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Abstract: Time-scale modification (TSM) is the task of speeding up or slowing down an audio
signal’s playback speed without changing its pitch. In digital music production, TSM has become
an indispensable tool, which is nowadays integrated in a wide range of music production software.
Music signals are diverse—they comprise harmonic, percussive, and transient components, among
others. Because of this wide range of acoustic and musical characteristics, there is no single TSM
method that can cope with all kinds of audio signals equally well. Our main objective is to foster a
better understanding of the capabilities and limitations of TSM procedures. To this end, we review
fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine
different strategies. In particular, we discuss a fusion approach that involves recent techniques for
harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.

Keywords: digital signal processing; overlap-add; WSOLA; phase vocoder; harmonic-percussive
separation; transient preservation; pitch-shifting; music synchronization

1. Introduction

Time-scale modification (TSM) procedures are digital signal processing methods for stretching or
compressing the duration of a given audio signal. Ideally, the time-scale modified signal should sound
as if the original signal’s content was performed at a different tempo while preserving properties like
pitch and timbre. TSM procedures are applied in a wide range of scenarios. For example, they simplify
the process of creating music remixes. Music producers or DJs apply TSM to adjust the durations of
music recordings, enabling synchronous playback [1,2]. Nowadays TSM is built into music production
software as well as hardware devices. A second application scenario is adjusting an audio stream’s
duration to that of a given video clip. For example, when generating a slow motion video, it is often
desirable to also slow down the tempo of the associated audio stream. Here, TSM can be used to
synchronize the audio material with the video’s visual content [3].

A main challenge for TSM procedures is that music signals are complex sound mixtures, consisting
of a wide range of different sounds. As an example, imagine a music recording consisting of a violin
playing together with castanets. When modifying this music signal with a TSM procedure, both the
harmonic sound of the violin as well as the percussive sound of the castanets should be preserved
in the output signal. To keep the violin’s sound intact, it is essential to maintain its pitch as well as
its timbre. On the other hand, the clicking sound of the castanets does not have a pitch—it is much
more important to maintain the crisp sound of the single clicks, as well as their exact relative time
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positions, in order to preserve the original rhythm. Retaining these contrasting characteristics usually
requires conceptually different TSM approaches. For example, classical TSM procedures based on
waveform similarity overlap-add (WSOLA) [4] or on the phase vocoder (PV-TSM) [5–7] are capable
of preserving the perceptual quality of harmonic signals to a high degree, but introduce noticeable
artifacts when modifying percussive signals. However, it is possible to substantially reduce artifacts by
combining different TSM approaches. For example, in [8], a given audio signal is first separated into
a harmonic and a percussive component. Afterwards, each component is processed with a different
TSM procedure that preserves its respective characteristics. The final output signal is then obtained by
superimposing the two intermediate output signals.

Our goals in this article are two-fold. First, we aim to foster an understanding of fundamental
challenges and algorithmic approaches in the field of TSM by reviewing well-known TSM methods
and discussing their respective advantages and drawbacks in detail. Second, having identified the
core issues of these classical procedures, we show—through an example—how to improve on them
by combining different algorithmic ideas. We begin the article by introducing a fundamental TSM
strategy as used in many TSM procedures (Section 2) and discussing a simple TSM approach based
on overlap-add (Section 3). Afterwards, we review two conceptually different TSM methods: the
time-domain WSOLA (Section 4) as well as the frequency-domain PV-TSM (Section 5). We then review
the state-of-the-art TSM procedure from [8] that improves on the quality of both WSOLA as well as
PV-TSM by incorporating harmonic-percussive separation (Section 6). Finally, we point out different
application scenarios for TSM (such as music synchronization and pitch-shifting), as well as various
freely available TSM implementations (Section 7).

2. Fundamentals of Time-Scale Modification (TSM)

As mentioned above, a key requirement for time-scale modification procedures is that they change
the time-scale of a given audio signal without altering its pitch content. To achieve this goal, many
TSM procedures follow a common fundamental strategy which is sketched in Figure 1. The core idea
is to decompose the input signal into short frames. Having a fixed length, usually in the range of
50 to 100 milliseconds of audio material, each frame captures the local pitch content of the signal. The
frames are then relocated on the time axis to achieve the actual time-scale modification, while, at the
same time, preserving the signal’s pitch.

Signal reconstruction 

Original signal Analysis frames Synthesis frames 
Time-scale modified 

signal 

Signal decomposition Frame relocation & 
adaption  

Analysis  
hopsize 

Synthesis 
hopsize 

Figure 1. Generalized processing pipeline of Time-scale modification (TSM) procedures.

More precisely, this process can be described as follows. The input of a TSM procedure is a
discrete-time audio signal x : Z → R, equidistantly sampled at a sampling rate of Fs. Note that
although audio signals typically have a finite length of L ∈ N samples x(r) for r ∈ [0 : L− 1] :=
{0, 1, . . . , L− 1}, for the sake of simplicity, we model them to have an infinite support by defining
x(r) = 0 for r ∈ Z \ [0 : L− 1]. The first step of the TSM procedure is to split x into short analysis
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frames xm, m ∈ Z, each of them having a length of N samples (in the literature, the analysis frames are
sometimes also referred to as grains, see [9]). The analysis frames are spaced by an analysis hopsize Ha:

xm(r) =

{
x(r + mHa), if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(1)

In a second step, these frames are relocated on the time axis with regard to a specified synthesis
hopsize Hs. This relocation accounts for the actual modification of the input signal’s time-scale by
a stretching factor α = Hs/Ha. Since it is often desirable to have a specific overlap of the relocated
frames, the synthesis hopsize Hs is often fixed (common choices are Hs = N/2 or Hs = N/4) while the
analysis hopsize is given by Ha = Hs/α. However, simply superimposing the overlapping relocated
frames would lead to undesired artifacts such as phase discontinuities at the frame boundaries and
amplitude fluctuations. Therefore, prior to signal reconstruction, the analysis frames are suitably
adapted to form synthesis frames ym. In the final step, the synthesis frames are superimposed in order
to reconstruct the actual time-scale modified output signal y : Z→ R of the TSM procedure:

y(r) = ∑
m∈Z

ym(r−mHs) . (2)

Although this fundamental strategy seems straightforward at a first glance, there are many pitfalls
and design choices that may strongly influence the perceptual quality of the time-scale modified
output signal. The most obvious question is how to adapt the analysis frames xm in order to form the
synthesis frames ym. There are many ways to approach this task, leading to conceptually different
TSM procedures. In the following, we discuss several strategies.

3. TSM Based on Overlap-Add (OLA)

3.1. The Procedure

In the general scheme described in the previous section, a straightforward approach would
be to simply define the synthesis frames ym to be equal to the unmodified analysis frames xm.
This strategy, however, immediately leads to two problems which are visualized in Figure 2.
First, when reconstructing the output signal by using Equation (2), the resulting waveform typically
shows discontinuities—perceivable as clicking sounds—at the unmodified frames’ boundaries.
Second, the synthesis hopsize Hs is usually chosen such that the synthesis frames are overlapping.
When superimposing the unmodified frames—each of them having the same amplitude as the input
signal—this typically leads to an undesired increase of the output signal’s amplitude.
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Figure 2. Typical artifacts that occur when choosing the synthesis frames ym to be equal to the
analysis frames xm. The input signal x is stretched by a factor of α = 1.8. The output signal y shows
discontinuities (blue oval) and amplitude fluctuations (indicated by blue lines).

A basic TSM procedure should both enforce a smooth transition between frames as well as
compensate for unwanted amplitude fluctuations. The idea of the overlap-add (OLA) TSM procedure is
to apply a window function w to the analysis frames, prior to the reconstruction of the output signal y.
The task of the window function is to remove the abrupt waveform discontinuities at the the analysis
frames’ boundaries. A typical choice for w is a Hann window function

w(r) =

0.5
(

1− cos
(

2π(r+N/2)
N−1

))
, if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(3)

The Hann window has the nice property that

∑
n∈Z

w
(

r− n
N
2

)
= 1 , (4)

for all r ∈ Z. The principle of the iterative OLA procedure is visualized in Figure 3. For the frame
index m ∈ Z, we first use Equation (1) to compute the mth analysis frame xm (Figure 3a). Then, we
derive the synthesis frame ym by

ym(r) =
w(r) xm(r)

∑
n∈Z

w(r− nHs)
. (5)

The nominator of Equation (5) constitutes the actual windowing of the analysis frame by
multiplying it pointwise with the given window function. The denominator normalizes the frame by
the sum of the overlapping window functions, which prevents amplitude fluctuations in the output
signal. Note that, when choosing w to be a Hann window and Hs = N/2, the denominator always
reduces to one by Equation (4). This is the case in Figure 3b where the synthesis frame’s amplitude
is not scaled before being added to the output signal y. Proceeding to the next analysis frame xm+1,
(Figure 3c), this frame is again windowed, overlapped with the preceding synthesis frame, and added
to the output signal (Figure 3d). Note that Figure 3 visualizes the case where the original signal is
compressed (Ha > Hs). Stretching the signal (Ha < Hs) works in exactly the same fashion. In this case,
the analysis frames overlap to a larger degree than the synthesis frames.
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Figure 3. The principle of TSM based on overlap-add (OLA). (a) Input audio signal x with analysis
frame xm. The output signal y is constructed iteratively; (b) Application of Hann window function w
to the analysis frame xm resulting in the synthesis frame ym; (c) The next analysis frame xm+1 having a
specified distance of Ha samples from xm; (d) Overlap-add using the specified synthesis hopsize Hs.

OLA is an example of a time-domain TSM procedure where the modifications to the analysis
frames are applied purely in the time-domain. In general, time-domain TSM procedures are not only
efficient but also preserve the timbre of the input signal to a high degree. On the downside, output
signals produced by OLA often suffer from other artifacts, as we explain next.

3.2. Artifacts

The OLA procedure is in general not capable of preserving local periodic structures that are
present in the input signal. This is visualized in Figure 4 where a periodic input signal x is stretched by
a factor of α = 1.8 using OLA. When relocating the analysis frames, the periodic structures of x may not
align any longer in the superimposed synthesis frames. In the resulting output signal y, the periodic
patterns are distorted. These distortions are also known as phase jump artifacts. Since local periodicities
in the waveforms of audio signals correspond to harmonic sounds, OLA is not suited to modify signals
that contain harmonic components. When applied to harmonic signals, the output signals of OLA
have a characteristic warbling sound, which is a kind of periodic frequency modulation [6]. Since most
music signals contain at least some harmonic sources (as for example singing voice, piano, violins, or
guitars), OLA is usually not suited to modify music.
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Figure 4. Illustration of a typical artifact for an audio signal modified with OLA. In this example, the
input signal x is stretched by a factor of α = 1.8. The OLA procedure is visualized for two frames
indicated by window functions. The periodic structure of x is not preserved in the output signal y.

3.3. Tricks of the Trade

While OLA is unsuited for modifying audio signals with harmonic content, it delivers high quality
results for purely percussive signals, as is the case with drum or castanet recordings [8]. This is because
audio signals with percussive content seldom have local periodic structures. The phase jump artifacts
introduced by OLA are therefore not noticeable in the output signals. In this scenario, it is important
to choose a very small frame length N (corresponding to roughly 10 milliseconds of audio material) in
order to reduce the effect of transient doubling, an artifact that we discuss at length in Section 4.2.

4. TSM Based on Waveform Similarity Overlap-Add (WSOLA)

4.1. The Procedure

One of OLA’s problems is that it lacks signal sensitivity: the windowed analysis frames are copied
from fixed positions in the input signal to fixed positions in the output signal. In other words, the input
signal has no influence on the procedure. One time-domain strategy to reduce phase jump artifacts
as caused by OLA is to introduce some flexibility in the TSM process, achieved by allowing some
tolerance in the analysis or synthesis frames’ positions. The main idea is to adjust successive synthesis
frames in such a way that periodic structures in the frames’ waveforms are aligned in the overlapping
regions. Periodic patterns in the input signal are therefore maintained in the output. In the literature,
several variants of this idea have been described, such as synchronized OLA (SOLA) [10], time-domain
pitch-synchronized OLA (TD-PSOLA) [11], or autocorrelation-based approaches [12].
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Figure 5. The principle of Waveform Similarity Overlap-Add (WSOLA). (a) Input audio signal x with
the adjusted analysis frame x′m. The frame was already windowed and copied to the output signal y;
(b,c) Retrieval of a frame from the extended frame region x+m+1 (solid blue box) that is as similar as
possible to the natural progression x̃m (dashed blue box) of the adjusted analysis frame x′m; (d) The
adjusted analysis frame x′m+1 is windowed and copied to the output signal y.

Another well-known procedure is waveform similarity-based OLA (WSOLA) [4]. This method’s core
idea is to allow for slight shifts (of up to±∆max ∈ Z samples) of the analysis frames’ positions. Figure 5
visualizes the principle of WSOLA. Similar to OLA, WSOLA proceeds in an iterative fashion. Assume
that in the mth iteration the position of the analysis frame xm was shifted by ∆m ∈ [−∆max : ∆max]

samples. We call this frame the adjusted analysis frame x′m (Figure 5a):

x′m(r) =

{
x(r + mHa + ∆m), if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(6)

The adjusted analysis frame x′m is windowed and copied to the output signal y as in OLA
(Figure 5a). Now, we need to adjust the position of the next analysis frame xm+1. This task can
be interpreted as a constrained optimization problem. Our goal is to find the optimal shift index
∆m+1 ∈ [−∆max : ∆max] such that periodic structures of the adjusted analysis frame x′m+1 are optimally
aligned with structures of the previously copied synthesis frame ym in the overlapping region when
superimposing both frames at the synthesis hopsize Hs. The natural progression x̃m of the adjusted
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analysis frame x′m (dashed blue box in Figure 5b) would be an optimal choice for the adjusted analysis
frame x′m+1 in an unconstrained scenario:

x̃m(r) =

{
x(r + mHa + ∆m + Hs), if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(7)

This is the case, since the adjusted analysis frame x′m and the synthesis frame ym are essentially the
same (up to windowing). As a result, the structures of the natural progression x̃m are perfectly aligned
with the structures of the synthesis frame ym when superimposing the two frames at the synthesis
hopsize Hs (Figure 5b). However, due to the constraint ∆m+1 ∈ [−∆max : ∆max], the adjusted frame
x′m+1 must be located inside of the extended frame region x+m+1 (solid blue box in Figure 5b):

x+m+1(r) =

{
x (r + (m + 1)Ha) , if r ∈ [−N/2− ∆max : N/2− 1 + ∆max],

0, otherwise.
(8)

Therefore, the idea is to retrieve the adjusted frame x′m+1 as the frame in x+m+1 whose waveform is
most similar to x̃m. To this end, we must define a measure that quantifies the similarity of two frames.
One possible choice for this metric is the cross-correlation

c(q, p, ∆) = ∑
r∈Z

q(r) p(r + ∆) (9)

of a signal q and a signal p shifted by ∆ ∈ Z samples. We can then compute the optimal shift index
∆m+1 that maximizes the cross-correlation of x̃m and x+m+1 by

∆m+1 = argmax
∆∈[−∆max :∆max]

c(x̃m, x+m+1, ∆) . (10)

The shift index ∆m+1 defines the position of the adjusted analysis frame x′m+1 inside the extended
frame region x+m+1 (Figure 5c). Finally, we compute the synthesis frame ym+1, similarly to OLA, by

ym+1(r) =
w(r) x(r + (m + 1)Ha + ∆m+1)

∑
n∈Z

w(r− nHs)
(11)

and use Equation (2) to reconstruct the output signal y (Figure 5d). In practice, we start the iterative
optimization process at the frame index m = 0 and assume ∆0 = 0.

4.2. Artifacts

WSOLA can improve on some of the drawbacks of OLA as illustrated by Figure 6 (WSOLA)
and Figure 4 (OLA). However, it still causes certain artifacts that are characteristic for time-domain
TSM procedures.
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Figure 6. Preservation of periodic structures by WSOLA. The input signal x is the same as in Figure 4,
this time modified with WSOLA (time-stretch with α = 1.8).
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Figure 7. Transient doubling artifact as it typically occurs in signals modified with WSOLA.

A prominent problem with WSOLA-like methods is known as transient doubling or stuttering.
This artifact is visualized in Figure 7, where we can see a single transient in the input signal x that is
contained in the overlapping region of two successive adjusted analysis frames x′m and x′m+1. When the
frames are relocated and copied to the output signal, the transient is duplicated and can be heard
two times in quick succession. A related artifact is transient skipping where transients get lost in the
modification process since they are not contained in any of the analysis frames. While transient
doubling commonly occurs when stretching a signal (α > 1), transient skipping usually happens when
the signal is compressed (α < 1). These artifacts are particularly noticeable when modifying signals
with percussive components, such as recordings of instruments with strong onsets (e.g., drums, piano).

Furthermore, WSOLA has particular problems when modifying polyphonic input signals such as
recordings of orchestral music. For these input signals, the output often still contains considerable
warbling. The reason for this is that WSOLA can, by design, only preserve the most prominent periodic
pattern in the input signal’s waveform. Therefore, when modifying recordings with multiple harmonic
sound sources, only the sound of the most dominant source is preserved in the output, whereas
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the remaining sources can still cause phase jump artifacts. While WSOLA is well-suited to modify
monophonic input signals, this is often not the case with more complex audio.

4.3. Tricks of the Trade

In order to assure that WSOLA can adapt to the most dominant periodic pattern in the waveform
of the input signal, one frame must be able to capture at least a full period of the pattern. In addition,
the tolerance parameter ∆max must be large enough to allow for an appropriate adjustment. Therefore,
it should be set to at least half a period’s length. Assuming that the lowest frequency that can be heard
by humans is roughly 20 Hz, a common choice is a frame length N corresponding to 50 ms and a
tolerance parameter of 25 ms.

One possibility to reduce transient doubling and skipping artifacts in WSOLA is to apply a
transient preservation scheme. In [13], the idea is to first identify the temporal positions of transients
in the input signal by using a transient detector. Then, in the WSOLA process, the analysis
hopsize is temporarily fixed to be equal to the synthesis hopsize whenever an analysis frame is
located in a neighborhood of an identified transient. This neighborhood, including the transient, is
therefore copied without modification to the output signal, preventing WSOLA from doubling or
skipping it. The deviation in the global stretching factor is compensated dynamically in the regions
between transients.

5. TSM Based on the Phase Vocoder (PV-TSM)

5.1. Overview

As we have seen, WSOLA is capable of maintaining the most prominent periodicity in the
input signal. The next step to improve the quality of time-scale modified signals is to preserve the
periodicities of all signal components. This is the main idea of frequency-domain TSM procedures, which
interpret each analysis frame as a weighted sum of sinusoidal components with known frequency and
phase. Based on these parameters, each of these components is manipulated individually to avoid
phase jump artifacts across all frequencies in the reconstructed signal.

A fundamental tool for the frequency analysis of the input signal is the short-time Fourier
transform [14] (Section 5.2). However, depending on the chosen discretization parameters, the resulting
frequency estimates may be inaccurate. To this end, the phase vocoder (Although the term “phase
vocoder” refers to a specific technique for the estimation of instantaneous frequencies, it is also
frequently used in the literature as the name of the TSM procedure itself.) technique [5,7] is used
to improve on the the short-time Fourier transform’s coarse frequency estimates by deriving the
sinusoidal components’ instantaneous frequencies (Section 5.3). In TSM procedures based on the phase
vocoder (PV-TSM), these improved estimates are used to update the phases of an input signal’s
sinusoidal components in a process known as phase propagation (Section 5.4).

5.2. The Short-Time Fourier Transform

The most important tool of PV-TSM is the short-time Fourier transform (STFT), which applies the
Fourier transform to every analysis frame of a given input signal. The STFT X of a signal x is given by

X(m, k) =
N/2−1

∑
r=−N/2

xm(r) w(r) exp(−2πikr/N) , (12)

where m ∈ Z is the frame index, k ∈ [0 : N − 1] is the frequency index, N is the frame length, xm is
the mth analysis frame of x as defined in Equation (1), and w is a window function. Given the input
signal’s sampling rate Fs, the frame index m of X(m, k) is associated to the physical time

Tcoef(m) =
m Ha

Fs
(13)
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given in seconds, and the frequency index k corresponds to the physical frequency

Fcoef(k) =
k Fs

N
(14)

given in Hertz. The complex number X(m, k), also called a time-frequency bin, denotes the kth Fourier
coefficient for the mth analysis frame. It can be represented by a magnitude |X(m, k)| ∈ R+ and a
phase ϕ(m, k) ∈ [0, 1) as

X(m, k) = |X(m, k)| exp(2πi ϕ(m, k)) . (15)

The magnitude of an STFT X is also called a spectrogram which is denoted by Y:

Y = |X| . (16)

In the context of PV-TSM, it is necessary to reconstruct the output signal y from a modified STFT
XMod. Note that a modified STFT is in general not invertible [15]. In other words, there might be no
signal y that has XMod as its STFT. However, there exist methods that aim to reconstruct a signal y from
XMod whose STFT is close to XMod with respect to some distance measure. Following the procedure
described in [16], we first compute time-domain frames xMod

m by using the inverse Fourier transform.

xMod
m (r) =

1
N

N−1

∑
k=0

XMod(m, k) exp(2πikr/N) . (17)

From these frames, we then derive synthesis frames

ym(r) =
w(r) xMod

m (r)
∑

n∈Z

w(r− nHs)2 (18)

and reconstruct the output signal y by Equation (2). It can be shown that, when computing the
synthesis frames by Equation (18), the STFT of y (when choosing Ha = Hs) minimizes a squared error
distance measure defined in [16].

5.3. The Phase Vocoder

Each time-frequency bin X(m, k) of an STFT can be interpreted as a sinusoidal component with
amplitude |X(m, k)| and phase ϕ(m, k) that contributes to the mth analysis frame of the input signal x.
However, the Fourier transform yields coefficients only for a discrete set of frequencies that are sampled
linearly on the frequency axis, see Equation (14). The STFT’s frequency resolution therefore does
not suffice to assign a precise frequency value to this sinusoidal component. The phase vocoder is a
technique that refines the STFT’s coarse frequency estimate by exploiting the given phase information.
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Figure 8. Principle of the phase vocoder.

In order to understand the phase vocoder, let us have a look at the scenario shown in Figure 8.
Assume we are given two phase estimates ϕ1 = ϕ(m, k) and ϕ2 = ϕ(m + 1, k) at the time instances
t1 = Tcoef(m) and t2 = Tcoef(m + 1) of a sinusoidal component for which we only have a coarse
frequency estimate ω = Fcoef(k). Our goal is to estimate the sinusoid’s “real” instantaneous frequency
IF(ω). Figure 8 shows this sinusoidal component (gray) as well as two sinusoids that have a frequency
of ω (red and green). In addition, we also see phase representations at the time instances t1 and t2.
The red sinusoid has a phase of ϕ1 at t1 and the green sinusoid a phase of ϕ2 at t2. One can see that the
frequency ω of the red and green sinusoids is slightly lower than the frequency of the gray sinusoid.
Intuitively, while the phases of the gray and the red sinusoid match at t1, they diverge over time, and
we can observe a considerable discrepancy after ∆t = t2 − t1 seconds (blue oval). Since we know the
red sinusoid’s frequency, we can compute its unwrapped phase advance, i.e., the number of oscillations
that occur over the course of ∆t seconds:

ω ∆t . (19)

Knowing that its phase at t1 is ϕ1, we can predict its phase after ∆t seconds:

ϕPred = ϕ1 + ω ∆t . (20)

At t2 we again have a precise phase estimate ϕ2 for the gray sinusoid. We therefore can compute
the phase error ϕErr (also called the heterodyned phase increment [17]) between the phase actually measured
at t2 and the predicted phase when assuming a frequency of ω:

ϕErr = Ψ(ϕ2 − ϕPred) , (21)

where Ψ is the principal argument function that maps a given phase into the range [−0.5, 0.5]. Note that
by mapping ϕErr into this range, we assume that the number of oscillations of the gray and red
sinusoids differ by at most half a period. In the context of instantaneous frequency estimation, this
means that the coarse frequency estimate ω needs to be close to the actual frequency of the sinusoid,
and that the interval ∆t should be small. The unwrapped phase advance of the gray sinusoid can then
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be computed by the sum of the unwrapped phase advance of the red sinusoid with frequency ω (red
spiral arrow) and the phase error (blue curved arrow):

ω ∆t + ϕErr . (22)

This gives us the number of oscillations of the gray sinusoid over the course of ∆t seconds.
From this we can derive the instantaneous frequency of the gray sinusoid by

IF(ω) =
ω ∆t + ϕErr

∆t
= ω +

ϕErr

∆t
. (23)

The frequency ϕErr/∆t can be interpreted as the small offset of the gray sinusoid’s actual frequency
from the rough frequency estimate ω.

We can use this approach to refine the coarse frequency resolution of the STFT by computing
instantaneous frequency estimates FIF

coef(m, k) for all time-frequency bins X(m, k):

FIF
coef(m, k) = IF(ω) = ω +

Ψ (ϕ2 − (ϕ1 + ω ∆t))
∆t

(24)

with ω = Fcoef(k), ∆t = Ha/Fs (the analysis hopsize given in seconds), ϕ1 = ϕ(m, k), and
ϕ2 = ϕ(m + 1, k). For further details, we refer to ([15], Chapter 8).

5.4. PV-TSM

The principle of PV-TSM is visualized in Figure 9. Given an input audio signal x, the first step of
PV-TSM is to compute the STFT X. Figure 9a depicts the two successive frequency spectra of the mth
and (m + 1)th analysis frames, denoted by X(m) and X(m + 1), respectively (here, a frame’s Fourier
spectrum is visualized as a set of sinusoidals, representing the sinusoidal components that are captured
in the time-frequency bins). Our goal is to compute a modified STFT XMod with adjusted phases ϕMod

from which we can reconstruct a time-scale modified signal without phase jump artifacts:

XMod(m, k) = |X(m, k)| exp(2πi ϕMod(m, k)) . (25)

We compute the adjusted phases ϕMod in an iterative process that is known as phase propagation.
Assume that the phases of the mth frame have already been modified (see the red sinusoid’s phase in
Figure 9b being different from its phase in Figure 9a). As indicated by Figure 9b, overlapping the mth
and (m + 1)th frame at the synthesis hopsize Hs may lead to phase jumps. Knowing the instantaneous
frequencies FIF

coef derived by the phase vocoder, we can predict the phases of the sinusoidal components
in the mth frame after a time interval corresponding to Hs samples. To this end, we set ϕ1 = ϕMod(m, k),
ω = FIF

coef(m, k), and ∆t = Hs/Fs (the synthesis hopsize given in seconds) in Equation (20). This allows
us to replace the phases of the (m + 1)th frame with the predicted phase:

ϕMod(m + 1, k) = ϕMod(m, k) + FIF
coef(m, k)

Hs

Fs
(26)

for k ∈ [0 : N − 1]. Assuming that the estimates of the instantaneous frequencies FIF
coef are correct,

there are no phase jumps any more when overlapping the modified spectra at the synthesis hopsize Hs

(Figure 9c). In practice, we start the iterative phase propagation with the frame index m = 0 and set

ϕMod(0, k) = ϕ(0, k) , (27)
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for all k ∈ [0 : N − 1]. Finally, the output signal y can be computed using the signal reconstruction
procedure described in Section 5.2 (Figure 9d).

𝐻s 

Kategorie 1: 145 EuroKategorie 1: 145 
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𝑦 
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𝐻a 

𝑦 

𝑦𝑚 𝑦𝑚+1 

𝑦 

(b) 

(d) 

𝑋 

𝑋(𝑚) 𝑋(𝑚 + 1) 𝑋Mod(𝑚) 𝑋(𝑚 + 1) 

𝐻s 
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(c) 
𝑋Mod 

𝑋Mod(𝑚) 𝑋Mod(𝑚 + 1) 

𝐻s 

𝑋Mod(𝑚) 𝑋Mod(𝑚 + 1) 

Conversion into 
time domain 

Figure 9. The principle of TSM Based on the Phase Vocoder (PV-TSM). (a) STFT X (time-frequency bins
are visualized by sinusoidals); (b) Using the original phase of X(m + 1, k) leads to phase jumps when
overlapping the frames at the synthesis hopsize Hs (blue oval); (c) Update of the sinusoids’ phases via
phase propagation. Phase jumps are reduced (blue oval); (d) Signal reconstruction from the modified
STFT XMod.

5.5. Artifacts

By design, PV-TSM can achieve phase continuity for all sinusoidal components contributing to the
output signal. This property, also known as horizontal phase coherence, ensures that there are no artifacts
related to phase jumps. However, the vertical phase coherence, i.e., the phase relationships of sinusoidal
components within one frame, is usually destroyed in the phase propagation process. The loss of
vertical phase coherence affects the time localization of events such as transients. As a result, transients
are often smeared in signals modified with PV-TSM (Figure 10). Furthermore, output signals of PV-TSM
commonly have a very distinct sound coloration known as phasiness [18], an artifact also caused by the
loss of vertical phase coherence. Signals suffering from phasiness are described as being reverberant,
having “less bite,” or a “loss of presence” [6].
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Figure 10. Illustration of a smeared transient as a result of applying PV-TSM. The input signal x has
been stretched by a factor of α = 1.8 to yield the output signal y.

5.6. Tricks of the Trade

The phase vocoder technique highly benefits from frequency estimates that are already close
to the instantaneous frequencies as well as from a small analysis hopsize (resulting in a small ∆t).
In PV-TSM, the frame length N is therefore commonly set to a relatively large value. In practice, N
typically corresponds to roughly 100 ms in order to achieve a high frequency resolution of the STFT.

To reduce the loss of vertical phase coherence in the phase vocoder, Laroche and Dolson proposed
a modification to the standard PV-TSM in [6]. Their core observation is that a sinusoidal component
may affect multiple adjacent time-frequency bins of a single analysis frame. Therefore, the phases of
these bins should not be updated independently, but in a joint fashion. A peak in a frame’s magnitude
spectrum is assumed to be representative of a particular sinusoidal component. The frequency bins
with lower magnitude values surrounding the peak are assumed to be affected by the same component
as well. In the phase propagation process, only the time-frequency bins with a peak magnitude are
updated in the usual fashion described in Equation (26). The phases of the remaining frequency bins
are locked to the phase of the sinusoidal component corresponding to the closest peak. This procedure
allows to locally preserve the signal’s vertical phase coherence. This technique, also known as identity
phase locking, leads to reduced phasiness artifacts and less smearing of transients.

Another approach to reduce phasieness artifacts is the phase vocoder with synchronized overlap-add
(PVSOLA) and similar formulations [19–21]. The core observation of these methods is that the original
vertical phase coherence is usually lost gradually over the course of phase-updated synthesis frames.
Therefore, these procedures “reset” the vertical phase coherence repeatedly after a fixed number
of frames. The resetting is done by copying an analysis frame unmodified to the output signal and
adjusting it in a WSOLA-like fashion. After having reset the vertical phase coherence, the next synthesis
frames are again computed by the phase propagation strategy.

To reduce the effect of transient smearing, other approaches include transient preservation
schemes, similar to those for WSOLA. In [22], transients are identified in the input signal, cut out
from the waveform, and temporarily stored. The remaining signal, after filling the gaps using linear
prediction techniques, is modified using PV-TSM. Finally, the stored transients are relocated according
to the stretching factor and reinserted into the modified signal.

6. TSM Based on Harmonic-Percussive Separation

6.1. The Procedure

As we have seen in the previous sections, percussive sound components and transients in the
input signal cause issues with WSOLA and PV-TSM. On the other hand, OLA is capable of modifying
percussive and transient sounds rather well, while causing phase jump artifacts in harmonic signals.
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The idea of a recent TSM procedure proposed in [8] is to combine PV-TSM and OLA in order to modify
both harmonic and percussive sound components with high quality. The procedure’s principle is
visualized in Figure 11. The shown input signal consists of a tone played on a violin (harmonic)
superimposed with a single click of castanets halfway through the signal (percussive). The first step
is to decompose the input signal into two sound components: a harmonic component and a percussive
component. This is done by using a harmonic-percussive separation (HPS) technique. A simple and
effective method for this task was proposed by Fitzgerald in [23], which we review in Section 6.2.
As we can see in Figure 11, the harmonic component captures the violin’s sound while the percussive
component contains the castanets’ click. A crucial observation is that the harmonic component usually
does not contain percussive residues and vice versa. After having decomposed the input signal,
the idea of [8] is to apply PV-TSM with identity phase locking (see Section 5.6) to the harmonic
component and OLA with a very short frame length (see Section 3.3) to the percussive component.
By treating the two components independently with the two different TSM procedures, their respective
characteristics can be preserved to a high degree. Finally, the superposition of the two modified signal
components forms the output of the procedure. A conceptually similar strategy for TSM has been
proposed by Verma and Meng in [24] where they use a sines+transients+noise signal model [25–28] to
parameterize a given signal’s sinusoidal, transient, and noise-like sound components. The estimated
parameters are then modified in order to synthesize a time-scaled output signal. However, their
procedure relies on an explicit transient detection in order to estimate appropriate parameters for the
transient sound components.

PV-TSM 

HPS 

Superposition 

OLA 

Harmonic component Percussive component 

Figure 11. Principle of TSM based on harmonic-percussive separation.

In contrast to other transient preserving TSM procedures such as [13,22,24,29], the approach based
on HPS has the advantage that an explicit detection and preservation of transients is not necessary.
Figure 12 shows the same input signal x as in Figure 10. Here, the signal is stretched by a factor
of α = 1.8 using TSM based on HPS. Unlike Figure 10, the transient from the input signal x is also
clearly visible in the output signal y. When looking closely, one can see that the transient is actually
doubled by OLA (Section 4.2). However, due to the short frame length used in the procedure, the
transient repeats so quickly that the doubling is not noticeable when listening to the output signal.
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The TSM procedure based on HPS was therefore capable of preserving the transient without an explicit
transient detection. Since both the explicit detection and preservation of transients are non-trivial and
error-prone tasks, the achieved implicit transient preservation yields a more robust TSM procedure.
The TSM approach based on HPS is therefore a good example of how the strengths of different TSM
procedures can be combined in a beneficial way.

𝑦 

𝑥 

1 
Time (s) 

0 0. 5 1 

0 0. 5 1.5 1.8 

Figure 12. Transient preservation in TSM based on harmonic-percussive separation (HPS). The input
signal x is the same as in Figure 10 and is stretched by a factor of α = 1.8 using TSM based on HPS.

6.2. Harmonic-Percussive Separation

The goal of harmonic-percussive separation (HPS) is to decompose a given audio signal x into a
signal xh consisting of all harmonic sound components and a signal xp consisting of all percussive
sound components. While there exist numerous approaches for this task [30–35], a particularly simple
and effective method was proposed by Fitzgerald in [23], which we review in the following. To
illustrate the procedure, let us have a look at Figure 13. The input is an audio signal as shown in
Figure 13a. Here, we again revert to our example of a tone played on the violin, superimposed with a
single click of castanets. The first step is to compute the STFT X of the given audio signal x as defined
in Equation (15). A critical observation is that, in the spectrogram Y = |X|, harmonic sounds form
structures in the time direction, while percussive sounds yield structures in the frequency direction.
In the spectrogram shown in Figure 13b we can see horizontal lines, reflecting the harmonic sound
of the violin, as well as a single vertical line in the middle of the spectrogram, stemming from a click
of the castanets. By applying a median filter to Y—once horizontally and once vertically—we get a
horizontally enhanced spectrogram Ỹh and a vertically enhanced spectrogram Ỹp:

Ỹh(m, k) = median (Y(m− `h, k), . . . , Y(m + `h, k)) (28)

Ỹp(m, k) = median
(
Y(m, k− `p), . . . , Y(m, k + `p)

)
(29)

for `h, `p ∈N, where 2`h + 1 and 2`p + 1 are the lengths of the median filters, respectively (Figure 13c).
We assume a time-frequency bin of the original STFT X(m, k) to be part of the harmonic component if
Ỹh(m, k) > Ỹp(m, k) and of the percussive component if Ỹp(m, k) ≥ Ỹh(m, k). Using this principle, we
can define binary masksMh andMp for the harmonic and the percussive components (Figure 13d):

Mh(m, k) =

{
1, if Ỹh(m, k) > Ỹp(m, k),

0, otherwise,
(30)

Mp(m, k) =

{
1, if Ỹp(m, k) ≥ Ỹh(m, k),

0, otherwise.
(31)
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Figure 13. The HPS procedure presented in [23]. (a) Input audio signal x; (b) STFT X of x;
(c) Horizontally and vertically enhanced spectrograms Ỹh and Ỹp; (d) Binary masks Mh and Mp;
(e) Spectrograms of the harmonic and the percussive component Xh and Xp; (f) Harmonic and
percussive components xh and xp.

Applying these masks to the original STFT X yields modified STFTs corresponding to the harmonic
and percussive components (Figure 13e):

Xh(m, k) = X(m, k)Mh(m, k) , (32)

Xp(m, k) = X(m, k)Mp(m, k) . (33)

These modified STFTs can then be transformed back to the time-domain by using the
reconstruction strategy discussed in Section 5.2. This yields the desired signals xh and xp, respectively.
As we can see in Figure 13f, the harmonic component xh contains the tone played by the violin, while
the percussive component xp shows the waveform of the castanets’ click.
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7. Applications

7.1. Music Synchronization—Non-Linear TSM
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Figure 14. Example of a non-linear time-stretch function τ.

In scenarios like automated soundtrack generation [36] or automated DJing [1,2], it is often necessary
to synchronize two or more music recordings by aligning musically related beat positions in time.
However, music recordings do not necessarily have a constant tempo. In this case, stretching
or compressing the recordings by a constant factor α is insufficient to align their beat positions.
Instead, the recordings’time-scales need to be modified in a non-linear fashion. The goal of non-linear
TSM is to modify an audio signal according to a strictly monotonously increasing time-stretch function
τ : R → R, which defines a mapping between points in time (given in seconds) of the input and
output signals. Figure 14 shows an example of such a function. The first part, shown in red, has a slope
greater than one. As a consequence, the red region in the input signal is mapped to a larger region in
the output, resulting in a stretch. The slope of the function’s second part, shown in blue, is smaller
than one, leading to a compression of this region in the output. One possibility to realize this kind of
non-linear modifications is to define the positions of the analysis frames according to the time-stretch
function τ, instead of a constant analysis hopsize Ha. The process of deriving the analysis frames’
positions is presented in Figure 14. Given τ, we first fix a synthesis hopsize Hs as we did for linear
TSM (see Section 2). From this, we derive the synthesis instances sm ∈ R (given in seconds), which are
the positions of the synthesis frames in the output signal:

sm =
m Hs

Fs
. (34)

By inverting τ, we compute the analysis instances am ∈ R (given in seconds):

am = τ−1(sm) . (35)
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Figure 15. (a) Score of the first five measures of Beethoven’s Symphony No. 5; (b) Waveforms of
two performances. Corresponding onset positions are indicated by red arrows; (c) Set of anchor points
(indicated in red) and inferred time-stretch function τ; (d) Onset-synchronized waveforms of the
two performances.

When using analysis frames indicated by the analysis instances for TSM with a procedure of our
choice, the resulting output signal is modified according to the time-stretch function τ. To this end, all
of the previously discussed TSM procedures can also be used for non-linear TSM.

A very convenient way of defining a time-stretch function is by introducing a set of anchor
points. An anchor point is a pair of time positions where the first entry specifies a time position in
the input signal and the second entry is a time position in the output signal. The actual time-stretch
function τ is then obtained by a linear interpolation between the anchor points. Figure 15 shows a
real-world example of a non-linear modification. In Figure 15b, we see the waveforms of two recorded
performances of the first five measures of Beethoven’s Symphony No. 5. The corresponding time
positions of the note onsets are indicated by red arrows. Obviously, the first recording is longer than
the second. However, the performances’ tempi do not differ by a constant factor. While the eighth
notes in the first and third measure are played at almost the same tempo in both performances, the
durations of the half notes (with fermata) in measures two and five are significantly longer in the
first recording. The mapping between the note onsets of the two performances is therefore non-linear.
In Figure 15c, we define eight anchor points that map the onset positions of the second performance to
the onset positions of the first performance (plus two additional anchor points aligning the recordings’
start times and end times, respectively). Based on these anchor points and the derived time-stretch
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function τ, we then apply the TSM procedure of our choice to the second performance in order to
obtain a version that is onset-synchronized with the first performance (Figure 15d).

7.2. Pitch-Shifting
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Figure 16. Pitch-shifting via resampling and TSM. (a) Spectrogram of an input audio signal;
(b) Spectrogram of the resampled signal; (c) Spectrogram after TSM application.

Pitch-shifting is the task of changing an audio recording’s pitch without altering its length—it can
be seen as the dual problem to TSM. While there are specialized pitch-shifting procedures [37,38], it is
also possible to approach the problem by combining TSM with resampling. The core observation is that
resampling a given signal and playing it back at the original sampling rate changes the length and the
pitch of the signal at the same time (The same effect can be simulated with vinyl records by changing
the rotation speed of the record player). To pitch-shift a given signal, it is therefore first resampled
and afterwards time-scale modified in order to compensate for the change in length. More precisely,
an audio signal, sampled at a rate of F(in)

s , is first resampled to have a new sampling rate of F(out)
s .

When playing back the signal at its original sampling rate F(in)
s , this operation changes the signal’s

length by a factor of F(out)
s /F(in)

s and scales its frequencies by the term’s inverse. For example, musically
speaking, a factor of F(out)

s /F(in)
s = 1

2 increases the pitch content by one octave. To compensate

for the change in length, the signal needs to be stretched by a factor of α = F(in)
s /F(out)

s , using a
TSM procedure.

To demonstrate this, we show an example in Figure 16, where the goal is to apply a pitch-shift
of one octave to the input audio signal. The original signal has a sampling rate of F(in)

s = 44, 100 Hz
(Figure 16a). To achieve the desired pitch-shift, the signal is resampled to F(out)

s = 22, 050 Hz
(Figure 16b). One can see that the resampling changed the pitch of the signal as well as its length
when interpreting the signal as still being sampled at F(in)

s = 44, 100 Hz. While the change in pitch is
desired, the change in length needs to be compensated for. Thus, we stretch the signal by a factor of
α = 44, 100 Hz/22, 050 Hz = 2 to its original length (Figure 16c).
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Figure 17. Frequency spectra for a fixed frame m of different versions of a singing voice recording.
The spectral envelopes are marked in red. (a) Original spectrum X(m) with spectral envelope Γm;
(b) Pitch-shifted spectrum XShift(m) with spectral envelope ΓShift

m ; (c) Pitch-shifted spectrum XMod(m)

with adapted spectral envelope.

The quality of the pitch-shifting result crucially depends on various factors. First, artifacts that are
produced by the applied TSM procedure are also audible in the pitch-shifted signal. However, even
when using a high-quality TSM procedure, the pitch-shifted signals generated by the method described
above often sound unnatural. For example, when pitch-shifting singing voice upwards by several
semitones, the modified voice has an artificial sound, sometimes referred to as the chipmunk effect [39].
Here, the problem is that the spectral envelope, which is the rough shape of a frequency spectrum, is
of central importance for the timbre of a sound. In Figure 17a, we see a frame’s frequency spectrum
from a singing voice recording. Due to the harmonic nature of the singing voice, the spectrum
shows a comb-like pattern where the energy is distributed at multiples of a certain frequency—in
this example roughly 250 Hz. The peaks in the pattern are called the harmonics of the singing voice.
The magnitudes of the harmonics follow a certain shape which is specified by the spectral envelope
(marked in red). Peaks in the spectral envelope are known as formants. In the example from Figure 17a,
we see four formants at around 200 Hz, 2200 Hz, 3100 Hz, and 5900 Hz. The frequency positions of
these formants are closely related to the singing voice’s timbre. In Figure 17b, we see the spectrum of
the same frame after being pitch-shifted by four semitones with the previously described pitch-shifting
procedure. Due to the resampling, the harmonics’ positions are scaled. The spectral envelope is
therefore scaled as well, relocating the positions of the formants. This leads to a (usually undesired)
change in timbre of the singing voice.

One strategy to compensate for this change is outlined in [17]. Let X and XShift be the STFTs
of a given input signal x and its pitch-shifted version xShift, respectively. Fixing a frame index m,
let X(m) and XShift(m) be the frequency spectra of the mth frames in X and XShift. Furthermore, let
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Γm : [0 : N − 1]→ R and ΓShift
m : [0 : N − 1]→ R denote the spectral envelopes of X(m) and XShift(m),

respectively. Our goal is to compute modified spectra XMod(m) that have the frequency content of
XShift(m) but the original spectral envelopes Γm. To this end, we normalize the magnitudes of XShift(m)

with respect to its spectral envelope ΓShift
m and then scale them by the original envelope Γm:

XMod(m, k) = XShift(m, k)
Γm(k)

ΓShift
m (k)

. (36)

In Figure 17c we see the frame’s spectrum from Figure 17b after the envelope adaption, leading to
a signal that sounds more natural.

There exist several approaches to estimate spectral envelopes, many of them either based on
linear predictive coding (LPC) [40] or on the cepstrum (the inverse Fourier transform of the logarithmic
magnitude spectrum) [41,42]. Generally, the task of spectral envelope estimation is highly complex
and error-prone. In envelope or formant-preserving pitch-shifting methods, it is often necessary to
manually specify parameters (e.g., the pitch range of the sources in the recording) to make the envelope
estimation more robust.

7.3. Websources

Various free implementations of TSM procedures are available in different programming
languages. MATLAB implementations of OLA, WSOLA, PV-TSM, and TSM based on HPS, as well
as additional test and demo material can be found in the TSM Toolbox [43,44]. A further MATLAB
implementation of PV-TSM can be found at [45]. PV-TSM implemented in Python is included in
LibROSA [46]. Furthermore, there are open source C/C++ audio processing libraries that offer TSM
functionalities. For example, the Rubber Band Library [47] includes a transient preserving PV-TSM and
the SoundTouch Audio Processing Library [48] offers a WSOLA-like TSM procedure. Finally, there
also exist proprietary commercial implementations such as the élastique algorithm by zplane [49].

8. Conclusions

In this article, we reviewed time-scale modification of music signals. We presented fundamental
principles and discussed various well-known time and frequency-domain TSM procedures.
Additionally, we pointed out more involved procedures proposed in the literature, which are—to
varying extents—based on the fundamental approaches we reviewed. In particular, we discussed
a recent approach that involves harmonic-percussive separation and combines the advantages of
two fundamental TSM methods in order to attenuate artifacts and improve the quality of time-scale
modified signals. Finally, we introduced some applications of TSM, including music synchronization
and pitch-shifting, and gave pointers to freely available TSM implementations.

A major goal of this contribution was to present fundamental concepts in the field of TSM.
Beyond discussing technical details, our main motivation was to give illustrative explanations in
a tutorial-like style. Furthermore, we aimed to foster a deep understanding of the strengths and
weaknesses of the various TSM approaches by discussing typical artifacts and the importance of
parameter choices. We hope that this work constitutes a good starting point for becoming familiar
with the field of TSM and developing novel TSM techniques.
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