Discrete-Time Signals in the
Frequency Domain

* The frequency-domain representation of a

discrete-time sequence 1s the discrete-time
Fourier transform (DTFT)

* This transform maps a time-domain
sequence 1nto a continuous function of the
frequency variable ®

A different view on sequences and systems,

- based on the combination of (sinusoidal) basis functions,

- suitable for compressed representations of data, and
- for the analysis, design, and operation of systems
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A different view on sequences and systems, 
  - based on the combination of (sinusoidal) basis functions,
  - suitable for compressed representations of data, and
  - for the analysis, design, and operation of systems 


Continuous-Time Fourier
Transform

* Definition — The CTFT of a continuous-
time signal x,(7) is given by

o0 :
X, (jQ)= [x,()e ¥ dt
» Often referred to as the Fourier spectrum or

simply the spectrum of the continuous-time
signal
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Continuous-Time Fourier
Transform

 Definition — The inverse CTFT of a Fourier

transform X ,(j€2) 1s given by
x, (1) = 21 [X,(jQ)e’* dOy
T —00

» Often referred to as the Fourier integral
* A CTFT pair will be denoted as

CTFT

x,(t) < X, (j€2)

Copyright © 2010, S. K. Mitra



Continuous-Time Fourier
Transform

* () 1sreal and denotes the continuous-time angular
frequency variable in radians/sec 1f the unit of the
independent variable ¢ 1s in secondff/analog

 In general, the CTFT is a complex function of €2
in the range — o0 < () <

* It can be expressed 1n the polar form as
: : 0, (Q
X, (jQ) = X, (jQ) e
where

0,(Q2) =arg{X,(j)}

Copyright © 2010, S. K. Mitra
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Continuous-Time Fourier
Transform

» The quantity | X, (jQ) is called the
magnitude spectrum and the quantity 0 (€2)
1s called the phase spectrum

» Both spectrums are real functions of €2

 In general, the CTFT X () exists if x,(¢)
satisfies the Dirichlet conditions given on
the next slide

Copyright © 2010, S. K. Mitra



Continuous-Time Fourier
Transform

Dirichlet Conditions

* (a) The signal x,(#) has a finite number of
discontinuities and a finite number of
maxima and minima in any finite interval

* (b) The signal 1s absolutely integrable, 1.e.,

[lx, () dt <0

Copyright © 2010, S. K. Mitra



Continuous-Time Fourier
Transform

 If the Dirichlet conditions are satisfied, then
o0 .
L IX,(jQ)e” dO
converges to ;ca (¢) at all values of ¢ except at

values of # where x,,(¢) has discontinuities

* [t can be shown that 1f x_(#) 1s absolutely
integrable, then | X, (jQ) <o proving the
existence of the CTFT

Copyright © 2010, S. K. Mitra



Energy Density Spectrum

» The total energy &, of a finite energy
continuous-time complex signal x,(¢) 1s

given by

E = [x, (0= [x,(t)x5()dt

* The above expression can be rewritten as

E,= O}) x,(1)

—00

zln [XE (e M dQ | dr
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Energy Density Spectrum

 Interchanging the order of the integration
we get

E= 1 [ X,0Q) Jx (e dr |dO

= 11X (X, (jQ)dQ

. 2ln_ {OXa( jQ)%dO

Copyright © 2010, S. K. Mitra
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Energy Density Spectrum

e Hence

o0

Jx(e) de =1 [X,(jQ)*dO

* The above relation 1s more commonly
known as the Parseval’s theorem for finite-
energy continuous-time signals

10
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Energy Density Spectrum

» The quantity | X, ( jQ)\2 is called the energy
density spectrum of x,(¢) and usually
denoted as

S . (Q)=[X,(jQ)’

* The energy over a specified range of
frequencies Q_ <Q <Q, can be computed
using Q,

fxar:zln [S .(Q)dO

11 2,
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Band-limited Continuous-Time
Signals

* A full-band, finite-energy, continuous-time

signal has a spectrum occupying the whole
frequency range —oo <) <o

* A band-limited continuous-time signal has a
spectrum that 1s limited to a portion of the
frequency range —oo < Q) < oo

12
12
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Band-limited Continuous-Time
Signals

* An i1deal band-limited signal has a spectrum that
1s zero outside a finite frequency range

QaS‘Q‘SQb , that is
~ |0, 05Q<Q,
Xa(]Q)_{O, Q, <|Q < o0
X,(jQ)#0, Q,<Q<Q,

 However, an 1deal band-limited signal cannot be
generated in practice

13
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Band-limited Continuous-Time
Signals

» Band-limited signals are classified
according to the frequency range where
most of the signal’s energy 1s concentrated

* A lowpass, continuous-time signal has a
spectrum occupying the frequency range
Q <Q, <o where Qs called the
bandwidth of the signal

14
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Band-limited Continuous-Time
Signals

* A highpass, continuous-time signal has a

spectrum occupying the frequency range
0<Q, <|Q/<o where the bandwidth of
the signal is from €2, to oo

* A bandpass, continuous-time signal has a
spectrum occupying the frequency range
0<Q; <IQ<Qy <o where Qp —Q; is
the bandwidth

Copyright © 2010, S. K. Mitra



Discrete-Time Fourier
Transform

* Definition - The discrete-time Fourier
transform (DTFT) X(e/®) of a sequence
x[n] 1s given by

X(e/?) = ix[n]e_j “n

n=—a0

where o 1s a continuous variable in the
range —oo < ® < oo

Note: the DTFT should not be confused with
16 - the Discrete Fourier Transform (DFT) and
16 - the z-Transform, both to be discussed later
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      -  the Discrete Fourier Transform (DFT) and
      -  the z-Transform,     both to be discussed later
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Discrete-Time Fourier
Transform
—Jjon

The infinite series 2.,—_x X[71]e may
Or may not converge

If 1t converges for all values of m, then the
DTFT X (e/®) exists

In general, X (e/®) isa complex function
of the real variable ® and can be written as

X(ejm) — Xre(ejm) T inm (ejw)

Copyright © 2010, S. K. Mitra
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Discrete-Time Fourier
Transform

* X,.(e/?) and X;, (e/®) are, respectively,
the real and imaginary parts of X (e/?), and
are real functions of ®

* X(e/®)can alternately be expressed as
X(e/®) = X (e/®)e/%)
where
B(w) = arg{X (e/?)}

18
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Discrete-Time Fourier
Transform

. ‘X (e’ “’)‘ 1s called the magnitude function
e 0O(w)is called the phase function
* Both quantities are again real functions of ®

* In many applications, the DTFT 1is called
the Fourier spectrum

» Likewise, ‘X (ej‘”)‘ and O(w) are called the
magnitude and phase spectra

19

Copyright © 2010, S. K. Mitra

19



20

Discrete-Time Fourier
Transform

» For a real sequence x[n],| X (e’ ‘”)‘ and X, (e/®)
are even functions of ®, whereas,0(w)
and X;, (e/) are odd functions of ®

= X (e/9)e/0(®)
for any integer k

. - The phase function 6(®) cannot be
uniquely specified for any DTFT

20
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21

Discrete-Time Fourier
Transform

* Unless otherwise stated, we shall assume

that the phase function 0(w) 1s restricted to
the following range of values:

—-nt<0(w)<m

called the principal value

Copyright © 2010, S. K. Mitra
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Discrete-Time Fourier

Transform

 The DTFTs of some sequences exhibit

discontinuities of 2m in their phase

responses

MATLAB

* An alternate type of phase function that is a
continuous function of ® is often used

* It 1s derived from the original phase
function by removing the discontinuities of

2T

Copyright © 2010, S. K. Mitra
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Discrete-Time Fourier
Transform

* The process of removing the discontinuities
1s called “unwrapping”

» The continuous phase function generated by
unwrapping is denoted as 0. ()

* In some cases, discontinuities of © may be
present after unwrapping

23
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Discrete-Time Fourier
Transform

« Example - The DTFT of the unit sample
sequence o[z] 1s given by

A@®Y= S 8[nle /" = §[0]=1

N=—00

« Example - Consider the causal sequence

x[n]=a"u[n], o<l

24
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Discrete-Time Fourier
Transform
* Its DTFT 1s given by

X(e/®)= Yo'ulnle /" = Tale "

J1=—00 n=0

o0 .

_ —jo\n _ 1

= oe — :
g( ) l—ae /?

as ‘oce_j(”‘ =l <1

25
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Discrete-Time Fourier
Transform

* The magnitude and phase of the DTFT
X(e’®)=1/(1-0.5¢"/®) are shown below

0.6

2L
04+

= L
L5l | 0.2

O,

Magnitude

1+ 4 = -02r

0.5
-3

o/T

X (/) = X (@) 0(®) = —0(—w)

26
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Discrete-Time Fourier

Transform
» The DTFT X (e/®) of a sequence x[n] is a
continuous function of ® contrarily to the CTET

* It 1s also a periodic function of w with a
period 2m:

X (e j((o0+27ck)) _ %x[n]e— j(o,+21k)n
N=—00

= Zx[n]e_j%ne_jznkn = Zx[n]e_jwon = X(ejwo)

N=—00 N=—00

2’7
rem.. same behaviour as the frequency of a sinusoid as a function of ®

27
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Discrete-Time Fourier
Transform

e Therefore

. o0 .
X(e®)= Xxlnle /™"
N=—00
represents the Fourier series representation
of the periodic function

* As aresult, the Fourier coefficients x[#n] can
be computed from X (e’/®) using the Fourier
integral 1

x[n]= jX (’®)e!" d
o

28 —T
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Discrete-Time Fourier
Transform

Inverse DTFT

x[n] = : jX (/e de
o

—Tt

J‘ ( jﬁ)gjej(})ndm
— gt \f=—00

 Proof:

29
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Discrete-Time Fourier
Transform

* The order of integration and summation can
be interchanged 1f the summation inside the
brackets converges uniformly, i.e. X (e/®)

ex1Sts
e Then — j( _jmgjejmndoo
E_—oo
- 3 x[é](l ’fef“)(”‘f)dm): 2 e =6)
f=—o0 2T g f=—o0 w(n—1)

30
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Discrete-Time Fourier

Transform
e Now sinm(n— 1) { 1, n=/{ |values of a sampling
— function, in the origin
n(n—1) 0, n#/{ |andatits zero crossings
= 8[n—/]
 Hence
X sin t(n — /¢ X
R (Ao R SV I 1)

{=—0 TC(I’Z — 6) {=—0c0

31
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Discrete-Time Fourier
Transform

Convergence condition

series of the form

X(e/®) = %O:x[n]e_jwn

n=-—a0
may or may not converge

* Let . K .
Xg(e’®)= Zx[nle /™"
n=—K
32
32
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Discrete-Time Fourier
Transform

e Then foronvergence of X(e/®),
lim \X(ef‘”) _ XK(ef“))\ )
K—
* Now, 1f x[n] 1s an absolutely summable
sequence, 1.€., 1f

> x[n] < oo

1=—00
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Discrete-Time Fourier
Transform
e Then

‘X(ejm)‘z Ozojx[n]e_jwn < Ozol\x[n]koo

Nn=——ao0 Nn=—=~a0

for all values of ®

* Thus, the absolute summability of x[n] 1s a

sufficient cqndition for the existence of the
DTFT X (e’ (D)

34
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Discrete-Time Fourier
Transform

« Example - The sequence x[n]=a"u[n] for

o) <1is absolutely summable as
|

= <
I-lo

S o u[n] = 5

J1=—00 n=0

an

and its DTFT X (ej ) therefore converges
to 1/(1-a.e’?) uniformly

35
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Discrete-Time Fourier
Transform

* Since ,
o0 2 o0
Eatnl’s| Satn)].
N=—00 N=—00
an absolutely summable sequence has
always a finite energy

 However, a finite-energy sequence 1s not
necessarily absolutely summable

36
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Discrete-Time Fourier
Transform

« Example - The sequence

1/n, n=>1
Xnl=y 0" n<o

has a finite energy equal to

2 2

© (] TC
F = S =
> nzzllﬁn) 6

* But, x[n] 1s not absolutely summable

37
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Discrete-Time Fourier
Transform

» To represent a finite energy sequence x[n]
that 1s not absolutely summable by a DTFT
X(e’®), it is necessary to consider a

@m-sq@convergence of X (e/®):

m . 0
lim [ X(e’/”)—Xg(e’”) do=0
K—o

where

. K :
Xy ()= X x[n]e /™"
38 n=—K
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Discrete-Time Fourier
Transform

* Here, the total energy of the error
X (&)= X (e’
must approach zero at each value of ® as K

goes 1o oo

* In such a case, the absolute value of the
error | X (e/®)— Xy (e’ m)‘ does |not go to
zero as K goes to oo and the DTFT 1is no

longer bounded

\

may include a ()
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Discrete-Time Fourier
Transform

« Example - Consider the DTFT
1, 0<w<ao,

0, o .<o<T

HLP(ej(D) =

shown below
Hp(e’®)

40
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Discrete-Time Fourier

Transform
» The inverse DTFT of H, »(e/®) is given by
(DC
hppln] - J e"do
2T
1 [eﬂ”c" ejwcn] Sin @7
= .. = > —00< <O
2| jn jn 197
* The energy of s p[n] 1s givenby o,/ o

. ‘ h; pln] is a finite-energy sequence,

,; buti1tis not absolutely summable
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Discrete-Time Fourier
Transform

e As aresult

K : K sino.n _:
h n e—](i)n — C e—](Dl’l
n:Z_:KLP[ ] n:Z_K o

does not uniformly converge to H; p (ej ?) |
for all values of w, but converges to H; p(e’ ?)
in the mean-square sense
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Discrete-Time Fourier
Transform

* The mean-square convergence property of
the sequence /; p[n] can be further
illustrated by examining the plot of the
function

SINWA _

| K
joy _
Hyp k(e )—n:Z_K €

for various values of K as shown next



Fourier

Discrete-Time

=20

K

Transform

MATLAB

o/n



3362
Text Box
K = 10

3362
Text Box
K = 20

3362
Text Box
K = 30

3362
Text Box
K = 40

gr
Text Box
 MATLAB


Discrete-Time Fourier
Transform

* As can be seen from these plots, independent
of the value of K there are ripples in the plot
of Hyp x(e’”) around both sides of the
point ®=®,

* The number of ripples increases as K
increases with the height of the largest ripple
remaining the same for all values of K

45
45
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Discrete-Time Fourier

Transform
* As K goes to infinity, the condition

2
N do=0

—T

holds 1nd10at1ng the convergence of Hp g (e®)
to HLP (@J(D)

* The oscillatory behavior of Hjp «(e’®)
approximating H; p(e’®) in the mean-
square sense at a point of discontinuity 1s
known as the |Gibbs phenomenon



3362
Text Box
Gibbs phenomenon


Discrete-Time Fourier

Transform

 The DTFT can also be defined for a certain
class of sequences which are neither
absolutely summable nor square summable

(infinite energy)

» Examples of such sequences are the unit
step sequence y[n], the sinusoidal sequence
cos(mw,n + ¢) and the exponential sequence Ao

 For this type of sequences, a DTFT
representation 1s possible using the

Dirac delta function |o(®)
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Discrete-Time Fourier
Transform

* A Dirac delta function o(w) 1s a function of
o with infinite height, zexo width, and unit
area Infinitesimal

o [t 1s the limiting form of a unit area pulse
function p, (o) as A goes to zero satistying

o " 1 Pp(@)
lim [p, (0)do= [5(w)do A
A—0_ P
_A 0 A
48 2 2


3362
Callout
infinitesimal


49

49

Discrete-Time Fourier
Transform

» Example - Consider the complex exponential
sequence

x[n] = /"

e Its DTFT 1s given by
X ()= Y2n8(0—w, +21k)

k=—00
where 0(w) 1s an impulse function of w and
— MW, =T
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Discrete-Time Fourier
Transform

e The function

X ()= Y2md(o— o, +21k)
k:—OO
1s a periodic function of w with a period 27
and 1s called a |periodic impulse train

» To verify that X(e’®) given above is
indeed the DTFT of x[n]=e’"" we

compute the inverse DTFT of X (e’®)
50
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Discrete-Time Fourier

Transform
e Thus
x[n] Lj > 2n8(m— o, + 21k)e’ " do
27[—7‘[/(——00

T . .
= [8(o—m,)e’" dn=e’""
—T
where we have used the sampling property
of the impulse function ()

51
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Commonly Used DTFT Pairs

o[ 7]

<~ 1

o Y2180+ 21k)

k=—00

/" & Y 2nd(0-o, +21k)

k=—00
un] < 1_. + Y mo(w+2mk)
| JO fk=—00
|
allu[z], (o <1) < .
52 ‘ l—oe /?
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DTFT Properties and Theorems

There are a number of important properties
and theorems of the DTFT that are useful 1n
signal processing applications

These are listed here without proof
Their proofs are quite straightforward

We 1llustrate the applications of some of the
DTEFT properties
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Table 3.1: DTFT Properties:
Symmetry Relations

Sequence  Discrete-Time Fourier Transform

x[n] X (e/®)
x[—n] X (e=/@)
x*[=n] X*(e/®)

Re{x[n]}  Xes(e/®) = 5{X(e/?) + X*(e™/?)}
jim{x[n]}  Xca(e/?) = 3{X(e/?) — X*(e7/?))
sz[YI] Xre(ejm)

Xcaln] inm(ejw)

Note: Xcs(e_j"’) and Xca(e-jw) are the conjugate-symmetric and conjugate-antisymmetric
parts of X (e/®), respectively. Likewise, xcs[n] and x¢y[n] are the conjugate-symmetric and
conjugate-antisymmetric parts of x [n], respectively.

54 x[n]: A complex sequence
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Table 3.2: DTFT Properties:
Symmetry Relations

Sequence Discrete-Time Fourier Transform
x[n] X(e/®) = Xre(e/®) + jXim(e!®)
Xev[n] ch(ejcu)
Xod[n] J Xim(e/?)

X(e/®) = X*(e™/v)
Xre(e/®) = Xre(e™/®)
Symmetry relations Xim(e/?) = =Xim(e™7/®)
X (e/®)] = |X(e™I®)|
arg{X (e/?)} = —arg{X (e 7/ )}

Note: xey[n] and x,q[n] denote the even and odd parts of x[n], respectively.

55 x[n]: A real sequence



Table 3.4 DTFT Theorems

gln] G(e!®)
h[n] H(e!?)
Linearity agln] + Bhln] aG(e/?) + BH(e!¥)
Time-shifting gln —ny] e~ JWno G(ej “)
amplitude modulation — _ _
Frequency-shifting eJ@el g[n] G (ef (“)—w")) MATLAB
Differentiation .dG(el®)
: ng(n} J
in frequency dw
Convolution g[nl®h(n] G(e/“)H(e/®)
Modulation glnlhln] o |7 G(el®)H(el @)y dp
product of sequences [—7 ‘
ot 1 T : :
Parseval’s relation Z glnh*[n]l = — f Ge/YH* (/) dw
= 27 J g

56
56
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