filtering

• The key to the filtering process is

• It expresses an arbitrary input as a linear 
weighted sum of an infinite number of 
exponential sequences, or equivalently, as a 
linear weighted sum of sinusoidal sequences

deeXnx njj )(][
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The Concept of FilteringThe Concept of Filtering

• Thus, by appropriately choosing the values 
of the magnitude function               of the 
LTI digital filter at frequencies 
corresponding to the frequencies of the 
sinusoidal components of the input, some of 
these components can be selectively heavily 
attenuated or filtered with respect to the 
others

)( jeH
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The Concept of FilteringThe Concept of Filtering

• To understand the mechanism behind the 
design of frequency-selective filters, 
consider a real-coefficient LTI discrete-time 
system characterized by a magnitude 
function

)( jeH
c
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The Concept of FilteringThe Concept of Filtering

• We apply an input  

to this system

• Because of linearity, the output of this 
system is of the form

2121 0,coscos][ cnBnAnx

)(cos)(][ 111 neHAny j
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The Concept of FilteringThe Concept of Filtering

• As                          

the output reduces to

• Thus, the system acts like a lowpass filter

• In the following example, we consider the 
design of a very simple digital filter

0)(,1)( 21 jj eHeH

)(cos)(][ 111 neHAny j
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The Concept of FilteringThe Concept of Filtering
• Example - The input consists of a sum of two 

sinusoidal sequences of angular frequencies 
0.1 rad/sample and 0.4 rad/sample

• We need to design a highpass filter that will 
pass the high-frequency component of the 
input but block the low-frequency component

• For simplicity, assume the filter to be an FIR 
filter of length 3 with an impulse response: 

h[0] = h[2] = , h[1] = 
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The Concept of FilteringThe Concept of Filtering

• The convolution sum description of this 
filter is then given by

• y[n] and x[n] are, respectively, the output 
and the input sequences

• Design Objective: Choose suitable values 
of 

 
and 

 
so that the output is a sinusoidal 

sequence with a frequency 0.4 rad/sample
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The Concept of FilteringThe Concept of Filtering

• Now, the frequency response of the FIR 
filter is given by
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The Concept of FilteringThe Concept of Filtering
• The magnitude and phase functions are

• In order to block the low-frequency 
component, the magnitude function at 

 
= 0.1 should be equal to zero

• Likewise, to pass the high-frequency 
component, the magnitude function at 

 
= 0.4 should be equal to one

cos2)( jeH
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The Concept of FilteringThe Concept of Filtering

• Thus, the two conditions that must be 
satisfied are

• Solving the above two equations we get

0)1.0cos(2)( 1.0jeH

1)4.0cos(2)( 4.0jeH

76195.6
456335.13
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The Concept of FilteringThe Concept of Filtering

• Thus the output-input relation of the FIR 
filter is given by

where the input is

• Program 3_3.m can be used to verify the 
filtering action of the above system

]1[456335.13]2[][76195.6][ nxnxnxny
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The Concept of FilteringThe Concept of Filtering

• Figure below shows the plots generated by 
running this program
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The Concept of FilteringThe Concept of Filtering

• The first seven samples of the output are 
shown below
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The Concept of FilteringThe Concept of Filtering
• From this table, it can be seen that, 

neglecting the least significant digit,

• Computation of the present value of the 
output requires the knowledge of the 
present and two previous input samples

• Hence, the first two output samples, y[0] 
and y[1], are the result of assumed zero 
input sample values at            and

2for))1(4.0cos(][ nnny

1n 2n
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The Concept of FilteringThe Concept of Filtering

• Therefore, first two output samples 
constitute the transient part of the output

• Since the impulse response is of length 3, 
the steady-state is reached at n = N = 2

• Note also that the output is delayed version 
of the high-frequency component cos(0.4n) 
of the input, and the delay is one sample 
period
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Phase DelayPhase Delay

• If the input x[n] to an LTI system                
is a sinusoidal signal of frequency      :

• Then, the output y[n] is also a sinusoidal 
signal of the same frequency       but lagging 
in phase by            radians:

o
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Phase DelayPhase Delay

• We can rewrite the output expression as

where

is called the phase delay

• The minus sign in front indicates phase lag

)(cos)(][ opo
j neHAny o
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o
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)(
)(
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Phase DelayPhase Delay

• Thus, the output y[n] is a time-delayed 
version of the input x[n]

• In general, y[n] will not be delayed replica 
of x[n] unless the phase delay               is an 
integer

Phase delay has a physical meaning only 
with respect to the underlying continuous- 
time functions associated with y[n] and x[n]
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Group DelayGroup Delay

• When the input is composed of many 
sinusoidal components with different 
frequencies that are not harmonically 
related, each component will go through 
different phase delays

• In this case, the signal delay is determined 
using the group delay defined by

d
d

g
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Group DelayGroup Delay

• In defning the group delay, it is assumed 
that the phase function is unwrapped so that 
its derivatives exist

• Group delay also has a physical meaning 
only with respect to the underlying 
continuous-time functions associated with 
y[n] and x[n]
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Phase and Group DelaysPhase and Group Delays

• A graphical comparison of the two types of 
delays are indicated below

Group delay

Phase delay
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Phase and Group DelaysPhase and Group Delays

• Example - The phase function of the FIR 
filter                                                          
is

• Hence its group delay is given by                
verifying the result obtained earlier by 
simulation

21 nxnxnxny
)(

1)(g
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Phase and Group DelaysPhase and Group Delays
• Example - For the M-point moving-average 

filter

the phase function is

• Hence its group delay is
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Phase and Group DelaysPhase and Group Delays
• Physical significance of the two delays are 

better understood by examining the 
continuous-time case

• Consider an LTI continuous-time system 
with a frequency response

and excited by a narrow-band amplitude 
modulated continuous-time signal

)()()( aj
aa ejHjH

)cos()()( ttatx ca
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Phase and Group DelaysPhase and Group Delays
• a(t) is a lowpass modulating signal with a 

band-limited continuous-time Fourier 
transform given by

and                 is the high-frequency carrier 
signal

ojA ,)(

)cos( tc
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Phase and Group DelaysPhase and Group Delays
• We assume that in the frequency range          

the frequency 
response of the continuous-time system has 
a constant magnitude and a linear phase:

)()( caa jHjH
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Phase and Group DelaysPhase and Group Delays
• Now, the CTFT of           is given by

• Also, because of the band-limiting 
constraint                     outside the frequency 
range

)(txa

])[(])[()( cca jAjAjX

)( jXa

ococ
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Phase and Group DelaysPhase and Group Delays
• As a result, the output response          of the 

LTI continuous-time system is given by

assuming

• As can be seen from the above equation, the 
group delay              is precisely the delay of 
the envelope a(t) of the input signal           , 
whereas, the phase delay              is the 
delay of the carrier

)(tya

)(txa

)(cos)()( cpccga ttaty
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Phase and Group DelaysPhase and Group Delays
• The figure below illustrates the effects of 

the two delays on an amplitude modulated 
sinusoidal signal

Group delay
Phase delay
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Phase and Group DelaysPhase and Group Delays
• The waveform of the underlying 

continuous-time output shows distortion 
when the group delay is not constant over 
the bandwidth of the modulated signal

• If the distortion is unacceptable, an allpass 
delay equalizer is usually cascaded with the 
LTI system so that the overall group delay 
is approximately linear over the frequency 
range of interest while keeping the 
magnitude response of the original LTI 
system unchanged
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Phase Delay Computation Phase Delay Computation 
Using MATLABUsing MATLAB

• Phase delay can be computed using the 
function 

• Figure below shows the phase delay of the 
DTFT
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Group Delay Computation Group Delay Computation 
Using MATLABUsing MATLAB

• Group delay can be computed using the 
function 

• Figure below shows the group delay of the 
DTFT
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