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DiscreteDiscrete--Time Signals in the Time Signals in the 
Frequency DomainFrequency Domain

• The frequency-domain representation of a 
discrete-time sequence is the discrete-time 
Fourier transform (DTFT)

• This transform maps a time-domain 
sequence into a continuous function of the 
frequency variable 

• We first review briefly the continuous-time 
Fourier transform (CTFT)
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• Definition – The CTFT of a continuous- 
time signal           is given by

• Often referred to as the Fourier spectrum or 
simply the spectrum of the continuous-time 
signal 
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• Definition – The inverse CTFT of a Fourier 
transform               is given by

• Often referred to as the Fourier integral

• A CTFT pair will be denoted as
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• is real and denotes the continuous-time angular 
frequency variable in radians/sec if the unit of the 
independent variable t is in seconds

• In general, the CTFT is a complex function of       
in the range

• It can be expressed in the polar form as

where
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• The quantity                is called the 
magnitude spectrum and the quantity           
is called the phase spectrum

• Both spectrums are real functions of 

• In general, the CTFT              exists if           
satisfies the Dirichlet conditions given on 
the next slide
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

Dirichlet Conditions

• (a)  The signal          has a finite number of 
discontinuities and a finite number of 
maxima and minima in any finite interval

• (b) The signal is absolutely integrable, i.e.,
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• If the Dirichlet conditions are satisfied, then

converges to          at all values of t except at 
values of t where          has discontinuities

• It can be shown that if          is absolutely 
integrable, then                       proving the 
existence of the CTFT
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Energy Density SpectrumEnergy Density Spectrum

• The total energy       of a finite energy 
continuous-time complex signal          is 
given by

• The above expression can be rewritten as
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Energy Density SpectrumEnergy Density Spectrum

• Interchanging the order of the integration 
we get
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Energy Density SpectrumEnergy Density Spectrum

• Hence

• The above relation is more commonly 
known as the Parseval’s theorem for finite- 
energy continuous-time signals
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Energy Density SpectrumEnergy Density Spectrum

• The quantity                  is called the energy 
density spectrum of          and usually 
denoted as

• The energy over a specified range of 
frequencies                       can be computed 
using
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• A full-band, finite-energy, continuous-time 
signal has a spectrum occupying the whole 
frequency range

• A band-limited continuous-time signal has a 
spectrum that is limited to a portion of the 
frequency range
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• An ideal band-limited signal has a spectrum that 
is zero outside a finite frequency range 

,  that is

• However, an ideal band-limited signal cannot be 
generated in practice
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• Band-limited signals are classified 
according to the frequency range where 
most of the signal’s energy is concentrated

• A lowpass, continuous-time signal has a 
spectrum occupying the frequency range  

where       is called the 
bandwidth of the signal

p p
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• A highpass, continuous-time signal has a 
spectrum occupying the frequency range  

where the bandwidth of 
the signal is from        to

• A bandpass, continuous-time signal has a 
spectrum occupying the frequency range  

where                  is 
the bandwidth
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Definition - The discrete-time Fourier 
transform (DTFT)                of a sequence 
x[n] is given by

where 
 

is a continuous variable in the 
range

)( jeX

n

njj enxeX

16

3362
Highlight

gr
Text Box
Note: the DTFT should not be confused with
      -  the Discrete Fourier Transform (DFT) and
      -  the z-Transform,     both to be discussed later



17
Copyright © 2010, S. K. Mitra

DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The infinite series                                may 
or may not converge

• If it converges for all values of , then the 
DTFT              exists

• In general,                is a complex function 
of the real variable 

 
and can be written as
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• and                  are, respectively, 
the real and imaginary parts of             , and 
are real functions of 

• can alternately be expressed as

where
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• is called the magnitude function

• is called the phase function

• Both quantities are again real functions of 

• In many applications, the DTFT is called 
the Fourier spectrum

• Likewise,               and         are called the 
magnitude and phase spectra
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• For a real sequence x[n], and             
are even functions of , whereas,               
and                 are odd functions of 

• Note:

for any integer k

• The phase function ( ) cannot be 
uniquely specified for any DTFT
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Unless otherwise stated, we shall assume 
that the phase function ( ) is restricted to 
the following range of values:

called the principal value

)(
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The DTFTs of some sequences exhibit 
discontinuities of 2

 
in their phase 

responses

• An alternate type of phase function that is a 
continuous function of 

 
is often used

• It is derived from the original phase 
function by removing the discontinuities of 
2
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The process of removing the discontinuities 
is called “unwrapping”

• The continuous phase function generated by 
unwrapping is denoted as

• In some cases, discontinuities of 
 

may be 
present after unwrapping

)(c
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - The DTFT of the unit sample 
sequence [n] is given by

• Example - Consider the causal sequence
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Its DTFT is given by

as
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The magnitude and phase of the DTFT               
are shown below)5.01/(1)( jj eeX

)()( jj eXeX )()(
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The DTFT               of a sequence x[n] is a 
continuous function of 

• It is also a periodic function of 
 

with a 
period 2 :
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Therefore                                       

represents the Fourier series representation 
of the periodic function

• As a result, the Fourier coefficients x[n] can 
be computed from              using the Fourier 
integral

n
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• :

• Proof:
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The order of integration and summation can 
be interchanged if the summation inside the 
brackets converges uniformly, i.e.              
exists

• Then deex njj][
2
1
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Now

• Hence
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• - An infinite 
series of the form

may or may not converge

• Let

n
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Then for uniform convergence of              ,

• Now, if x[n] is an absolutely summable 
sequence, i.e., if
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Then

for all values of 

• Thus, the absolute summability of x[n] is a 
sufficient condition for the existence of the 
DTFT
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - The sequence                         for     
is absolutely summable as

and its DTFT              therefore converges 
to   uniformly
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Since

an absolutely summable sequence has 
always a finite  energy

• However, a finite-energy sequence is not 
necessarily absolutely summable
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - The sequence 

has a finite energy equal to

• But, x[n] is not absolutely summable
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• To represent a finite energy sequence x[n] 
that is not absolutely summable by a DTFT   

, it is necessary to consider a 
of             :

where
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Here, the total energy of the error

must approach zero at each value of 
 

as K 
goes to

• In such a case, the absolute value of the 
error                                   may not go to 
zero as K goes to      and the DTFT is no 
longer bounded
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - Consider the DTFT

shown below
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The inverse DTFT of                   is given by

• The energy of              is given by

• is a finite-energy sequence, 
but it is not absolutely summable
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• As a result

does not uniformly converge to                 
for all values of , but converges to              
in the mean-square sense
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The mean-square convergence property of 
the sequence            can be further 
illustrated by examining the plot of the 
function

for various values of K as shown next

K

Kn

njcj
KLP en

n
eH

sin
)(,

nhLP

43



44

DiscreteDiscrete--Time Fourier Time Fourier 
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• As can be seen from these plots, independent 
of the value of K there are ripples in the plot 
of                      around both sides of the 
point

• The number of ripples increases as K 
increases with the height of the largest ripple 
remaining the same for all values of K
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TransformTransform

• As K goes to infinity, the condition

holds indicating the convergence of            
to

• The oscillatory behavior of        
approximating                  in the mean- 
square sense at a point of discontinuity is 
known as the 
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The DTFT can also be defined for a certain 
class of sequences which are neither 
absolutely summable nor square summable

• Examples of such sequences are the unit 
step sequence [n], the sinusoidal sequence 

and the exponential sequence

• For this type of sequences, a DTFT 
representation is possible using the 

( )

)cos( no
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• A Dirac delta function ( ) is a function of 

 
with infinite height, zero width, and unit 

area

• It is the limiting form of a unit area pulse 
function            as 

 
goes to zero satisfying)(p

ddp )()(lim
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2 2
0

1
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - Consider the complex exponential 
sequence

• Its DTFT is given by

where is an impulse function of 
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DiscreteDiscrete--Time Fourier Time Fourier 
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• The function

is a periodic function of with a period 2
 and is called a 

• To verify that               given above is 
indeed the DTFT of                     we 
compute the inverse DTFT of
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• Thus

where we have used the sampling property 
of the impulse function )(
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Commonly Used DTFT PairsCommonly Used DTFT Pairs
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DTFT Properties and TheoremsDTFT Properties and Theorems

• There are a number of important properties 
and theorems of the DTFT that are useful in 
signal processing applications

• These are listed here without proof

• Their proofs are quite straightforward

• We illustrate the applications of some of the 
DTFT properties
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Table 3.1:Table 3.1: DTFT Properties: DTFT Properties: 
Symmetry RelationsSymmetry Relations

x[n]: A complex sequence
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Table 3.2:Table 3.2: DTFT Properties: DTFT Properties: 
Symmetry RelationsSymmetry Relations

x[n]: A real sequence
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Table 3.4  Table 3.4  DTFT TheoremsDTFT Theorems
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