DTFT Theorems

DTFT of a recursively . o
defined sequence | Determine the DTET V' (e/™) of

the sequence v[n] defined by
dov[n]+dvn—1]= pyo[n]+ po[n—1]
 From Table 3.3, the DTFT of o[n]1s 1
» Using the time-shifting theorem of the
DTFT given in Table 3.4 we observe that

the DTFT of §[n—1] is e /* and the DTFT
of v[n—1]1s e ’/®V(e’/®)

Copyright © 2010, S. K. Mitra
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DTFT Theorems

Using the linearity theorem of Table 3.4 we
then obtain the frequency-domain
representation of

dov[n]+dvn—1]= pyo[n]+ po[n—1]
as
doV(e’®)+de "V (e’”) = py+ pre

Solving the above equation we get
y(eioy= Lot pe”
do + dle J®

Copyright © 2010, S. K. Mitra




Energy Density Spectrum

» The total energy of a finite-energy sequence
g[n] 1s given by

Z,= S \g[n]\z

N=—00

* From Parseval’s theorem given in Table 3.4
we observe that

] =

—

27—

TT—1

.12
2= 7G(e’) do

T,= < |gln]

n=—a0

Copyright © 2010, S. K. Mitra
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Energy Density Spectrum

* The quantity
2
Sgg(®) = ‘G(eﬂo)‘

1s called the energy density spectrum

» The area under this curve 1n the range
—nt<®=<7 divided by 27 1s the energy of
the sequence

Copyright © 2010, S. K. Mitra



Band-limited Discrete-time
Signals

* Since the spectrum of a discrete-time signal
1s a periodic function of ® with a period 27,
a full-band signal has a spectrum occupying
the frequency range — < W<

* A band-limited discrete-time signal has a
spectrum that 1s limited to a portion of the
frequency range —n< o< m

Copyright © 2010, S. K. Mitra
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Band-limited Discrete-time
Signals
* An 1deal band-limited signal has a spectrum

that 1s zero outside a frequency range
0<m, <o <o, <, that is

. <
X(ef(”):{o’ 0< 0 <o,
0, 0p<®<T
X)) £0, o,<0o<o
e An 1deal band-limited discrete-time signal

cannot be generated 1n practice

Copyright © 2010, S. K. Mitra
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Band-limited Discrete-time
Signals

* A classification of a band-limited discrete-
time signal 1s based on the frequency range
where most of the signal’s energy i1s
concentrated

should be: "low-frequency"
* A lowpass discrete-time real signal has a

spectrum occupying the frequency range
0<|oy<®, <m and has a bandwidth of @

P

Copyright © 2010, S. K. Mitra


3362
Callout
should be: "low-frequency"


Band-limited Discrete-time
Signals

* A highpass discrete-time real signal has a
spectrum occupying the frequency range
0<m, <|o <7 and has a bandwidth of

TC—(Dp

* A bandpass discrete-time real signal has a
spectrum occupying the frequency range
0<w; <|o <oy <m and has a bandwidth
of oy —o;

10
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Band-limited Discrete-time
Signals

« Example — Consider the sequence
x[n]=(0.5)"u[n]

* [ts DTFT 1s given below on the left along
with 1ts magnitude spectrum shown below
on the right : X

1 o 1.5
©
3
c
. &
1-0.5¢/° °

e
05 1 1 1 1
0 0.2 0.4 0.6 0.8 1

1 1 . o/t
see slide 3.1.26 |  copyrigne © 2010, 5. K. Mitra

X (e/®) =

1 L
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Band-limited Discrete-time
Signals

* It can be shown that 80% of the energy of
this lowpass signal 1s contained in the
frequency range 0 <|® <0.50817

 Hence, we can define the 80% bandwidth to
be 0.5081 7 radians

12
10

Copyright © 2010, S. K. Mitra
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Energy Density Spectrum

» Example - Compute the energy of the

sequence

e Here

%O:‘hLP[n]‘z =

n=—ao

where

_ sIno.n

hLP[n]— Tn —o0o<N<aoo

Hp(e!®) =+

b
2T

12
HLP (ejm)‘ d(D

1

-

, 0fw<Lo,

0, o .<o<T

Copyright © 2010, S. K. Mitra
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Energy Density Spectrum

 Therefore

X 1
hyplal =,

®

f

C<oo

Tt

* Hence, h;p[n]is a finite-energy lowpass

sequence

(already seenin 3.1.41)

rem.: sequence is not absolutely summable

copyrignrt €

2010, S. K. Mitra
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DTFT Computation Using

we do

MATLAB this?

 The function freqgz can be used to
compute the values of the DTFT of a
sequence, described as a rational function in
in the form of | |
X(e®)y=Po +ple_].CO +....+pMe_].°°M
dy+die/® +...+dye /™

at a prescribed set of discrete frequency
pOintS (0 = (@ |...dense enough to look continuous
15

Copyright © 2010, S. K. Mitra
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DTFT Computation Using
MATLAB

* For example, the statement
H = fregz (num,den,w)

returns the frequency response values as a
vector H of a DTFT defined in terms of the
vectors num and den containing the
coefficients {p;} and {d;}, respectively at a
prescribed set of frequencies between 0 and
2 7w given by the vector w

see Matlab
example EO3_1
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DTFT Computation Using
MATLAB

Example - Plots of the real and imaginary
parts, and the magnitude and phase of the
DTEFT as a function of the normalized

angular frequency variable o/
0.008—0.033¢ 7 +0.05¢ /%

—0.033¢7/3? £ 0.008¢/4®
14237 /2 4277729

+1.6e /31041774
are shown on the next slide

X (/) =

Copyright © 2010, S. K. Mitra
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Imaginary part
Phase Spectrum

Using

0.2

o
sueIper ‘oseydq

05
05 F

opmdury

MATLAB

Real part
Magnitude Spectrum

DTFT Computation

opmdury
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The Unwrapped Phase
Function

* In numerical computation, when the
computed phase function 1s outside the
range [—m, ], the phase 1s computed
modulo 21, to bring the computed value to
this range

* Thus. the phase functions of some
sequences exhibit discontinuities of 2w
radians in the plot

Copyright © 2010, S. K. Mitra


3362
Highlight


The Unwrapped Phase
Function

* For example, there 1s a discontinuity of 27
at ® = (.72 1n the phase response below

0.008-0.033¢ /®+0.05¢/2®-0.033¢7/3?+0.008¢ /4

X (/)= | | | ,
142.37¢ /©+2.7¢ 72®4+1.6¢ /3 +0.41¢7/4®

Phase Spectrum

23 0 0.2 0.4 0.6 03 1
Copyright © 2010, S. K. Mitra



The Unwrapped Phase
Function

 In such cases, often an alternate type of
phase function that 1s continuous function
of w 1s derived from the original phase
function by removing the discontinuities of

2T

* Process of discontinuity removal 1s called
unwrapping the phase

* The unwrapped phase function will be

denoted as 0, (m)
24

Copyright © 2010, S. K. Mitra
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25

The Unwrapped Phase

Function

 In MATLAB, the unwrapping can be
implemented using the M-file unwrap

* The unwrapped phase function of the DTFT
of previous page 1s shown below

Unwrapped Phase Function

_8 | | | |
0 0.2 0.4 0.6 0.8 1
/T

MATLAB

Copyright © 2010, S. K. Mitra
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Linear Convolution Using
DTFT

* An mmportant property of the DTFT 1s given
by the convolution theorem in Table 3.4

* It states that if y[n] = x[n]@® h[n], then the
DTFT Y(e’®) of y[n] is given by
Y(e™)=X (/") H (")
* An implication of this result 1s that the

linear convolution y[n] of the sequences
x[n] and A[n] can be performed as follows:

Copyright © 2010, S. K. Mitra
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Linear Convolution Using
DTFT

» 1) Compute the DTFTs X (e/®) and H (e’)
of the sequences x[n] and A[n], respectively

+ 2) Form the DTFT Y(e/®)=X(e/®)H (e’®)

* 3) Compute the IDTFT

x|n] ——1 DTFT

X (e7®)

| Y(e/®)

h[n] — DTFT

y[n] of Y(e/®)

21
22

H(e!®)

IDTFT

— y|n]

Copyright © 2010, S. K. Mitra
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Orthogonal Transforms

+ Let x{n], 0<n < N -1, denote ength-)

time-domain sequence
o Let X[k],0<k < N —1, denote the

coefficients of the N-point orthogonal
transform of x[#]

Copyright © 2010, S. K. Mitra

23


3362
Highlight

3362
Oval

3362
Oval

3362
Oval


Orthogonal Transforms

* A general form of the orthogonal transform
pair 1s of the form

N1 nalysi
X[k]= Sxlnly*[k,n], 0<k<N-1 equaton
n=0
N-1 Synthesis
xX{n]=1UN > Xlklvlk,n], 0<n<N-1 equation
k=0

» Ylk,n], called the basis sequences, are also
length-N sequences

Copyright © 2010, S. K. Mitra
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Orthogonal Transforms

* In the class of transforms to be considered
in this course, the basis sequences satisfy
the condition

1 45! . (1, 1=k
v vkl 1enl= {5 Ty

» Basis sequences satistfying the above
condition are said to be orthogonal to each
other

Copyright © 2010, S. K. Mitra
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Orthogonal Transforms

» To verify the inverse transform expression

N-1
x{n]=UN 2 X[klylk,n], 0<n<N-1
k=0

we substitute 1t into

X[k]= Nz_lx[n]\y *Tkon], 0<k<N-—1
n=0

Copyright © 2010, S. K. Mitra
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Orthogonal Transforms

* The substitution yields

N-1 N-1/ 1 N-I
2 X[n]y*[ln]= 2 ( 2 X[k]\lf[k,n]j\lf*[f,n]

N-1 1 N-1
= > X [k]( Zw[k,n]w*[é,n]j = X|/]
k=0 N ;=0

Copyright © 2010, S. K. Mitra
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Orthogonal Transforms

* Energy Preservation Property-

N-1 lN —1
> an] = 3 XTIk
n=0 k 0

* An important consequence of the

orthogonality of the basis sequences

* More commonly known as the Parseval’s
theorem

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

e Definition - |Given a
eq_uence x[n], defined for

0<n<N-1,andits DTFT X (e/®)
by uniformly sampling X (¢/®) on

the w-axis between 0 < w <21 at , =2wk/ N,
0< k< N —1 \we get asequence X[K]:

e From the definition of the DTFT we thus have

. —1 .
X[k] = X () 'Y xnje 2N

02N 50 o p < N

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

* Note: X[k] 1s also a length-N sequence 1n
the frequency domain

» The sequence X[k] 1s called the discrete
Fourier transform (DFT) of the sequence
x|n]

» Using the notation Wy = e /™ the DFT
1s usually expressed as:

N-1 I
X[kl= Y x[n]Wy", 0<k<N-1
n=0

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

e The inverse discrete Fourier transform

(IDFT) 1s given by
1 N-1 —kn
x[n]=— 2 X[k]Wy—, 0Ssn<N-1
N k=0

* To verity the above expression we multiply
both sides of the above equation by ijfn
and sum the result fromn=0to n=N -1

Copyright © 2010, S. K. Mitra
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10

Discrete Fourier Transform

resulting 1n

N-1 . Nl N )
7= n=0\ 4V k=0
N—-1N-1
:l >y X[k]W&(k_g)n
anO k=0
N-1 N-1
-y X[k]( 3 W];““f)”)
N (=0 n=0

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

* From the 1dentity

N_lW—(k—é)n [N, for k—¢=rN, r an integer
ZO N 1 0, otherwise
n=

it follows then that the only non-zero term in

Nz‘l (k=00
n=0
is obtained when k=/¢ as O0<k /<N -1

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

e Hence

> i - lNiIX[k](Nil W&“““"j

n=0 N -0 n=0
1
— . X[/]-N = X[/
N 4 | /]

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

« Example - Consider the length-N sequence

n]= 1, n=>0
10, 1£n<N-1

 Its N-point DFT 1s given by
N-1 ' 0
X[k]1= > x[nIWy" =x[01Wy =1
n=0

0<k<N-1

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

« Example - Consider the length-N sequence

= 1, n=m
Y= 0, 0<n<m-1,m+1<n<<N-1
 Its N-point DFT 1s given by
N-1
Yikl=' S ynlWe = ylm W =W

n=0
0<k<N-1

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

« Example - Consider the length-N sequence
defined for 0 <n< N -1

gln]=cos(2nrn/N), 0<r<N -1

* Using a trigonometric 1dentity we can write

(ej27tm/N e—jZTcrn/N]

glnl= +

= ;(ng”” + W]Q”)

15

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

* The N-point DFT of g[n] is thus given by

N-1 '
Glkl= 2. glnlwy'
n=0
N-1 N-1
:;( 3 W]\—](r—k)n s ngfl”-l-k)l’l j,
n=0 n=0

0<k<N-1

Copyright © 2010, S. K. Mitra
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Discrete Fourier Transform

* Making use of the 1dentity

N, for k— /¢ =rN, r an integer
otherwise

N-I

—(k—1
Z WN( n _

n=0
we get

Glk]=+

for k=r
fork=N-r

(N /2,
N/2,

otherwise

MATLAB

0<k<N-1

Copyright © 2010, S. K. Mitra
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Matrix Relations
 The DFT samples defined by

N-1 I
X[k]= > x[n]Wy', 0<k<N-1
n=0

can be expressed 1n matrix form as

X = DNX
where
X =[X[0] X[1] - X[N-1]*
x=[x[0] x[1] - x[N-1]]"

18

Copyright © 2010, S. K. Mitra
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Maltrix Relations

and Dy 1s the N x NDFT matrix given by

1 I ]

W, Wi W]%N—l)

N T B
: ; : g -
_1 WJ&}N—I) W]\ZI(N_D WJ&}N—I) ]

Copyright © 2010, S. K. Mitra
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Matrix Relations

* Likewise, the IDFT relation given by
N—-1
nl=LS X[kIWy*, 0<n< N -1
N k=0
can be expressed 1n matrix form as
x=DyX
WhereD]_\} 1s the N x N IDFT matrix

20
42
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Matrix Relations

where

[ 1 1 1

1wy Wyt e MY
Dy = ! W].Qz W]f - ngsz ~D 1 (2/N)

| —(.N—l) —Z&N—l) —(].\7—1)2

1 Wy W o Wy )

e Note: |
_ *k
D Nl — N D N (unitary matrix)

21
43
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DFT Computation Using &

we do

MATLAB this?

* The functions to compute the DFT and the
IDFT are £ft and 1fft

* These functions make use of FFT
algorithms which are computationally
highly efficient compared to the direct
computation

* Programs 5 1.m and 5 2.m illustrate the
use of these functions
22

4.4
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DFT Computation Using
MATLAB

« Example - Program 5 3.m can be used to

compute the DFT and the DTFT of the
sequence

x[n]=cos(6mn/16), 0<n<15
as shown below

10

@ates DFT s@

0.2

0.4 0.6 0.8 1
Normalized angular frequency

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

ﬁof any given length M

» Consider a sequence x[n] with a DTFT X (e/®)

» We sample X (e/“)at N equally spaced points
®; =2nk/N,0<k <N -1 developing the N
frequency samples {X (e’"*)}

» These N frequency samples can be

considered as an N-point DFT Y[k] whose V-
point IDFT 1s a length-N sequence y[n]

29
46
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Sampling the DTFT

- Now X (&/®)= Y x[l]e /"
{=—o0

o Thus Y[k]=X(e/)=X(e/*™ V)

——00 f=—00
* An IDFT of Y|k] yields
1 N-1

—kn
yln]= NkZO Y[k]Wy

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

° 1.e. y[n]=

» Making use
1 N-1

& 2 Wy

N ko

lN—l 00

> Y alawy Wyt

Nk:O€=—oo
B 1 N—1

2L 2
{=—0o0

N o

of the 1dentity

W];k(n—é)

—k(n—r) _| 1, forr=n+mN
10, otherwise

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

we arrive at the desired relation

ylnl= Y x[n+mN], 0<n<N-1
1M =—00
* Thus y[n] 1s obtained from x[#] by adding
an 1nfinite number of shifted replicas of
x[n], with each replica shifted by an integer
multiple of N sampling instants, and

observing the sum only for the interval
0<n<N-I

32

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

* To apply

ylnl= Y x[n+mN], 0<n<N-1

M=—00
to finite-length sequences, we assume that
the samples outside the specified range are
ZETOS

* Thus if x[n] 1s a length-M sequence with
M < N, theny[n]|=x[n] for 0<n< N -1

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

o If M> N, there 1s a time-domain aliasing of
samples of x[n] in generating y[n], and x[#]
cannot be recovered from y[n]

 Example - Let {x[n]}={0 1 2 3 4 35}
1

* By sampling its DTFT X(e/®)atw, =2nk/4
0 < k <3 and then applying a 4-point IDFT to
these samples, we arrive at the sequence y[n]
given by

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

yvinl=x[n]+x[n+4]+x[n—-4],0<n<3

L e bim)=4 6 2 3

‘ {x[n]} cannot be recovered from {y[n]}

35

Copyright © 2010, S. K. Mitra
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Sampling the DTFT

x(n) 2 DTFT =2 X(exp(jw)) > sample = Y(k) = IDFT = y(n)
Length(x) = M; Length(y) = N; y(n)=_2_ x(n+mN)

e.g. M=5 x={34567} (with implicit zero-padding)
e IfN=5:y={34567} + {00000} + {00000} +...
m=0 m=1 m=2

- Ok

e fN=7:.y={3456700}+{0000000}+{0000000} +...
- Ok

e IfN=3:y={345} + {670} + {000}+.. = {9 11 5}
53 - Aliasing



Approximated DTFT by zero-padding x(n)

Case N=7 above suggests that a higher sample rate DFT can be
obtained by transforming a zero-padded x(n)

>4



DTFT fromm DFT by
Interpolation

The N-point DFT of a length-N sequence x|n] is

simply the frequency samples of its DTFT X (e 1)
evaluated at N uniformly-spaced frequency points

0=0,=27k/IN, 0< k< N-1

Vice-versa, given the DFT of a finite-length
sequence, an approximated DTFT of the
seguence can be obtained by interpolation

24
55
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Numerical Computation of the
DTFT Using the DFT

A practical approach to the numerical

approximation

sequence

of the DTFT of a finite-length

e LetX (ej ®) be the DTFT of a length-N
sequence x|[n]

» We wish to evaluate X (e’®) at a dense grid
of frequencies ®, =2nk/M, 0<k <M —1,
where M >> N:

Copyright © 2010, S. K. Mitra
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Numerical Computation of the

DTFT Using the DFT
X(ey =S spngeionn 5 e izminin
n=0 n=0

* Define a new sequence
x[n], 0<n<N-1
0, N<nsM-1

x,|n]|=-+

e Then

: M—1 .
JO N _ —j2mkn/M
X(e' ") = ZO x,[n]e
n:

Copyright © 2010, S. K. Mitra
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Numerical Computation of the
DTFT Using the DFT

 Thus X (ej “k)is essentially an M-point DFT
X, [k] of the length-M sequence x,[n]

* The DFT X,[k] can be computed very
efficiently using the FFT algorithm 1f A 1s
an integer power of 2

* The function freqgz employs this approach
to evaluate the frequency response at a
prescribed set of frequencies of a DTFT

expressed as a rational function in e MATLAR

Copyright © 2010, S. K. Mitra
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Periodicity of DFT and IDFT

Due to the periodic nature of the complex exponential, both the
DFT and IDFT are periodic sequences:

N-1 127 N-1 127
X : ﬂ ] k‘l‘N n ——kﬂ, —'],27]"31 — n __rkn — X
k+N E £Zr V HE:U Ln€ 1 nEZOIIf e N k
x(n+N) = (1/N)x; X(k) exp(i 2m k (n+N) /N) = ... = x(n)

This is the reason of the circular time-shifting property of the DFT

(later)
59

see FourierOverviewTable.pdf |——
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