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DTFT TheoremsDTFT Theorems
• Example - Determine the DTFT              of 

the sequence v[n] defined by

• From Table 3.3, the DTFT of         is 1

• Using the time-shifting theorem of the 
DTFT given in Table 3.4 we observe that 
the DTFT of              is           and the DTFT 
of              is1nv

]1[][]1[][ 1010 npnpnvdnvd
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DTFT TheoremsDTFT Theorems
• Using the linearity theorem of Table 3.4 we 

then obtain the frequency-domain 
representation of

as

• Solving the above equation we get

]1[][]1[][ 1010 npnpnvdnvd
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Energy Density SpectrumEnergy Density Spectrum

• The total energy of a finite-energy sequence 
g[n] is given by

• From Parseval’s theorem given in Table 3.4 
we observe that

n
g ng 2][

deGng j

n
g
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Energy Density SpectrumEnergy Density Spectrum

• The quantity

is called the energy density spectrum

• The area under this curve in the range           
divided by 2

 
is the energy of 

the sequence

2
)()( j

gg eGS
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BandBand--limited Discretelimited Discrete--time time 
SignalsSignals

• Since the spectrum of a discrete-time signal 
is a periodic function of 

 
with a period 2 , 

a full-band signal has a spectrum occupying 
the frequency range

• A band-limited discrete-time signal  has a 
spectrum that is limited to a portion of the 
frequency range 
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BandBand--limited Discretelimited Discrete--time time 
SignalsSignals

• An ideal band-limited signal has a spectrum 
that is zero outside a frequency range      

, that is

• An ideal band-limited discrete-time signal 
cannot be generated in practice
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BandBand--limited Discretelimited Discrete--time time 
SignalsSignals

• A classification of a band-limited discrete- 
time signal is based on the frequency range 
where most of the signal’s energy is 
concentrated

• A lowpass discrete-time real signal has a 
spectrum occupying the frequency range  

and has a bandwidth ofp p

7
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BandBand--limited Discretelimited Discrete--time time 
SignalsSignals

• A highpass discrete-time real signal has a 
spectrum occupying the frequency range  

and has a bandwidth of

• A bandpass discrete-time real signal has a 
spectrum occupying the frequency range  

and has a bandwidth 
of

p

p
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BandBand--limited Discretelimited Discrete--time time 
SignalsSignals

• Example – Consider the sequence

• Its DTFT is given below on the left along 
with its magnitude spectrum shown below 
on the right

][).(][ nnx n

j
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e
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BandBand--limited Discretelimited Discrete--time time 
SignalsSignals

• It can be shown that 80% of the energy of 
this lowpass signal is contained in the 
frequency range 

• Hence, we can define the 80% bandwidth to 
be 0.5081

 
radians

.

10
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Energy Density SpectrumEnergy Density Spectrum
• Example - Compute the energy of the 

sequence

• Here

where
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LP ,
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Energy Density SpectrumEnergy Density Spectrum

• Therefore

• Hence,             is a finite-energy lowpass 
sequence
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DTFT Computation Using DTFT Computation Using 
MATLABMATLAB

• The function 
 

can be used to 
compute the values of the DTFT of a 
sequence, described as a rational function in         
in the form of

at a prescribed set of discrete frequency 
points

Nj
N

j

Mj
M

j
j

ededd

epepp
eX

....

....
)(

10

10

13

3362
Oval

3362
Text Box
...dense enough to look continuous

3362
Highlight

3362
Text Box
Can we do this?



Copyright © 2010, S. K. Mitra
16

DTFT Computation Using DTFT Computation Using 
MATLABMATLAB

• For example, the statement

returns the frequency response values as a 
vector 

 
of a DTFT defined in terms of the 

vectors 
 

and 
 

containing the 
coefficients         and        , respectively at a 
prescribed set of frequencies between 0 and 
2 given by the vector 

ip id
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DTFT Computation Using DTFT Computation Using 
MATLABMATLAB

• Example - Plots of the real and imaginary 
parts, and the magnitude and phase of the 
DTFT as a function of the normalized 
angular frequency variable

are shown on the next slide
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DTFT Computation Using DTFT Computation Using 
MATLABMATLAB
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The Unwrapped Phase The Unwrapped Phase 
FunctionFunction

• In numerical computation, when the 
computed phase function is outside the 
range            , the phase is computed 
modulo      , to bring the computed value to 
this range

• Thus. the phase functions of some 
sequences exhibit discontinuities of        
radians in the plot

],[
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The Unwrapped Phase The Unwrapped Phase 
FunctionFunction

• For example, there is a discontinuity of 2
 at 

 
= 0.72 in the phase response below
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The Unwrapped Phase The Unwrapped Phase 
FunctionFunction

• In such cases, often an alternate type of 
phase function that is continuous function 
of 

 
is derived from the original phase 

function by removing the discontinuities of 
2

• Process of discontinuity removal is called 
unwrapping the phase

• The unwrapped phase function will be 
denoted as )(c

19



Copyright © 2010, S. K. Mitra
25

The Unwrapped Phase The Unwrapped Phase 
FunctionFunction

• In MATLAB, the unwrapping can be 
implemented using the M-file 

• The unwrapped phase function of the DTFT 
of previous page is shown below

20

3362
Highlight

gr
Text Box
 MATLAB



Copyright © 2010, S. K. Mitra
20

Linear Convolution Using Linear Convolution Using 
DTFTDTFT

• An important property of the DTFT is given 
by the convolution theorem in Table 3.4

• It states that if y[n] = x[n]    h[n], then the 
DTFT             of y[n] is given by

• An implication of this result is that the 
linear convolution y[n] of the sequences 
x[n] and h[n] can be performed as follows:

*
)( jeY

)()()( jjj eHeXeY
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Linear Convolution Using Linear Convolution Using 
DTFTDTFT

• 1) Compute the DTFTs and            
of the sequences x[n] and h[n], respectively

• 2)  Form the DTFT

• 3)  Compute the IDFT y[n] of 

)()()( jjj eHeXeY

)( jeX )( jeH

)( jeY

x[n]

h[n]
y[n]

DTFT

DTFT
IDTFT

)( jeY
)( jeX

)( jeH
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Orthogonal TransformsOrthogonal Transforms

• Let                             , denote a length-N 
time-domain sequence

• Let 
 

, denote the 
coefficients of the N-point orthogonal 
transform of x[n]

10][ Nn,nx

10][ Nk,k
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Orthogonal TransformsOrthogonal Transforms

• A general form of the orthogonal transform 
pair is of the form

• , called the basis sequences, are also 
length-N sequences

10][][][
1

0
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k
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Orthogonal TransformsOrthogonal Transforms

• In the class of transforms to be considered 
in this course, the basis sequences satisfy 
the condition

• Basis sequences satisfying the above 
condition are said to be orthogonal to each 
other

k,
k,

n,*n,k
N

nN 0
1

][][
1

0

1
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Orthogonal TransformsOrthogonal Transforms

• To verify the inverse transform expression

we substitute it into

10][][][
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N
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Orthogonal TransformsOrthogonal Transforms

• The substitution yields
1

0

1

0

1

0
][][][

1
][][

N

n
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k

N

n
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N
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Orthogonal TransformsOrthogonal Transforms

• Energy Preservation Property-

• An important consequence of the 
orthogonality of the basis sequences

• More commonly known as the Parseval’s 
theorem

1

0

211

0

2 ][][
N

kN

N

n
knx
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Discrete Fourier TransformDiscrete Fourier Transform
• Definition - The simplest relation between a 

length-N sequence x[n], defined for               
, and its DTFT               is 

obtained by uniformly sampling              on 
the -axis between                   at ,

• From the definition of the DTFT we thus have

10 Nn

10 Nk

)( jeX
)( jeX
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Discrete Fourier TransformDiscrete Fourier Transform
• Note: X[k] is also a length-N sequence in 

the frequency domain

• The sequence X[k] is called the discrete 
Fourier transform (DFT) of the sequence 
x[n]

• Using the notation                          the DFT 
is usually expressed as:

Nj
N eW /2

10,][][
1

0
NkWnxkX

N

n

nk
N

30

3362
Highlight

3362
Highlight

3362
Highlight

3362
Highlight

3362
Rectangle



9
Copyright © 2010, S. K. Mitra

Discrete Fourier TransformDiscrete Fourier Transform
• The inverse discrete Fourier transform 

(IDFT) is given by

• To verify the above expression we multiply 
both sides of the above equation by            
and sum the result from n = 0 to 1Nn

n
NW

10,][
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][
1
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N
nx
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Discrete Fourier TransformDiscrete Fourier Transform

resulting in
1
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Discrete Fourier TransformDiscrete Fourier Transform

• From the identity 

it follows then that the only non-zero term in

is obtained when             as  

1

0

N
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nk
NW 0

N rNkfor
otherwise
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Discrete Fourier TransformDiscrete Fourier Transform

• Hence

1

0

1

0

)(1

0
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence

• Its N-point DFT is given by

110
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence

• Its N-point DFT is given by

ny 11100
1

Nnmmn
mn

km
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km
N

N
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence  
defined for

• Using a trigonometric identity we can write

10),/2cos(][ NrNrnng
10 Nn
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Discrete Fourier TransformDiscrete Fourier Transform

• The N-point DFT of g[n] is thus given by

1
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Discrete Fourier TransformDiscrete Fourier Transform

• Making use of the identity

we get

otherwise0
for2
for2

rNkN
rkN

kG
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Matrix RelationsMatrix Relations
• The DFT samples defined by

can be expressed in matrix form as

where
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Matrix RelationsMatrix Relations

and        is the           DFT matrix given byND NN

21121

1242
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Matrix RelationsMatrix Relations

• Likewise, the IDFT relation given by

can be expressed in matrix form as

where        is the IDFT matrix
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Matrix RelationsMatrix Relations
where

• Note:

21121

1242

121

1

1

1

1
1111

N
N

N
N

N
N

N
NNN

N
NNN

N

WWW

WWW

WWW

D

NN N
DD

11

43

3362
Text Box
(1/N)

gr
Text Box
 (unitary matrix)



22
Copyright © 2010, S. K. Mitra

DFT Computation Using DFT Computation Using 
MATLABMATLAB

• The functions to compute the DFT and the 
IDFT are 

 
and 

• These functions make use of FFT 
algorithms which are computationally 
highly efficient compared to the direct 
computation

• Programs 5_1.m and 5_2.m illustrate the 
use of these functions
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DFT Computation Using DFT Computation Using 
MATLABMATLAB

• Example - Program 5_3.m can be used to 
compute the DFT and the DTFT of the 
sequence

as shown below
150),16/6cos(][ nnnx

indicates DFT samples
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Sampling the DTFTSampling the DTFT

• Consider a sequence x[n] with a DTFT

• We sample             at N equally spaced points       
,                      developing the N 

frequency samples

• These N frequency samples can be 
considered as an N-point DFT Y[k] whose N- 
point IDFT is a length-N sequence y[n]

)( jeX
jeX

Nkk /2 10 Nk
)}({ kjeX
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Sampling the DTFTSampling the DTFT

• Now

• Thus

• An IDFT of Y[k] yields

jj exeX ][)(

)()(][ /2 Nkjj eXeXkY k
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Sampling the DTFTSampling the DTFT

• i.e.

• Making use of the identity

1

0

1 N

k
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k
N WWx
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Sampling the DTFTSampling the DTFT

we arrive at the desired relation

• Thus y[n] is obtained from x[n] by adding 
an infinite number of shifted replicas of 
x[n], with each replica shifted by an integer 
multiple of N sampling instants, and 
observing the sum only for the interval

10 NnmNnxny
m

10 Nn
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Sampling the DTFTSampling the DTFT
• To apply

to finite-length sequences, we assume that 
the samples outside the specified range are 
zeros

• Thus if x[n] is a length-M sequence with 
, then y[n] = x[n] for

10 NnmNnxny
m

NM 10 Nn
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Sampling the DTFTSampling the DTFT
• If M > N, there is a time-domain aliasing of 

samples of x[n] in generating y[n], and x[n] 
cannot be recovered from y[n]

• Example - Let 

• By sampling its DTFT              at                     , 
and then applying a 4-point IDFT to 

these samples, we arrive at the sequence y[n] 
given by

543210nx

jeX 4/2 kk
30 k
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Sampling the DTFTSampling the DTFT

,

• i.e.

{x[n]} cannot be recovered from {y[n]}

44 nxnxnxny 30 n

3264ny

52



Sampling the DTFT 

x(n)  DTFT  X(exp(jw))  sample  Y(k)  IDFT  y(n)

Length(x) = M;  Length(y) = N;   y(n) = Sm x(n+mN)

e.g. M = 5;   x = {3 4 5 6 7} (with implicit zero-padding)

• If N = 5:  y = {3 4 5 6 7}   +   {0 0 0 0 0}   +   {0 0 0 0 0} + …
m=0 m=1 m=2

 Ok

• If N = 7:  y = {3 4 5 6 7 0 0} + {0 0 0 0 0 0 0} + {0 0 0 0 0 0 0} + …
 Ok

• If N = 3:  y = {3 4 5}   +   {6 7 0}   +   {0 0 0} + …   =   {9  11  5}
 Aliasing53



Approximated DTFT by zero-padding x(n)

Case N=7 above suggests that a higher sample rate DFT can be 
obtained by transforming a zero-padded x(n)

 5454
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DTFT from DFT by DTFT from DFT by 
Interpolation Interpolation 

uniformly spaced frequency points

• Given the N-point DFT ;[k] of a length-N 
sequence x[n], its DTFT               can be 

uniquely determined from ;[k] 
)(

10,/2
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• A practical approach to the numerical 
computation of the DTFT of a finite-length 
sequence

• Let              be the DTFT of a length-N 
sequence x[n]

• We wish to evaluate              at a dense grid 
of frequencies                     ,                      , 
where M >> N:

)( jeX

)( jeX
Mkk /2 10 Mk
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• Define a new sequence

• Then

1

0

/21

0
][][)(
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n

MknjN
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• Thus               is essentially an M-point DFT 
of the length-M sequence

• The DFT           can be computed very 
efficiently using the FFT algorithm if M is 
an integer power of 2

• The function 
 

employs this approach 
to evaluate the frequency response at a 
prescribed set of frequencies of a DTFT 
expressed as a rational function in    

)( kjeX
kXe nxe

kXe

je
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Periodicity of DFT and IDFT

Due to the periodic nature of the complex exponential, both the 
DFT and IDFT are periodic sequences:

x(n+N) = (1/N)Sk X(k) exp(i 2p k (n+N) / N) = … = x(n)

This is the reason of the circular time-shifting property of the DFT

(later)
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