Stability Condition of an LTI
Discrete-Time System

« BIBO Stability Condition - A discrete-
time 1s BIBO stable if and only if the output
sequence {y[n]} remains bounded for all
bounded 1nput sequence {x[n]}

* An LTI discrete-time system 1s BIBO stable
if and only if 1ts impulse response sequence
{h|[n]} 1s absolutely summable, 1.¢.

S = i‘h[n]‘ < Q0

21 o
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Stability Condition of an LTI
Discrete-Time System

* Proof: Assume A[n] 1s a real sequence

* Since the mput sequence x[7] 1s bounded we

have
x[n] < B, <0

 Therefore

yinl= D hlklxln—k]< D hlk]|x[n—k]

k:—OO k:—OO

<B, > hlk]=B,S

f=—0o0 Copyright © 2010, S. K. Mitra

22



Stability Condition of an LTI
Discrete-Time System

+ Thus, S< o implies y[n] < B, <o
indicating that y[#n] 1s also bounded

* To prove the converse, assume y[n] 1s
bounded, 1.e., y[n]\ <B,

* Consider the mput given by

_|sgn(h[—-n]), 1if h[-n]=0
*nl= { K, if l-n]=0

23
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. * Therefore,

Stability Condition of an LTI
Discrete-Time System
where sgn(c) =+1 if ¢ > 0 and sgn(c) = —1

if c<0 and K <1

- Note: Since|x[n] <1, {x[n]} is obviously
bounded

* For this input, y[n] at n =0 1s

y[0] = k_z sgn(h[k]Dh[k]=S < B, <
y[n] < B, implies § < @

Copyright © 2010, S. K. Mitra




Stability Condition of an LTI
Discrete-Time System

» Example - Consider an LTI discrete-time
system with an impulse response

hln]=(a)" uln]
* For this system

puln]= \a\ L if o<1
Nn=—00 n=0 ‘0[‘
» Therefore S< oo if & <1 for which the

system 1s BIBO stable
. * If jo=1, the system is not BIBO stable

Copyright © 2010, S. K. Mitra




Causallity Condition of an LTI
Discrete-Time System

* Let x;[n] and x,[n]be two input sequences
with
xiln]=xy[n] for n<n,

xi[n]# xy[n] for n>n,

* The corresponding output samples at n=n,,
of an LTI system with an impulse response
{h[n]} are then given by

26
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Causality Condition of an LTI
Discrete-Time System

nin,1= > hlklxn, —kl= > hlklx[n, —k]
k=—0o0 k=0

—1
+ > hlklx[n, —k]

k=—00

Wiln,1= > hlklxy[n, —kl= > hlklxy[n, —k]
k=—o0 k=0

1
+ > hlklxy[n, — k]

k=—00

input contributions before and after nO are separated
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Causality Condition of an LTI
Discrete-Time System

 If the LTI system 1s also causal, then
nlngl=ysln, ]
* As xj[n]=x,[n] for n<n,
> hlklxn, —kl= ) hlklx,[n, —k]
k=0 k=0
* This 1mphes
Zh[k]xl[n —k]= Zh[k]xz[n — k]

28 fk=—00 k=—0o0
Copyright © 2010, S. K. Mitra
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Causality Condition of an LTI
Discrete-Time System

* As xi[n]# x,[n] for n>n, the only way

the condition

—1 —1
> hlklxn, —kl= D hlklx,y[n, — k]

fr=—o0 k=—o0
will hold 1f both sums are equal to zero,
which 1s satisfied if

hlk]=0 for k<0

Copyright © 2010, S. K. Mitra



Causality Condition of an LTI
Discrete-Time System

. ‘ An LTI discrete-time system 1s causal
if and only 1f 1ts impulse response {4[n]} 1s a
causal sequence

» Example - The discrete-time system defined
by
yln]=aoyx[n]+o,x[n—1]+azx[n—2]+ oyx|n—3]

1s a causal system as 1t has a causal impulse

response {A[n]}={o; o, o3 04}
30

10
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Causality Condition of an LTI
Discrete-Time System

* Example - The discrete-time accumulator

defined by

= 380 =uln]
{=—0o0

1s a causal system as 1t has a causal impulse
response given by

W)= 801 =uln)
{=—00

Copyright © 2010, S. K. Mitra
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Causality Condition of an LTI
Discrete-Time System

» Example - The factor-of-2 interpolator

defined by
yin]=x,[n]+ 1 (x,[n =11+ x,[n+1])

1s noncausal as 1t has a noncausal impulse
response given by

(n]t=105 1 0.5
?

Copyright © 2010, S. K. Mitra
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Causality Condition of an LTI
Discrete-Time System

* Note: A noncausal LTI discrete-time system
with a finite-length impulse response can
often be realized as a causal system by
inserting an appropriate amount of delay

» For example, a causal version of the factor-

of-2 interpolator 1s obtained by delaying the
input by one sample period:

y[n] = xu[n_l]_l';(xu[n_z]_l'xu[n])

Copyright © 2010, S. K. Mitra



Finite-Dimensional LTI
Discrete-Time Systems

* An important subclass of LTI discrete-time
systems 1s characterized by a linear constant
coefficient difference equation of the form

N M
2. dpy[n—k]= ) pix[n—k]
k=0 k=0

* x[n] and y[n] are, respectively, the input and
the output of the system

* {d;} and {p,} are constants characterizin
k k g

the system
46

14
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47

Finite-Dimensional LTI
Discrete-Time Systems

The order of the system 1s given by
max(V,M), which 1s the order of the difference
equation

It 1s possible to implement an LTI system
characterized by a constant coefficient
difference equation as here the computation
involves two finite sums of products

Copyright © 2010, S. K. Mitra
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Finite-Dimensional LTI
Discrete-Time Systems

 [f we assume the system to be causal, then
the output y[n] can be recursively computed

using

N d
nl=-3 =k
k=14

provided dy # 0

M

yln—k]+ 2. &xm—kﬁ

k=0

e.g.. coeffs. of an
accumulator?

* y[n] can be computed for alln>n,, ,
knowing x[n] and the 1nitial conditions

y[no —1],)/[1’20 —2],...,)/[1’20 _N]

Copyright © 2010, S. K. Mitra
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Classification of LTI Discrete-
Time Systems

Based on Impulse Response Length -

 If the impulse response /[7] 1s of finite
length, 1.e.,
hn]=0 forn<Nyand n>N,, N; <N,

then 1t 1s known as a finite impulse
response (FIR) discrete-time system
* The convolution sum description here 1s

N,
yinl= D hlklx{n—k]
k=N,

Copyright © 2010, S. K. Mitra
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Classification of LTI Discrete-
Time Systems

* The output y[n] of an FIR LTI discrete-time
system can be computed directly from the
convolution sum as 1t 1s a finite sum of
products

« Examples of FIR LTI discrete-time systems
are the moving-average system and the
linear interpolators

50

18
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Classification of LTI Discrete-
Time Systems

* [If the impulse response 1s of infinite length,
then 1t 1s known as an infinite impulse
response (IIR) discrete-time system

* The class of IIR systems we are concerned
with 1n this course are characterized by
linear constant coefficient difference
equations

51

19
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Classification of LTI Discrete-
Time Systems

» Example - The discrete-time accumulator
defined by

yln]=yln—1]+x[n]
1s seen to be an IIR system

52

20
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Classification of LTI Discrete-
Time Systems

Based on the Output Calculation Process

* Nonrecursive System - Here the output can
be calculated sequentially, knowing only
the present and past input samples

* Recursive System - Here the output
computation involves past output samples 1n
addition to the present and past mput
samples

Copyright © 2010, S. K. Mitra
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Classification of LTI Discrete-
Time Systems

Based on the Coefficients -

* Real Discrete-Time System - The impulse
response samples are real valued

* Complex Discrete-Time System - The

impulse response samples are complex
valued

MATLAB

then S02.3a (3D audio)
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Correlation of Signals

» There are applications where 1t 1s necessary
to compare one reference signal with one or
more signals to determine the similarity
between the pair and to determine additional
information based on the similarity

Copyright © 2010, S. K. Mitra
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Correlation of Signals

* For example, in digital communications, a
set of data symbols are represented by a set
of unique discrete-time sequences

 If one of these sequences has been
transmitted, the receiver has to determine
which particular sequence has been received
by comparing the received signal with every
member of possible sequences from the set

Copyright © 2010, S. K. Mitra
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Correlation of Signals

* Similarly, in radar and sonar applications,
the received signal reflected from the target
1s a delayed version of the transmitted
signal and by measuring the delay, one can
determine the location of the target

* The detection problem gets more
complicated 1n practice, as often the
received signal 1s corrupted by additive
random noise

Copyright © 2010, S. K. Mitra
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Correlation of Signals

Definitions

* A measure of similarity between a pair of
energy signals, x[n] and y[n], 1s given by the
cross-correlation sequence 7y, [£] defined by

rxy[f]: ix[n]y[n—f], /=0,£1,+2,...

1=—00
» The parameter ¢ called lag, indicates the
time-shift between the pair of signals

26
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Correlation of Signals

* y[n] 1s said to be shifted by ¢ samples to the
right with respect to the reference sequence
x[n] for positive values of ¢, and shifted by ¢
samples to the left for negative values of /

* The ordering of the subscripts xy 1n the
definition of 7, [£] specifies that x[#] is the
reference sequence which remains fixed in
time while y[n] 1s being shifted with respect
to x[n]

Copyright © 2010, S. K. Mitra
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Correlation of Signals

» If y[n] 1s made the reference signal and shift
x|n] with respect to y[n], then the
corresponding cross-correlation sequence 1s
given by

el 1= Yo, inlxin— 1]

=Y oo YIm+ L1x[m] = ry, [/]

* Thus, 7,,[£] 1s obtained by time-reversing
ey ]

Copyright © 2010, S. K. Mitra



Correlation of Signals

* The autocorrelation sequence of x[n] 1s
given by
recl1=2"_ x[nlx[n—/]
obtained by setting y[n] = x[#] 1n the
definition of the cross-correlation sequence
ey /]

* Note: r.,[0]= Z;O:_Ooxz[n] =, , the energy
of the signal x[#]

29
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Correlation of Signals

* From the relation . [/]= "y [—/] 1t follows
that r [{]=r.[—¢] implying that 7, [/] 1s
an even function for real x[n]

 An examination of
ny [Z] — Z:ZO:_OO x[n]y[n o Z]

reveals that the expression for the cross-
correlation looks quite similar to that of the
linear convolution

Copyright © 2010, S. K. Mitra



Correlation of Signals

* This similarity 1s much clearer if we rewrite
the expression for the cross-correlation as

01 = X35 xnlyln— 1]
=32 o xlnly[—(L—m)] =2 1® y[~(]

31
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Properties of Autocorrelation and
Cross-correlation Sequences

* Consider two finite-energy sequences x[#]
and y[n]

* The energy of the combined sequence
ax|n]+ yln—1/] is also finite and
nonnegative, 1.€.,

> lax[n]l+yln— 11)? = azz(;lo:_oo x2[n]
+2aY%  xnlyln—1+3° v [n—01>0

10 Copyright © 2010, S. K. Mitra
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Properties of Autocorrelation and
Cross-correlation Sequences

e Thus

a1 [01+ 2a 7, [£]+7,,[0]= 0
where 7, [0]="Z, >0 and r,,[0]=Z,, >0

* We can rewrite the equation above as

[Cl 1] rxx[o] ny[g]

| Fylf] 7, 101

. for any finite value of a

|

?}20

Copyright © 2010, S. K. Mitra



34

Properties of Autocorrelation and
Cross-correlation Sequences

e Or, 1n other words, the matrix

re[0] i [01

| Fylf] 7y 101
1s positive semidefinite

o w1 [0, [0]- 75, [£]20

or, equivalently,

|1y [21] <1 [0, [0] = | ELE,

Copyright © 2010, S. K. Mitra
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Properties of Autocorrelation and
Cross-correlation Sequences

* The last inequality on the previous slide
provides an upper bound for the cross-
correlation samples

» If we set y[n] = x[n], then the inequality

reduces to
e [0]] S 1 [0] = £,

13 Copyright © 2010, S. K. Mitra
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Properties of Autocorrelation and
Cross-correlation Sequences

* Thus, at zero lag (£ =0), the sample value
of the autocorrelation sequence has 1ts
maximum value

« Now consider the case
yinl=xbx[n— N]

where N is an integer and » > 0 1s an
arbitrary number

- 2
* Inthis case £, =b°L,

14 Copyright © 2010, S. K. Mitra
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Properties of Autocorrelation and
Cross-correlation Sequences

* Therefore
JEE, =\b*E? =),
» Using the above result in
|7y [21] < /1[0, [0] = | ELE,
we get
—br, [0]< Iy [/1<br, [0]

15 Copyright © 2010, S. K. Mitra
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Correlation Computation
Using MATLAB

e The cross-correlation and autocorrelation

sequences can easily be computed using
MATLAB

» Example - Consider the two finite-length
sequences

x[nl=[1 3 =212 -1 4 4 2|
ynl=[2 -1 4 1 -2 3]

16 Copyright © 2010, S. K. Mitra
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Correlation Computation
Using MATLAB

* The cross-correlation sequence

computed using Program 2 7 of text is
plotted below

30—

20| ¢

90 ] 1
o |

4 -2 0 2 4 6 8

Amplitude

17
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Correlation Computation
Using MATLAB

« The autocorrelation sequence
1s shown below

computed using Program 2 7

* Note: At zero lag, r, [0] 1s the maximum

®

O??@UT?T T?TU@T?

-5 0 5
Lag index
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Correlation Computation
Using MATLAB

* The plot below shows the cross-correlation

of x[n] and y|n]=x[n— N] f@

* Note: The peak of the cross-correlation 1s
precisely the value of the delay N

o)

40
Q
E
=, 207 T
: 117l
< o020e Lo[l[e] off,

-20 | ‘ ‘ ‘

-10 -5 0 5
19 Lag index . .
Copyright © 2010, S. K. Mitra
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Correlation Computation
Using MATLAB

* The plot below shows the autocorrelation of
x[n] corrupted with an additive random

generated using the function randn
 Note: The autocorrelation still exhibits a

peak at zero lag

80

QSTTJTT

TTMTT

20 Lag index

0
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Correlation Computation
Using MATLAB

 The autocorrelation and the cross-
correlation can also be computed using the
function xcorr

Copyright © 2010, S. K. Mitra



4.4

Normalized Forms of
Correlation

 Normalized forms of autocorrelation and
cross-correlation are given by

o Vy L]
wlll o =
7, [0] 7017, [0]
» They are often used for convenience in
comparing and displaying
» Note: |0, [/]|<1 and | oy, [£]| <1

independent of the range of values of x[n]
and y[n]

Pxx [4]=

22
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Correlation Computation for
Power Signals

* The cross-correlation sequence for a pair of
power signals, x[#n] and y[ ], 1s defined as

|
rltl= fim zx[n]y[n /]

» The autocorrelation sequence of a power
signal x[n] 1s given by
1

nalfl= Z_x[n]x[n g

23

l.e.: try with increasing values of K until r xy stops changing
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Correlation Computation for
Periodic Signals

* The cross-correlation sequence for a pair of
periodic signals of period N, x[n]and yl[#],
1s defined as

repl 1= Y ¥ nlFln— /]

* The autocorrelation sequence of a periodic
signal x[n] of period N is given by

reall]= NZ Ox[n]x[n /]

24
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Correlation Computation for
Periodic Signals

* Note: Both r~~[€] and ry[ /] are also
periodic 31gnals with a period N

* The periodicity property of the
autocorrelation sequence can be exploited to
determine the period of a periodic signal

that may have been corrupted by an additive
random disturbance

25
47
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Correlation Computation for
Periodic Signals

* Let X[n] be a periodic signal corrupted by
the random noise d[n] resulting in the signal

wln]=X[n]+d[n]

which 1s observed for 0 <n < M —1where
M >N

1. Is w|n] periodic?
2. Note similarities with ensemble averaging

26
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Correlation Computation for
Periodic Signals

* The autocorrelation of w[n] 1s given by
112 3y Do Winlwin— (]
—Zn Lo (GIn]+ d[n])(En — ]+ d[n—(])
= 3 Znco Anlxn =01+ 3 30 d[n)d[n 1]
+ 4 Znco Anldln—01+ 53 Lo dn)x(n ]

=y [ ’”dd[f] + g [ €]+ gl 4]

27 Copyright © 2010, S. K. Mitra
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Correlation Computation for
Periodic Signals

* In the last equation on the previous slide, ryz[ /]

1s a periodic sequence with a period N and
hence will have peaks at / =0, N,2N,...
with the same amplitudes as ¢ approaches M

* As X|n]and d[n] are not correlated, samples
of cross-correlation sequencesryy[¢]and 7;[ /]
are likely to be very small relative to the
amplitudes of 7| /]

Copyright © 2010, S. K. Mitra
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Correlation Computation for
Periodic Signals

* The autocorrelation 7,;[¢] of d[n] will show
a peak at £ = 0 with other samples having
rapidly decreasing amplitudes with
increasing values of | /|

» Hence, peaks ofr,,, [¢] for £ >0 are
essentially due to the peaks of ry;[£]and can
be used to determine whether X[#n] 1s a
periodic sequence and also its period N 1f
the peaks occur at periodic intervals

Copyright © 2010, S. K. Mitra
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Correlation Computation of a
Periodic Signal Using MATLAB

« Example - We determine the period of the
sinusoidal sequence x{n]= cos(0.25mn,)
0 <n <95 corrupted by an additive
uniformly distributed random noise of
amplitude 1n the range [-0.5,0.5]

* Using Program 2 8 of text we arrive at the
plot ofr,,,[£] shown on the next slide

30 Copyright © 2010, S. K. Mitra



Correlation Computation of a
Periodic Signal Using MATLAB

40|

i i1hig
eggignyy

-60

Amplitude

20 -10 0 10 20
Lag index

* As can be seen from the plot given above,
there 1s a strong peak at zero lag

 However, there are distinct peaks at lags that
are multiples of 8 indicating the period of the
sinusoidal sequence to be 8 as expected

31 Copyright © 2010, S. K. Mitra
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Correlation Computation of a
Periodic Signal Using MATLAB

* Figure below shows the plot of 7, [ /]

8

®

Amplitude
ST SRR S =)

@ﬁ%@ ﬁﬁ% ‘ il ‘ %ﬁm @ﬁf@
RS ) S o

20 -10 0 10 20
Lag index

* As can be seenry,| ] shows a very strong

peak at only zero lag
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