- •
- •
- •
- •
- •

- •
- •
- •
- •

Short Time Fourier Transform (STFT)

G. Bebis, Univ. of Nevada, Reno (NV)

Fourier Transform

• Fourier Transform reveals which frequency components are present in a function:

$$f(x) = \sum_{u=0}^{N-1} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$
 (inverse DF)

۲

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-j2\pi ux}{N}}, u = 0, 1, \dots, N-1$$

(forward DFT)

Ί)

Examples

•

۲

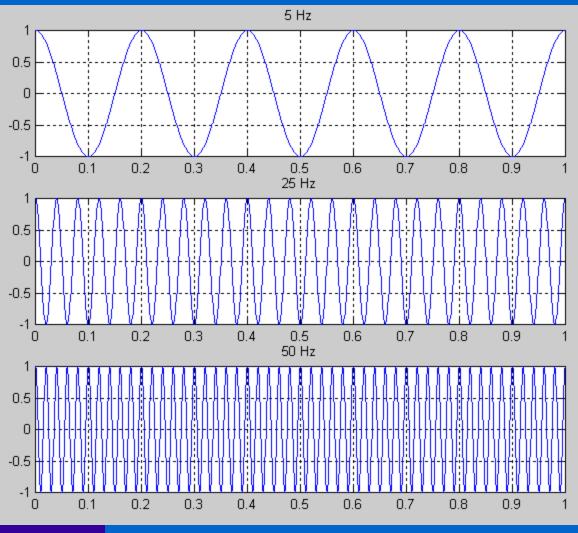
۲

۲

$$f_1(t) = \cos(2\pi \cdot 5 \cdot t)$$

$$f_2(t) = \cos(2\pi \cdot 25 \cdot t)$$

$$f_3(t) = \cos(2\pi \cdot 50 \cdot t)$$



•

۲

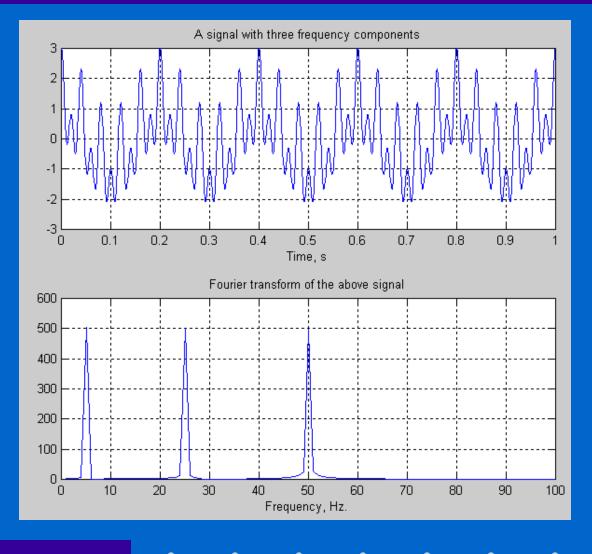
•

The plots below indicate that the continuous signals have been sampled at Fs = Hz (or possibly larger)



Fourier Analysis – Examples (cont'd)

 $f_4(t) = \cos(2\pi \cdot 5 \cdot t) \\ + \cos(2\pi \cdot 25 \cdot t) \\ + \cos(2\pi \cdot 50 \cdot t)$



 $F_4(u)$

Limitations of Fourier Transform

1. Cannot provide simultaneous time and frequency localization.

 \bullet

Limitations of Fourier Transform (cont'd)

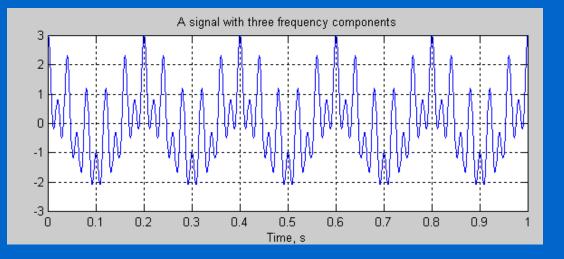
1. Cannot provide simultaneous time and frequency localization.

2. Not very useful for analyzing time-variant, nonstationary signals.

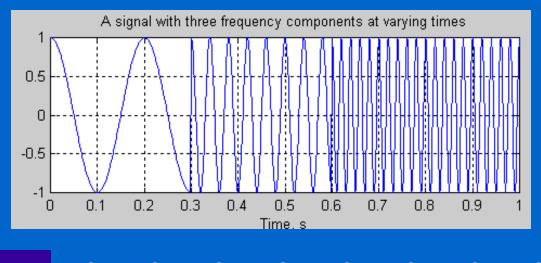
Stationary vs non-stationary signals

• Stationary signals: time-invariant spectra

 $f_4(t)$



• Non-stationary signals: time-varying spectra $f_5(t)$

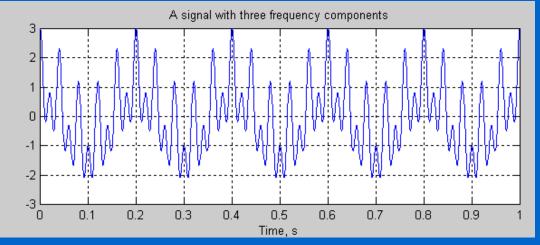


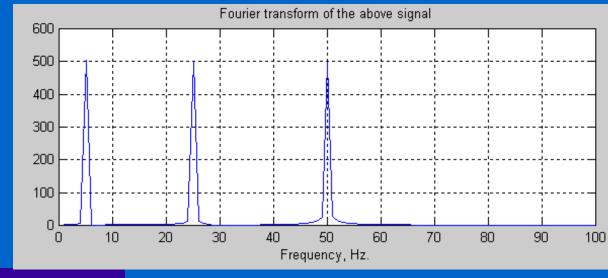
Stationary vs non-stationary signals (cont'd)

Stationary signal:

Three frequency components, present at all times!

$$f_4(t)$$





 $F_4(u)$

Stationary vs non-stationary signals (cont'd)

Non-stationary signal:

Three frequency components, NOT present at all times!

A signal with three frequency components at varying times 0.5 $f_5(t)$ 0 -0.5 -1 0.2 0.1 0.3 0.4 0.6 0.7 0.8 0.9 0.5 n Time, s

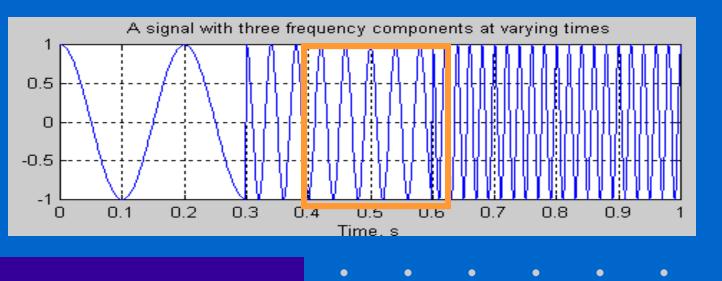
(note: *more freq*. *components are present due to signal transitions*)

 $F_5(u)$

200 150100 50 n 20 30 60 70 10 40 50 80 90 n 100 Frequency, Hz.

Short Time Fourier Transform (STFT)

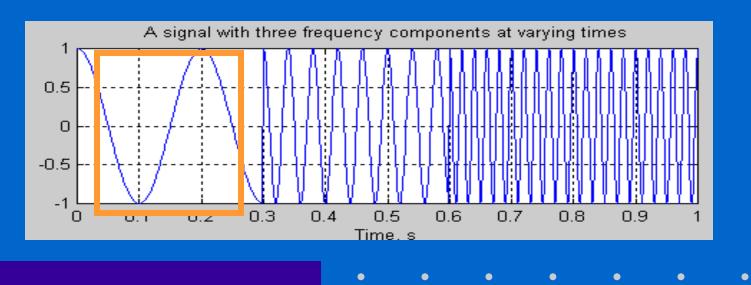
- Segment the signal into narrow time intervals (i.e., narrow enough to be considered stationary) and take the FT of each segment.
- Each FT provides the spectral information of a separate time-slice of the signal, providing simultaneous time and frequency information.



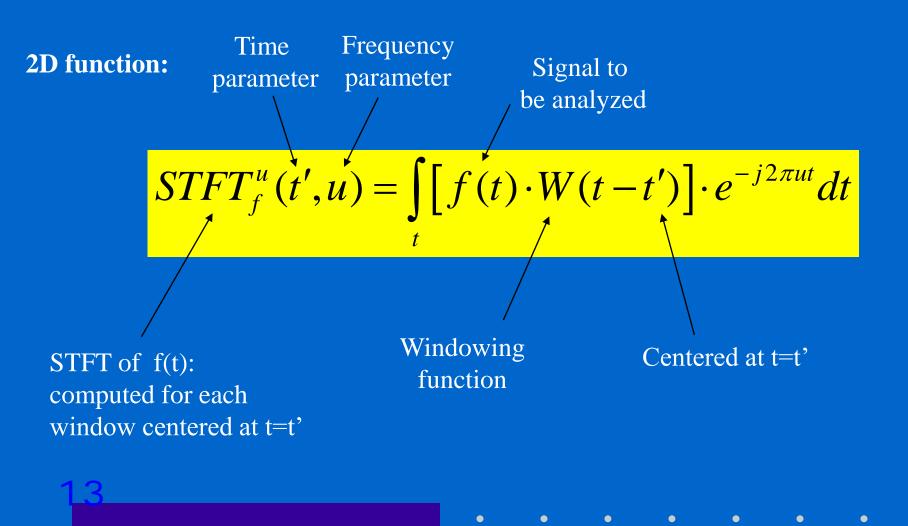
STFT - Steps

- (1) Choose a window function of finite length
- (2) Place the window on top of the signal at t=0
- (3) Truncate the signal using this window

- (4) Compute the FT of the truncated signal, save results.
- (5) Incrementally slide the window to the right
- (6) Go to step 3, until window reaches the end of the signal



STFT - Definition in the continuous case



Choosing Window W(t)

- What shape should it have?
 - Rectangular, Gaussian, ...
- How wide should it be?
 - Window should be narrow enough to ensure that the portion of the signal falling within the window is stationary.
 - But ... very narrow windows do not offer good localization in the frequency domain.

STFT Window Size

$$STFT_f^u(t',u) = \int_t \left[f(t) \cdot W(t-t') \right] \cdot e^{-j2\pi u t} dt$$

W(t) infinitely long: $W(t) = 1 \rightarrow \text{STFT}$ turns into FT, providing excellent frequency localization, but no time localization.

W(t) infinitely short: $W(t) = \delta(t) \rightarrow$ results in the time signal (with a phase factor), providing excellent time localization but no frequency localization.

$$STFT_f^u(t',u) = \int_t \left[f(t) \cdot \delta(t-t') \right] \cdot e^{-j2\pi ut} dt = f(t') \cdot e^{-jut'}$$

STFT Window Size (cont'd)

- Wide window → good frequency resolution, poor time resolution.
- Narrow window → good time resolution, poor frequency resolution.
- Wavelets (next year): use multiple window sizes.

(1927: Position vs. velocity of an object)

Heisenberg (or Uncertainty) Principle

 $\Delta t \cdot \Delta f \ge \frac{1}{4\pi}$

Time resolution: How well two spikes in time can be separated from each other in the frequency domain. **Frequency resolution:** How well two spectral components can be separated from each other in the time domain

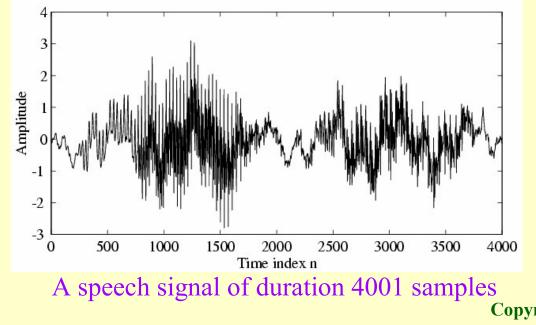
 Δt and Δf cannot be made arbitrarily small!

Heisenberg (or Uncertainty) Principle

- We cannot know the **exact** time-frequency representation of a signal.
- We can only know what *interval of frequencies* are present in which *time intervals*.

STFT Computation Using MATLAB

- The M-file specgram can be used to compute the STFT of a signal
- The application of specgram is illustrated next

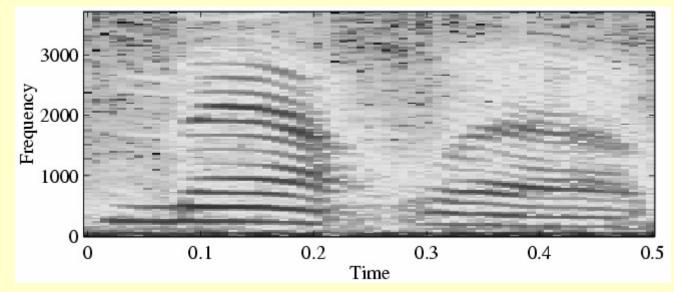


Copyright © 2010, S. K. Mitra

STFT Computation Using MATLAB

sampling freq. ?

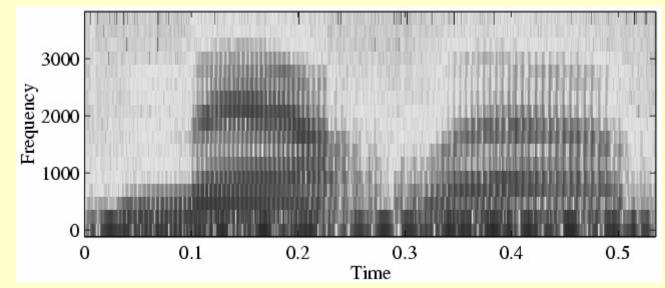
 Using Program 11_4 we compute the narrowband spectrogram of this speech signal



Copyright © 2010, S. K. Mitra

STFT Computation Using MATLAB

• The **wideband spectrogram** of the speech signal is shown below



• The frequency and time resolution tradeoff between the two spectrograms can be seen