- The DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems
- Because of the convergence condition, in many cases, the DTFT of a sequence may not exist
- As a result, it is not possible to make use of such frequency-domain characterization in these cases

A generalization of the DTFT defined by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

leads to the z-transform

- z-transform may exist for many sequences for which the DTFT does not exist
- Moreover, use of z-transform techniques permits simple algebraic manipulations

- Consequently, z-transform has become an important tool in the analysis and design of digital filters
- For a given sequence g[n], its z-transform G(z) is defined as

$$G(z) = \sum_{n = -\infty}^{\infty} g[n] z^{-n}$$

where $z = \Re(z) + jIm(z)$ is a complex variable

• If we let $z = re^{j\omega}$, then the z-transform reduces to

$$G(re^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]r^{-n}e^{-j\omega n}$$

- Thus $G(re^{j\omega})$ can be interpreted as the DTFT of the modified sequence $\{g[n]r^{-n}\}$
- For r = 1 (i.e., |z| = 1), z-transform reduces to its DTFT, provided the latter exists

- The contour |z| = 1 is a circle in the z-plane of unity radius and is called the **unit circle**
- Like the DTFT, there are conditions on the convergence of the infinite series

$$\sum_{n=-\infty}^{\infty} g[n]z^{-n}$$

• For a given sequence, the set \mathcal{R} of values of z for which its z-transform converges is called the region of convergence (ROC)

• From our earlier discussion on the uniform convergence of the DTFT, it follows that the series

$$G(re^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]r^{-n}e^{-j\omega n}$$

converges if $\{g[n]r^{-n}\}$ is absolutely summable, i.e., if

$$\sum_{n=-\infty}^{\infty} \left| g[n] r^{-n} \right| < \infty$$

• If $\sum_{n=-\infty}^{\infty} |g[n]r^{-n}| < \infty$ for $r = \mathcal{R}_g$ and $r = \mathcal{R}_{g+}$ with $0 \le \mathcal{R}_{g-} < \mathcal{R}_{g+} < \infty$ then the sequence $g[n]r^{-n}$ is absolutely summable

$$\sum_{n=-\infty}^{\infty} |g[n]r^{-n}| < \infty$$

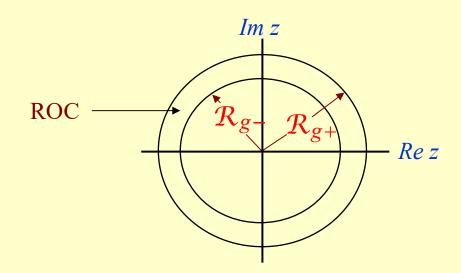
for all values of r in the range

$$0 \leq \mathcal{R}_{g-} \leq r \leq \mathcal{R}_{g+} < \infty$$

The annular region defined by

$$0 \le \mathcal{R}_{g-} \le r \le \mathcal{R}_{g+} < \infty$$

is called the region of convergence (ROC) of $G(re^{j\omega}) = G(z)$



- Example Determine the z-transform X(z) of the causal sequence $x[n] = \alpha^n \mu[n]$ and its ROC
- Now $X(z) = \sum_{n=-\infty}^{\infty} \alpha^n \mu[n] z^{-n} = \sum_{n=0}^{\infty} \alpha^n z^{-n}$
- The above power series converges to

$$X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad \text{for } |\alpha z^{-1}| < 1$$

• ROC is the annular region $|z| > |\alpha|$

• Example - The z-transform $\mu(z)$ of the unit step sequence $\mu[n]$ can be obtained from

$$X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad \text{for } \left| \alpha z^{-1} \right| < 1$$

by setting $\alpha = 1$:

$$\mu(z) = \frac{1}{1 - z^{-1}}, \quad \text{for } |z^{-1}| < 1$$

• ROC is the annular region $1 < |z| \le \infty$

 Note: The unit step sequence μ[n] is not absolutely summable, and hence its DTFT does not converge uniformly

• Example - Consider the anti-causal sequence

$$y[n] = -\alpha^n \mu[-n-1]$$

• Its z-transform is given by

$$Y(z) = \sum_{n=-\infty}^{-1} -\alpha^{n} z^{-n} = -\sum_{m=1}^{\infty} \alpha^{-m} z^{m}$$

$$= -\alpha^{-1} z \sum_{m=0}^{\infty} \alpha^{-m} z^{m} = -\frac{\alpha^{-1} z}{1 - \alpha^{-1} z}$$

$$= \frac{1}{1 - \alpha z^{-1}}, \text{ for } |\alpha^{-1} z| < 1$$

• ROC is the annular region $|z| < |\alpha|$

- Note: The z-transforms of the two sequences $\alpha^n \mu[n]$ and $-\alpha^n \mu[-n-1]$ are identical even though the two parent sequences are different
- Only way a unique sequence can be associated with a *z*-transform is by specifying its ROC

- The DTFT $G(e^{j\omega})$ of a sequence g[n] converges uniformly if and only if the ROC of the z-transform G(z) of g[n] includes the unit circle
- The existence of the DTFT does not always imply the existence of the *z*-transform

• Example - The finite energy sequence

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

has a DTFT given by

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

which converges in the mean-square sense

• However, $h_{LP}[n]$ does not have a *z*-transform as it is not absolutely summable for any value of r

• Some commonly used *z*-transform pairs are listed on the next slide

Table 6.1: Commonly Used z-Transform Pairs

Sequence	z-Transform	ROC
$\delta[n]$	1	All values of z
$\mu[n]$	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^n \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$(r^n \cos \omega_o n)\mu[n]$	$\frac{1 - (r\cos\omega_o)z^{-1}}{1 - (2r\cos\omega_o)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \omega_o n)\mu[n]$	$\frac{(r\sin\omega_o)z^{-1}}{1 - (2r\cos\omega_o)z^{-1} + r^2z^{-2}}$	z > r

- In the case of LTI discrete-time systems we are concerned with in this course, all pertinent z-transforms are rational functions of z^{-1}
- That is, they are ratios of two polynomials in z^{-1} :

$$G(z) = \frac{P(z)}{D(z)} = \frac{p_0 + p_1 z^{-1} + \dots + p_{M-1} z^{-(M-1)} + p_M z^{-M}}{d_0 + d_1 z^{-1} + \dots + d_{N-1} z^{-(N-1)} + d_N z^{-N}}$$

note: this is the z-transform of the I/O relation of a recursive system

- The degree of the numerator polynomial P(z) is M and the degree of the denominator polynomial D(z) is N
- An alternate representation of a rational ztransform is as a ratio of two polynomials in z:

$$G(z) = z^{(N-M)} \frac{p_0 z^M + p_1 z^{M-1} + \dots + p_{M-1} z + p_M}{d_0 z^N + d_1 z^{N-1} + \dots + d_{N-1} z + d_N}$$

• A rational z-transform can be alternately written in factored form as

$$G(z) = \frac{p_0 \prod_{\ell=1}^{M} (1 - \xi_{\ell} z^{-1})}{d_0 \prod_{\ell=1}^{N} (1 - \lambda_{\ell} z^{-1})}$$

$$= z^{(N-M)} \frac{p_0 \prod_{\ell=1}^{M} (z - \xi_{\ell})}{d_0 \prod_{\ell=1}^{N} (z - \lambda_{\ell})}$$

- At a root $z = \xi_{\ell}$ of the numerator polynomial $G(\xi_{\ell}) = 0$, and as a result, these values of z are known as the **zeros** of G(z)
- At a root $z = \lambda_{\ell}$ of the denominator polynomial $G(\lambda_{\ell}) \to \infty$, and as a result, these values of z are known as the poles of G(z)

Consider

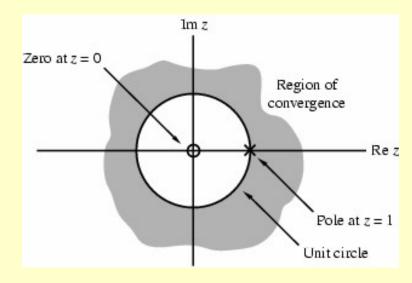
$$G(z) = z^{(N-M)} \frac{p_0 \prod_{\ell=1}^{M} (z - \xi_{\ell})}{d_0 \prod_{\ell=1}^{N} (z - \lambda_{\ell})}$$

- Note G(z) has M finite zeros and N finite poles
- If N > M there are additional N M zeros at z = 0 (the origin in the z-plane)
- If N < M there are additional M N poles at z = 0

• Example - The z-transform

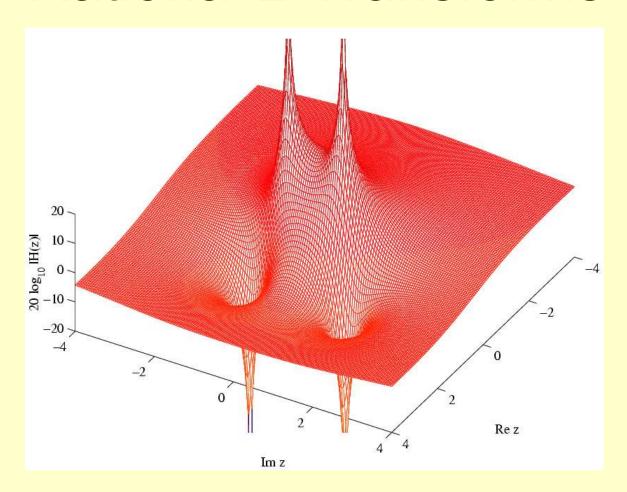
$$\mu(z) = \frac{1}{1 - z^{-1}}, \text{ for } |z| > 1$$

has a zero at z = 0 and a pole at z = 1



• A physical interpretation of the concepts of poles and zeros can be given by plotting the log-magnitude $20\log_{10}|G(z)|$ as shown on next slide for

$$G(z) = \frac{1 - 2.4z^{-1} + 2.88z^{-2}}{1 - 0.8z^{-1} + 0.64z^{-2}}$$



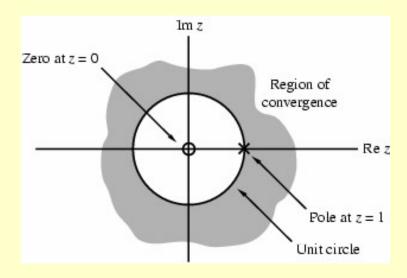
- Observe that the magnitude plot exhibits very large peaks around the points $z = 0.4 \pm j \, 0.6928$ which are the poles of G(z)
- It also exhibits very narrow and deep wells around the location of the zeros at $z = 1.2 \pm j1.2$

- ROC of a *z*-transform is an important concept
- Without the knowledge of the ROC, there is no unique relationship between a sequence and its *z*-transform
- Hence, the *z*-transform must always be specified with its ROC

- Moreover, if the ROC of a *z*-transform includes the unit circle, the DTFT of the sequence is obtained by simply evaluating the *z*-transform on the unit circle
- There is a relationship between the ROC of the *z*-transform of the impulse response of a causal LTI discrete-time system and its BIBO stability

- The ROC of a rational z-transform is bounded by the locations of its poles
- To understand the relationship between the poles and the ROC, it is instructive to examine the pole-zero plot of a *z*-transform
- Consider again the pole-zero plot of the z-transform $\mu(z)$

DTFT: no



• In this plot, the ROC, shown as the shaded area, is the region of the z-plane just outside the circle centered at the origin and going through the pole at z = 1

• Example - The z-transform H(z) of the sequence $h[n] = (-0.6)^n \mu[n]$ is given by

$$H(z) = \frac{1}{1 + 0.6z^{-1}},$$
$$|z| > 0.6$$

Pole at z = -0.6Re zZero at z = 0

DTFT: yes

• Here the ROC is just outside the circle going through the point z = -0.6

Copyright © 2010, S. K. Mitra

- A sequence can be one of the following types: finite-length, right-sided, left-sided and two-sided
- In general, the ROC depends on the type of the sequence of interest

- Consider a finite-length sequence g[n] defined for $-M \le n \le N$, where M and N are non-negative integers and $g[n] < \infty$
- Its z-transform is given by

$$G(z) = \sum_{n=-M}^{N} g[n]z^{-n} = \frac{\sum_{0}^{N+M} g[n-M]z^{N+M-n}}{z^{N}}$$

- Note: G(z) has M poles at $z = \infty$ and N poles at z = 0
- As can be seen from the expression for G(z), the z-transform of a finite-length bounded sequence converges everywhere in the z-plane except possibly at z = 0 and/or at $z = \infty$

- A right-sided sequence with nonzero sample values for $n \ge 0$ is called a causal sequence
- Consider a causal sequence $u_1[n]$
- Its *z*-transform is given by

$$U_1(z) = \sum_{n=0}^{\infty} u_1[n] z^{-n}$$

- It can be shown that $U_1(z)$ converges exterior to a circle $|z|=R_1$, including the point $z=\infty$
- On the other hand, a right-sided sequence $u_2[n]$ with nonzero sample values only for $n \ge -M$ with M nonnegative has a z-transform $U_2(z)$ with M poles at $z = \infty$
- The ROC of $U_2(z)$ is exterior to a circle $|z| = R_2$, excluding the point $z = \infty$

- Aleft-sided sequence with nonzero sample values for $n \le 0$ is called a anticausal sequence
- Consider an anticausal sequence $v_1[n]$
- Its *z*-transform is given by

$$V_1(z) = \sum_{n = -\infty}^{0} v_1[n] z^{-n}$$

- It can be shown that $V_1(z)$ converges interior to a circle $|z| = R_3$, including the point z = 0
- On the other hand, a left-sided sequence with nonzero sample values only for $n \le N$ with N nonnegative has a z-transform $V_2(z)$ with N poles at z = 0
- The ROC of $V_2(z)$ is interior to a circle $|z| = R_4$, excluding the point z = 0

• The z-transform of a two-sided sequence w[n] can be expressed as

$$W(z) = \sum_{n = -\infty}^{\infty} w[n] z^{-n} = \sum_{n = 0}^{\infty} w[n] z^{-n} + \sum_{n = -\infty}^{-1} w[n] z^{-n}$$

• The first term on the RHS, $\sum_{n=0}^{\infty} w[n]z^{-n}$, can be interpreted as the *z*-transform of a right-sided sequence and it thus converges exterior to the circle $|z| = R_5$

- The second term on the RHS, $\sum_{n=-\infty}^{-1} w[n]z^{-n}$, can be interpreted as the z-transform of a left-sided sequence and it thus converges interior to the circle $|z| = R_6$
- If $R_5 < R_6$, there is an overlapping ROC given by $R_5 < |z| < R_6$
- If $R_5 > R_6$, there is no overlap and the z-transform does not exist

• Example - Consider the two-sided sequence

$$u[n] = \alpha^n$$

where α can be either real or complex

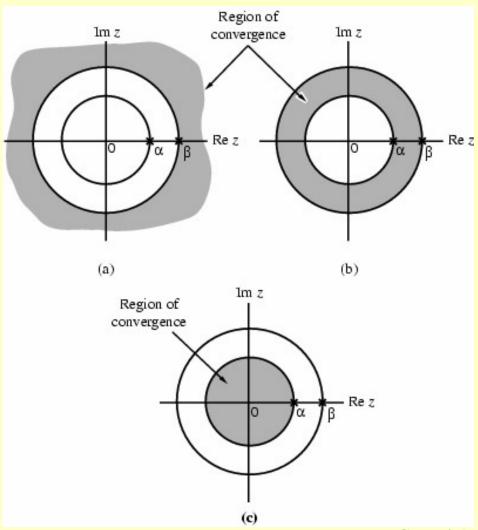
• Its z-transform is given by

$$U(z) = \sum_{n = -\infty}^{\infty} \alpha^n z^{-n} = \sum_{n = 0}^{\infty} \alpha^n z^{-n} + \sum_{n = -\infty}^{-1} \alpha^n z^{-n}$$

• The first term on the RHS converges for $|z| > |\alpha|$, whereas the second term converges for $|z| < |\alpha|$

- There is no overlap between these two regions
- Hence, the z-transform of $u[n] = \alpha^n$ does not exist

- The ROC is bounded on the outside by the pole with the smallest magnitude that contributes for n < 0 and on the inside by the pole with the largest magnitude that contributes for $n \ge 0$
- There are three possible ROCs of a rational z-transform with poles at $z = \alpha$ and $z = \beta$ $(|\alpha| < |\beta|)$



- In general, if the rational *z*-transform has *N* poles with *R* distinct magnitudes, then it has *R*+1 ROCs
- Thus, there are R + 1 distinct sequences with the same z-transform
- Hence, a rational *z*-transform with a specified ROC has a unique sequence as its inverse *z*-transform

• The ROC of a rational *z*-transform can be easily determined using MATLAB

```
[z,p,k] = tf2zp(num,den)
```

determines the zeros, poles, and the gain constant of a rational z-transform with the numerator coefficients specified by the vector num and the denominator coefficients specified by the vector den

- [num, den] = zp2tf(z,p,k) implements the reverse process
- The factored form of the z-transform can be obtained using sos = zp2sos(z,p,k)
- The above statement computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos

$$sos = \begin{bmatrix} b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{12} \\ b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{0L} & b_{1L} & b_{2L} & a_{0L} & a_{1L} & a_{2L} \end{bmatrix}$$

where

$$G(z) = \prod_{k=1}^{L} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{a_{0k} + a_{1k}z^{-1} + a_{2k}z^{-2}}$$

- The pole-zero plot is determined using the function zplane
- The z-transform can be either described in terms of its zeros and poles:

```
zplane(zeros, poles)
```

(if column vectors)

• or, it can be described in terms of its numerator and denominator coefficients:

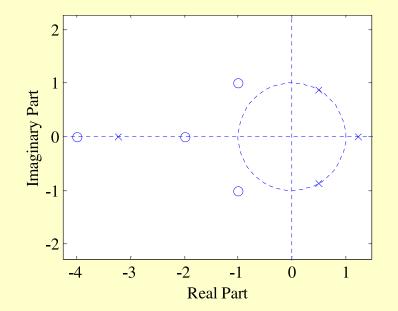
```
zplane(num, den)
```

(if row vectors)

• Example - The pole-zero plot of

$$G(z) = \frac{2z^4 + 16z^3 + 44z^2 + 56z + 32}{3z^4 + 3z^3 - 15z^2 + 18z - 12}$$

obtained using MATLAB is shown below



$$\times$$
-pole

Inverse z-Transform

• General Expression: Recall that, for $z = re^{j\omega}$, the z-transform G(z) given by

$$G(z) = \sum_{n=-\infty}^{\infty} g[n] z^{-n} = \sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j\omega n}$$
 is merely the DTFT of the modified sequence $g[n] r^{-n}$

 Accordingly, the inverse DTFT is thus given by

$$g[n]r^{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(re^{j\omega})e^{j\omega n}d\omega$$

Inverse z-Transform

• By making a change of variable $z = re^{j\omega}$, the previous equation can be converted into a contour integral given by

$$g[n] = \frac{1}{2\pi j} \int_{C'} G(z) z^{n-1} dz$$

where C' is a counterclockwise contour of integration defined by |z| = r

Inverse z-Transform

- But the integral remains unchanged when C' is replaced with any contour C encircling the point z = 0 in the ROC of G(z)
- The contour integral can be evaluated using the Cauchy's residue theorem resulting in

$$g[n] = \sum \begin{bmatrix} \text{residues of } G(z)z^{n-1} \\ \text{at the poles inside } C \end{bmatrix}$$

• The above equation needs to be evaluated at all values of *n* and is not pursued here

Inverse Transform by Partial-Fraction Expansion

- A rational z-transform G(z) with a causal inverse transform g[n] has an ROC that is exterior to a circle
- Here it is more convenient to express G(z) in a partial-fraction expansion form and then determine g[n] by summing the inverse transform of the individual simpler terms in the expansion

Inverse Transform by Partial-Fraction Expansion

• A rational G(z) can be expressed as

$$G(z) = \frac{P(z)}{D(z)} = \frac{\sum_{i=0}^{M} p_i z^{-i}}{\sum_{i=0}^{N} d_i z^{-i}}$$

• If $M \ge N$ then G(z) can be re-expressed as

$$G(z) = \sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell} + \frac{P_1(z)}{D(z)}$$

where the degree of $P_1(z)$ is less than N

Inverse Transform by Partial-Fraction Expansion

- The rational function $P_1(z)/D(z)$ is called a proper fraction
- To develop the proper fraction part P₁(z)/D(z) from G(z), a long division of P(z) by D(z) should be carried out in a reverse order until the remainder polynomial P₁(z) is of lower degree than that of the denominator D(z) (Method of Residues)

Partial-Fraction Expansion Using MATLAB

- [r,p,k] = residuez (num, den)
 develops the partial-fraction expansion of
 a rational z-transform with numerator and
 denominator coefficients given by vectors
 num and den
- Vector r contains the residues
- Vector p contains the poles
- Vector k contains the constants η_{ℓ}

Partial-Fraction Expansion Using MATLAB

• [num, den] = residuez (r,p,k) converts a z-transform expressed in a partial-fraction expansion form to its rational form

Inverse z-Transform via Long Division

- The z-transform G(z) of a causal sequence $\{g[n]\}$ can be expanded in a power series in z^{-1}
- In the series expansion, the coefficient multiplying the term z^{-n} is then the *n*-th sample g[n]
- For a rational z-transform expressed as a ratio of polynomials in z^{-1} , the power series expansion can be obtained by long division

Inverse z-Transform via Long Division

• Example - Consider

Transfer function of an IIR filter

$$H(z) = \frac{1 + 2z^{-1}}{1 + 0.4z^{-1} - 0.12z^{-2}}$$

• Long division of the numerator by the and of its FIR denominator yields

approximation

$$H(z) = 1 + 1.6z^{-1} - 0.52z^{-2} + 0.4z^{-3} - 0.2224z^{-4} + \cdots$$

As a result

$$\{h[n]\} = \{1 \quad 1.6 \quad -0.52 \quad 0.4 \quad -0.2224 \quad \cdots\}, \quad n \ge 0$$

Inverse z-Transform Using MATLAB

- The function impz can be used to find the inverse of a rational z-transform G(z)
- The function computes the coefficients of the power series expansion of G(z)
- The number of coefficients can either be user specified or determined automatically

Table 6.2: z-Transform Theorems

Theorems	Sequence	z-Transform	ROC
	g[n] $h[n]$	G(z) $H(z)$	\mathcal{R}_g \mathcal{R}_h
Conjugation	$g^*[n]$	$G^*(z^*)$	\mathcal{R}_{g}
Time-reversal	g[-n]	G(1/z)	$1/\mathcal{R}_g$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Time-shifting	$g[n-n_o]$	$z^{-n_o}G(z)$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Multiplication by an exponential sequence	$\alpha^n g[n]$	$G(z/\alpha)$	$ lpha \mathcal{R}_g$
Differentiation of $G(z)$	ng[n]	$-z\frac{dG(z)}{dz}$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Convolution	$g[n] \circledast h[n]$	G(z)H(z)	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Modulation	g[n]h[n]	$\frac{1}{2\pi j} \oint_C G(v) H(z/v) v^{-1} dv$	Includes $\mathcal{R}_g\mathcal{R}_h$
Parseval's relation	$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi j} \oint_C G(v)H^*(1/v^*)v^{-1} dv$		
Note: If \mathcal{R}_0 denotes the region $R_0 = z < R_0 + $ and \mathcal{R}_0 denotes the region $R_0 = z < $			

Note: If \mathcal{R}_g denotes the region $R_{g^-} < |z| < R_{g^+}$ and \mathcal{R}_h denotes the region $R_{h^-} < |z| < R_{h^+}$, then $1/\mathcal{R}_g$ denotes the region $1/R_{g^+} < |z| < 1/R_{g^-}$ and $\mathcal{R}_g \mathcal{R}_h$ denotes the region $R_{g^-} R_{h^-} < |z| < R_{g^+} R_{h^+}$.