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The DFT is not the only possible way to represent a linear system or a
finite-duration or periodic signal in a “frequency domain”.
Other basis functions generate different transforms.
For the DFT, the direct and inverse basis functions respectively are:

f (n, k) = e−j2πnk/N g(n, k) = e j2πnk/N/N

but in general a transform can be expressed as

X (k) =
N−1∑
n=0

x(n)f (n, k) X = Fx (analysis eq.)

The matrix F must be unitary:

F−1 = F∗T

and the inverse transform is

x(n) =
N−1∑
k=0

X (k)f ∗(n, k)) x = F∗TX (synthesis eq.)
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x keeps its length, and the energy is conserved (Parseval’s theorem):

||X||2 = X∗TX = x∗TF∗TFx = x∗Tx = ||x||2

X is a rotated version of x in an N-dimensional space, i.e. the transform is
a rotation of the coordinates, and the terms in X are the projections of x
in the new space.

A suitable choice of the basis functions permits to exploit the
energy compaction property of an orthogonal transform:

i.e., most of the content of a signal x is represented in a subset of the
coefficients X.

If x is a random signal having autocorrelation Rx, the most efficient
transform is the Karhunen-Loeve Transform (KLT) (or Hotelling
transform), that takes as bases the eigenvectors of the matrix Rx.
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The DFT has generally good compaction properties; for signals with
strong autocorrelation, better performances are often provided by the
Discrete Cosine Transform (DCT):

X (k) = α(k)
N−1∑
n=0

x(n)cos(
π(2n + 1)k

2N
); α(0) =

√
1/N, α(k) =

√
2/N

x(n) =
N−1∑
k=0

α(k)X (k)cos(
π(2n + 1)k

2N
)

In matrix form:
X = Cx x = C∗TX = CTX

The DCT of a real sequence is real. It is not symmetrical around π.
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The DCT can be related to the DFT.
Let us define the half-sample, symmetric, right periodic extension of x :

y(n) = {... x(0), x(1), ..., x(N − 1), x(N − 1), x(N − 2), ..., x(1), x(0) ...}

i.e. y(n) = x(n) 0 ≤ n ≤ N − 1

= x(2N − 1− n) N ≤ n ≤ 2N − 1

(Note: 8 different versions of the DCT are obtained according to the type
of periodic extension that is selected).

The DFT of y is

Y (k) =
2N−1∑
n=0

y(n)e−j 2π
2N

kn

=
N−1∑
n=0

x(n)e−j 2π
2N

kn +
2N−1∑
n=N

x(2N − 1− n)e−j 2π
2N

kn
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Let m = 2N − 1− n. We get:

n = N → m = N − 1

n = 2N − 1→ m = 0

n = 2N − 1−m

Y (k) =
N−1∑
n=0

x(n)e−j 2π
2N

kn +
N−1∑
m=0

x(m)e−j 2π
2N

k(2N−1−m)

=
N−1∑
n=0

x(n)e−j 2π
2N

kn +
N−1∑
n=0

x(n)e−j 2π
2N

k(−1−n)

=
N−1∑
n=0

x(n)(e−j 2π
2N

kn + e−j 2π
2N

k(−1−n)) · e j
2π
2N

k
2 e−j 2π

2N
k
2

= e j
2π
2N

k
2

N−1∑
n=0

x(n)(e−j 2π
2N

k(n+1/2) + e+j 2π
2N

k(n+1/2))

= e j
2π
2N

k
2 2

N−1∑
n=0

x(n)(cos(
2π

2N
k(n + 1/2))
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Which is the DCT of x apart from some scaling factors. Then, it is
possible to calculate the DCT using an FFT.

The periodicity artifacts are smaller in the DCT than in the DFT:

. . .. . .

. . . . . .

A signal and its DFT and DCT periodic extensions

An MDCT (lapped) is e.g. used in MP3 coding.

A 2-D DCT is used in JPEG.
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Another extremely simple and real orthogonal transform is:{
X (0) = (x(0) + x(1))/

√
(2)

X (1) = (x(0)− x(1))/
√

(2)

{
x(0) = (X (0) + X (1))/

√
(2)

x(1) = (X (0)− X (1))/
√

(2)

(for convenience, a single scaling by /2 can be done in either the direct or
inverse transform)

It has the matrix formulation

F =

∥∥∥∥ 1 1
1 −1

∥∥∥∥ , Finv =

∥∥∥∥ 1 1
1 −1

∥∥∥∥ = F−1 = FT

and is the elementary (N = 2) version of the Walsh-Hadamard and Haar
transforms.
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The matrices for the higher-order transforms can be derived using a
recursion. E.g., for N = 4 and N = 8 the Walsh-Hadamard transform
matrices are
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R. Wang, Introduction to orthogonal transforms, Cambridge University Press 2011

http://fourier.eng.hmc.edu/e161/lectures/wht/wht.html
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The matrix H is real, symmetric, and orthogonal:

H = H∗ = HT = H−1

The forward and inverse transforms are

X = Hx

x = HX

and they are identical.

Fast transform methods have been devised
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A different recursion leads to the matrices used in the Haar transform.
E.g., for N = 8 the matrix is

R. Wang, Introduction to orthogonal transforms, Cambridge University Press 2011

http://fourier.eng.hmc.edu/e161/lectures/Haar/haar.html
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The Haar functions contain a single prototype shape: a square wave. The
parameters specify the width (or scale) of the shape and its position (or
shift).

In this way they represent not only the details in the signal but also their
locations in time.

The Haar transform is the simplest wavelet transform.

Fast Haar Transform techniques have been devised.
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