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DFT Properties

* Like the DTFT, the DFT also satisties a
number of properties that are useful 1n
signal processing applications

* Some of these properties are essentially
identical to those of the DTFT, while some
others are somewhat different

* A summary of the DFT properties are given
in tables in the following slides
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Table 5.1: DFT Properties:
Symmetry Relations

Length-N Sequence N-point DFT
x[n] X[k]
x*[n] X*[(—k)n]
x*[(—=n)N] X*[k]
Re{x[n]) Xpes[k] = ${X[K)N] + X*[(=k)N])
J Im{x[n]} Xpcalk] = %{X[(k)N] — X*[(=k)N]}
xpesln] Re{X[k]}
Xpcaln] J Im{X[k]}

Note: xpcs[n] and xpca[n] are the periodic conjugate-symmetric and
periodic conjugate-antisymmetric parts of x[n], respectively. Likewise,
Xpes[k] and X pea [K] are the periodic conjugate-symmetric and periodic
conjugate-antisymmetric parts of X [k], respectively.

x[n] 1s a complex sequence Copyright © 2010, S. K. Mitra



Table 5.2: DFT Properties:
Symmetry Relations

Length-N Sequence N-point DFT
x[n] X[k] = Re{X[k]} + j Im{X[k]}
xpe[”] Re{X[k]}
Xpo[n] JIm{X[k]}

X[k] = X*[(—k)N]
Re X[k] = Re X[(—k)nN]
Symmetry relations Im X[k] = —Im X[(—=k)nN]
|X[k]l = |X[{(=k)n]I

arg X[k] = —arg X[(—k)N]

Note: xpe[n] and xpo[n] are the periodic even and periodic odd parts
of x[n], respectively.

16 x[n] is a real sequence
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Table 5.3: DFT Theorems

Theorems Length-/N Sequence N-point DFT
gln] G[k]
h(n] H|[k]
Linearity agln] + Bh[n] aGlk] + BH[k]
Circular time-shifting glin —no)n] W' GIk]
Circular —kon
frequency-shifting W " sln] Clik = koln]
Duality Gln] Ngl{—k)nN]
N-point circular A B
L = slmlil(n = m)w] GIKH K]
_ , Nl
Modulation glnlh(n] v 2 Glm]H[(k —m)N]
m=0
N-1 1 N-1
Parseval’s relation x[n] 2 -~ X[k]|2
; il = kg | X[k]|

17
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Operations on Finite-Length
Sequences

* Consider the length-N sequence x[n]
defined for0<n< N -1

* [ts sample values are equal to zero forn <0
andn> N

* A time-reversal operation on x[#n] will result
in a length-N sequence x[—n] defined for

—(N-D<n<0

Copyright © 2010, S. K. Mitra
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Operations on Finite-Length
Sequences

» Likewise, a linear time-shift of x[n] by
integer-valued M will result in a length-N
sequence x[# + M] no longer defined for
0<n<<N-1

e Similarly, a convolution sum of two length-
N sequences defined for 0<n < N —1will
result in a sequence of length 2N +1
defined for0<n<2N -2

Copyright © 2010, S. K. Mitra



Circular |Operations on Finite-Length

Sequences

* Thus we need to define new type of time-
reversal and time-shifting operations, and
also new type of convolution operation for
length-N sequences defined for 0<n <N -1
so that the resultant length-N sequences are
also are in the range 0 <n < N —1

The implicit periodicity of sequences manipulated with the

DFT requires to substitute the zero-padded operation:
[1234] ->[...0001234000..]

with a circular (i.e. periodic) extension of the sequence:

7 [1234] -->[...123412341234..]
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     [1 2 3 4]  --> [... 0 0 0 1 2 3 4 0 0 0 ...]
with a circular (i.e. periodic) extension of the sequence:
     [1 2 3 4]  -->  [... 1 2 3 4 1 2 3 4 1 2 3 4 ...]
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Modulo Operation

* The time-reversal operation on a finite-
length sequence is obtained using the
modulo operation

 Let 0,1,...,N—1 be a set of N positive
integers and let m be any integer

* The integer » obtained by evaluating
m modulo N

1s called the residue

Copyright © 2010, S. K. Mitra
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Modulo Operation

* The residue r 1s an integer with a value

If m>0, itis
between 0 and N —1 the remainder
» The modulo operation is denoted by the [of the integer
: division of m
notation (m) = m modulo N by N

o Ifwelet r=(m)y then r =m+ (N
where ¢ 1s a positive or negative integer

necessary |to make m + /N an integer between

0and N -1

Copyright © 2010, S. K. Mitra
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10

Modulo Operation

 Example — For N="7 and m = 25, we have
r=25+70=25-T7%x3=4
Thus, (25); =4
 Example — For N="7 and m =—-15, we get

r=—15+7/=-15+7%x3=6
Thus, <_15>7 :6

Copyright © 2010, S. K. Mitra
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Circular Time-Reversal Operation

* The circular time-reversal version {y[n]} of
a length-N sequence {x[n]} defined for

0<n<N-1i1sgiven by {y[n]}={x[{-n)r]}
« Example — Consider
[l ={x[0], x[1], x[2], x[3], x[4]}
Its circular time-reversed version 1s given
by {ylnl}={x[{-n)s]}
={x[0], x[4], x[3], x[2], x[1]}

Copyright © 2010, S. K. Mitra
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Circular Shift of a Sequence

e The time shifting operation for a finite-
length sequence, called circular shift
operation, 1s defined using the modulo
operation

* Let x[n] be a length-N sequence defined for
0<n<N-I
* Its circularly shifted version x,.[#], shifted
n, by samples, 1s given by
x [n|l=x[{n—-n,)]

Copyright © 2010, S. K. Mitra
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Circular Shift of a Sequence

x [n|=x[{n—-n,)]
* x.[n] 1s also a length-N sequence defined
for0<n<N-1
* For n, > 0 (right circular shift), the above
equation implies
x.[n] :{ x[n-n,], forn,<n<N-I
x[N—n,+n], forO0<n<n,

Copyright © 2010, S. K. Mitra
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Circular Shift of a Sequence

e [llustration of the concept of a circular shift

12

0

o

Q

0 1

il

4

5

x[(n _1>6]

= x[(n+5)¢]

n

Q

o

Q

L,
x[(n—4>6]
= x[(n+2)g]
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Circular Shift of a Sequence

* As can be seen from the previous figure, a
right circular shift by 7, 1s equivalent to a
left circular shift by N —n, sample periods

A circular shift by an integer number 7,

greater than N 1s equivalent to a circular
shift by (n,)

13

Copyright © 2010, S. K. Mitra
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Circular Convolution

» This operation 1s analogous to linear
convolution, but with a subtle difference

* Consider two length-N sequences, g[n] and
h|n], respectively

o | Their linear convolution results 1n a length-
(2N —1) sequence y; [n] given by
N-1
yrlnl= Y glmlhln—m], 0<n<2N-2

m=0

Copyright © 2010, S. K. Mitra
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Circular Convolution

In computing y; [n] we have assumed that
both length-N sequences have been zero-
padded to extend their lengths to 2N —1

The longer form of y; [n] results from the
time-reversal of the sequence 2[n] and its
linear shift to the right

The first nonzero value of y; [7n] 1s
7 [0]= g[0]A[0], and the last nonzero value
is y;[2N —=2]=g[N —1]a[N —1]

Copyright © 2010, S. K. Mitra
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Circular Convolution

To develop a convolution-like operation
resulting 1n a length-N sequence y-[n], we

need to define a circular time-reversal, and
then apply a circular time-shift

Resulting operation, called a circular
convolution, is defined by

1
yeln]= Nz_lég[m]h[(n —myy], 0<n<N-1

Copyright © 2010, S. K. Mitra
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Circular Convolution

Since the operation defined involves two
length-N sequences, 1t 1s often referred to as
an N-point circular convolution, denoted as

yln] = g[n]@ hln]
The circular convolution 1s commutative,
1.€.

gln]@h[n] = h[n]@g[n]

Copyright © 2010, S. K. Mitra



Circular Convolution

» Example - Determine the 4-point circular
convolution of the two length-4 sequences:

glalj=1 2 0 1}, thinl}=12 2 1 1j

T T
as sketched below
2 gln] o
10 o o]
o o,
01 2 3 0 1 2 3

22
20
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Circular Convolution

* The result 1s a length-4 sequence y[#n]

given by
3
veln)=gln@Hnl = X lmlhi(n—m), )
o 0<n<3

* From the above we observe

3
rel01= S glm(-m).]

= g[0]A[0]+ g[1]A[3]+ g[2]A[2]+ g[3]A[1]
= (Ax2)+2x D) +(O0x1)+(1x2) =6

Copyright © 2010, S. K. Mitra
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Circular Convolution

» Likewise yc[1]= %g[m]h[<1—m>4]
m=0

= glO]All]+ g[11A[0]+ g[2]A[3]+ g[3]A[2]
=(1x2)+(2x2)+(0x)+(1x1)=7

3
vel2l= Selmhl(2=m),]

= g[0]

2]+ glllall]+ g[2]1h[0]1+ g[3]A[3]

=(1x

D+ (2x2)+(0x2)+(1x1)=6

Copyright © 2010, S. K. Mitra
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Circular Convolution

and 3
yvel3l= 2 glm]h[{3—m),]

m=0

= gl0]A[3]+ g[11A[2]+ g[2]A[1]+ g[3]A[0]
—(AxD)+2xD)+(0x2)+(1x2)=5

o

69 ?
95

yelnl

Ul 25

The circular convolution can also be
computed using a DFT-based approach |as

indicated in Table 5.3

Copyright © 2010, S. K. Mitra
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Circular Convolution

» Example - Consider the two length-4
sequences repeated below for convenience:

20

19 0

gln] 277 hln]

@) o

0 1 2 3

n .
0O 1 2 3

* The 4-point DFT G[k] of g[n] 1s given by
Glk]= g[0]+ g[1]e/*7*/*

+gl2]e

—jarkl4 —jork/4

+ g[3]e

— 1420 JK2 4 o732 g < k<3

26
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Circular Convolution
* Therefore G[0]=1+2+1=4,

Gll]=1
G[2]=1
Gl3]=1

o Likewise,

—j2+j=1-],
—2—-1=-2,
+j2—j=1+

H[k]= h[0]+ h[1]e /274

27
25

=242 /K2 4 gmITK | mIITKIZ < k<3
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Circular Convolution

 Hence, H[O
HI1]
H[2]

H[3

=2+2+1+1=06,
=2—-j2-1+j=1-],
=2-241-1=0,
=2+ j2-1—-j=1+7

* The two 4-point DFTs can also be
computed using the matrix relation given

earlier

28
26

Copyright © 2010, S. K. Mitra



Circular Convolution

" G[0]] glO]| 1 1 1 111 [ 41
GI'|_p (& |1 =7 -1 j 2 _|1-J
G2l *Hel21l |1 -1 1 -1|0| | -2
G[3]. o311 L1 -1 —j 1] [1+/_
H[O0] AIOT] 1 1 1 1271 [ 6
Hl_p (A (_[1 = =1 j 2(_{1-]
H[2] YRR -1 1 =11 0

H[3] A1) L -1 =) [+

D, 1s the 4-point DFT matrix

Copyright © 2010, S. K. Mitra
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Circular Convolution

» If Y-[k] denotes the 4-point DFT of y-[#n]
then from Table 3.5 we observe

Y [k1=Glk1H[k], 0<k<3

e Thus

Y[

Yell]
Yel2]

| Yel3]

 G[0]
Gl1
G2

| G[3.

T T T

0]
1]
2]

3]

24
_]2
0
Jj2

Copyright © 2010, S. K. Mitra



Circular Convolution

* A 4-pomnt IDFT of Y-[k] yields

yelo] Yo [0]
yelll | _ 1 | Yelll
= 4

yel2l| 4 Yeol2]
yel3l Yel3]

1 1 1 1 24
_4roy =1 =ji=J2|_
411 -1 1 =1 O

-J -1 JLJj2._

Y o) BN o))

Copyright © 2010, S. K. Mitra
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Circular Convolution

Example - Now let us extend the two

length-4 sequences to length 7 by
appending each with three zero-valued
samples, 1.e.

_Jgln], 0<n<3
ge[n]—{ 0, 4<n<6

_|hln], 0<n<3
he["]_{ 0, 4<n<6

Copyright © 2010, S. K. Mitra
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Circular Convolution

* We next determine the 7-point circular
convolution of g,[n] and 4,[n]:

6
yin]= 2glmlh[(n—m)7], 0<n<6

m=0

 From the above y[0]= g, [0]A,[0]+ g, [1]A,[6]

+g.[2]h,

+ g,[5]h,

33
31

5]+ g,l3]
2]+ g,.16

3

he
he

4]+ g.[41h,

1]=g[0]h[O

3]

=1x2=2

Copyright © 2010, S. K. Mitra



Circular Convolution

* Continuing the process we arrive at

Y]
yI2]

34
32

= g[0]
= g[0]

h
h

1]+ g[1]A[0°

2]+ gll]All

=(1x2)+(2x2) =6,
+ g[2]h[0]

= (Ix1)+(2x2)+(0x2) =5,
yI3]1=g[0]A[3]+ g[1]h[2]+ g[2]A[1]+ g[3]A[0]
=(AxD)+Q2x1D)+(0x2)+(1x2)=5,

yI41=gll1h[3]+ gl21A[2]+ g[3]A[1]
=2x]D)+(O0xD)+(1x2)=4,

Copyright © 2010, S. K. Mitra



Circular Convolution
VIS]=gl[2]h[3]+ g[3]A[2]=(0x1)+ (I1x1) =1,
ylo]=gBlal3]=0xD) =1
* It |can be seen from the above that y[n] is

precisely the sequence y; [n]obtained by a
linear convolution of g[n] and A[#]

60 yL[n]
Q 05
04

35
33
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Linear Convolution Using the
DFT

* Linear convolution is a key operation in
many signal processing applications

* Since a DFT can be efficiently implemented
using FFT algorithms, 1t 1s of interest to
develop methods for the implementation of
linear convolution using the DFT

14
Copyright © 2010, S. K. Mitra
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35

Linear Convolution of Two
Finite-Length Sequences

* Let g[n] and A[n] be two finite-length
sequences of length N and M, respectively

* Denote L=N+M -1
* Define two length-L sequences
Jgln], 0<n<N-1
ge[”]_{ 0, N<n<L-1

|hln], 0<n<M -1
he[”]_{ 0, M<n<L-1

Copyright © 2010, S. K. Mitra
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Linear Convolution of Two
Finite-Length Sequences
e Then

yilnl=glnl®h[n] = ycln]= g[n]Dh,[n]
* The corresponding implementation scheme

1s 1llustrated below
g[ﬂ> Zero-p.etlgding g lnl N+ M -1)-
Length-N | (M —“S Zeros ol DY 3)%_’ (N+M-1) _1% (7]
hm Zero-padding h i) (N +M—1)- point IDFT
Length-M (N —Vi’)ltgeros point DET Length-(N + M —1)
16 Copyright © 2010, S. K. Mitra
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Linear Convolution of a Finite-
Length Sequence with an
Infinite-Length Sequence

* We next consider the DFT-based
implementation of

M -1
ylnl= > h[{]x[n—{]=h[n]® x[n]
(=0
where A[n] 1s a finite-length sequence of
length M and x[#] 1s an infinite length (or a
finite length sequence of length much
. greater than M)

Copyright © 2010, S. K. Mitra
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38

Overlap-Add Method

* We first segment x[#n], assumed to be a

causal sequence here without any loss of
generality, mto a set of contiguous finite-
length subsequences x,,[n]of length N each:

x[n|= ixm[n —mN |

m=0
where
o [n] = x[n+mN], 0<n<N-1
e 0, otherwise

37
Copyright © 2010, S. K. Mitra
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Overlap-Add Method

e Thus we can write

ylnl=h[n]l®x[nl= > y,,[n—mN]

m=0
where

Yulnl=hln]x,, [n]

 Since A[n] 1s of length M and x,,[#] 1s of
length N, the linear convolution A[n]Gox,, [71]
8 1s of length N+ M -1

3
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Overlap-Add Method

As a result, the desired linear convolution
yln]=h[n]® x[n] has been broken up into a
sum of infinite number of short-length
linear convolutions of length N + M —1
cach:  y,[n]=x,,[n]@®hln]

Each of these short convolutions can be
implemented using the DFT-based method
discussed earlier, where now the DFT's (and
the IDFT) are computed on the basis of

(N + M —1) points

Copyright © 2010, S. K. Mitra
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Overlap-Add Method

» There 1s one more subtlety to take care of
before we can implement

ylnl= > vy, [n—mN]

m=0
using the DFT-based approach

 Now the first convolution 1n the above sum,
Yoln]=hln]® xy[n], is of length N + M —1
and 1s defined for 0 <n< N+ M -2

40
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Overlap-Add Method

* The second short convolution y[n]=
h[n]®x[n], 1s also of length N +M -1
but 1s defined for N<n<2N+M -2

. ‘ There 1s an overlap of M —1 samples
between these two short linear convolutions

» Likewise, the third short convolution y,[n]=
h[n]®x,[n], is also of length N+ M —1
but 1s defined for 2N <n <3N+ M -2

41
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Overlap-Add Method

* Thus there is an overlap of M —1 samples
between h[n]Gx;[n]and Aln]@ x,[n]

* In general, there will be an overlap of M —1
samples between the samples of the short
convolutions A[n]@x,_;[n] and A[n]®x,[n]
for(r—1)N<n<rN+M -2

* This process 1s 1llustrated in the figure on
the next slide for M=5and N=7

42
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Overlap-Add Method
[t ol
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Overlap-Add Method

Yol

W ln]

Copyright © 2010, S. K. Mitra



Overlap-Add Method

* Therefore, y[n] obtained by a linear
convolution of x[n] and A[#] 1s given by

ylnl= yplnl, 0<n<6
yinl=yolnl+ yln-"171, 7<n<10
yinl=yln-"7I], 11<n<13
y[nl=y[n—=T1+ y,[n—14], 14<n<17
yln]= y,[n—14], 18<n <20

45
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Overlap-Add Method

» The above procedure 1s called the overlap-
add method since the results of the short
linear convolutions overlap and the
overlapped portions are added to get the
correct final result

e The functioan be used to

implement the above method

46
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