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DiscreteDiscrete--Time SystemsTime Systems

• A discrete-time system processes a given 
input sequence x[n] to generates an output
sequence y[n] with more desirable 
properties

• In most applications, the discrete-time 
system is a single-input, single-output
system:

Input sequence Output sequence

x[n] y[n])(
Discrete-Time System
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DiscreteDiscrete--Time SystemsTime Systems

• Mathematically, the discrete-time system is 
characterized by an operator that 
transforms the input sequence x[n] into 
another sequence y[n] at the output

• The discrete-time system may also have 
more than one input and/or more than one 
output

)(
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

• 2-input, 1-output discrete-time systems -

• 1-input, 1-output discrete-time systems -

x[n] y[n]

w[n]

x[n] y[n]

w[n]
Modulator Adder

A
x[n] y[n] 1z y[n]x[n]

y[n]x[n] z
Multiplier Unit Delay

Unit Advance
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

• A more complex example of an one-input, 
one-output discrete-time system is shown 
below
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DiscreteDiscrete--Time Systems: ExamplesTime Systems: Examples

• Accumulator -

• The output y[n] at time instant n is the sum 
of the input sample x[n] at time instant n 
and the previous output               at time 
instant            which is the sum of all 
previous input sample values from         to

• The system cumulatively adds, i.e., it 
accumulates all input sample values

n
xny ][][

][]1[][][
1

nxnynxx
n

]1[ny
,1n

1n
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• Accumulator - Input-output relation can 
also be written in the form

• The second form is used for a causal input 
sequence, in which case              is called 
the initial condition

n
xxny

0

1
][][][

,][]1[
0

n
xy

]1[y
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• M-point Moving-Average System -

• Used in smoothing random variations in 
data  

• In most applications, the data x[n] is a 
bounded sequence

• M-point average y[n] is also a 
bounded sequence
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• If there is no bias in the measurements, an 
improved estimate of the noisy data is 
obtained by simply increasing M

• A direct implementation of the M-point 
moving average system requires       
additions, 1 division, and storage of         
past input data samples

• A more efficient implementation is 
developed next
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

1

0

1 M

M
nxny

1

1

1 M

M
nxnx

1

1

1 M

M
MnxMnxnxnx
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

1

0

1
1

M

M
Mnxnxnx

M

M
Mnxnxnxny

1

1

Hence

Mnxnx
M

nx
M

M

1
1

1

0

1
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• Computation of the modified M-point 
moving average system using the recursive 
equation now requires 2 additions and 1
division

• An application:  Consider 

x[n] = s[n] + d[n], 

where s[n] is the signal corrupted by a noise
d[n]
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d[n] - random signal],)9.0([2][ nnns

DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• Exponentially Weighted Running Average 
Filter

• Computation of the running average requires 
only 1 addition, 1 multiplication and storage 
of the previous running average

• Does not require storage of past input data 
samples

13



14
Copyright © 2010, S. K. Mitra

DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• For               , the exponentially weighted 
average filter places more emphasis on current 
data samples and less emphasis on past data 
samples as illustrated below
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples
• Linear interpolation - Employed to estimate 

sample values between pairs of adjacent 
sample values of a discrete-time sequence

• Factor-of-4 interpolation

0 1 2

3 4

5 6 7 8 9 10 11 12
n

y[n]
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

• Factor-of-2 interpolator -

• Factor-of-3 interpolator -

]1[]1[
2
1][][ nxnxnxny uuu

]2[]1[
3
1][][ nxnxnxny uuu

]1[]2[
3
2 nxnx uu
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

• Factor-of-2 interpolator –

17

gr
Text Box
  MATLAB



18
Copyright © 2010, S. K. Mitra

DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

Median Filter –
• The median of a set of (2K+1) numbers is 

the number such that K numbers from the 
set have values greater than this number and 
the other K numbers have values smaller

• Median can be determined by rank-ordering 
the numbers in the set by their values and 
choosing the number at the middle

18

3362
Text Box
or equal to

3362
Arrow

3362
Arrow



19
Copyright © 2010, S. K. Mitra

DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

Median Filter –

• Example: Consider the set of numbers

• Rank-ordered set is given by

• Hence,
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

Median Filter –

• Implemented by sliding a window of odd 
length over the input sequence {x[n]} one 
sample at a time

• Output y[n] at instant n is the median value 
of the samples inside the window centered 
at n
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

Median Filter –

• Finds applications in removing additive 
random noise, which shows up as sudden 
large errors in the corrupted signal

• Usually used for the smoothing of signals 
corrupted by impulse noise
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DiscreteDiscrete--Time Systems: Time Systems: 
ExamplesExamples

Median Filtering Example –
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DiscreteDiscrete--Time Systems: Time Systems: 
ClassificationClassification

• Linear System

• Shift-Invariant System

• Causal System

• Stable System

• Passive and Lossless Systems
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Linear DiscreteLinear Discrete--Time SystemsTime Systems

• Definition - If          is the output due to an 
input          and is the output due to an 
input           then for an input

the output is given by

• Above property must hold for any arbitrary 
constants      and       and for all possible 
inputs         and

][1 ny
][1 nx
][2 nx

][2 ny

][][][ 21 nxnxnx

][][][ 21 nynyny

,
][1 nx ][2 nx
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Linear DiscreteLinear Discrete--Time SystemsTime Systems

• Accumulator -

For an input

the output is

• Hence, the above system is linear

nn
xnyxny ][][,][][ 2211

][][][ 21 nxnxnx

n
xxny ][][][ 21

][][][][ 2121 nynyxx
nn
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Linear DiscreteLinear Discrete--Time SystemsTime Systems

• The outputs         and           for inputs         
and          are given by

• The output y[n] for an input                         
is given by

n
xyny

0
111 1

n
xyny

0
222 1

ny1 ny2
nx2

nx1

nxnx 21

n
xxyny

0
211
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Linear DiscreteLinear Discrete--Time SystemsTime Systems

• Now

• Thus                                        if

nyny 21
n
xy

0
22 1

n
xy

0
11 1

nn
xxyy

0
2

0
121 11

nynyny 21

111 21 yyy
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Linear DiscreteLinear Discrete--Time SystemTime System

• For the accumulator with a causal input to 
be linear the condition

must hold for all initial conditions         ,         
,            , and all constants and

• This condition cannot be satisfied unless the 
accumulator is initially at rest with zero 
initial condition

111 21 yyy

1y
11y 12y
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Nonlinear DiscreteNonlinear Discrete--Time Time 
SystemSystem

• The median filter described earlier is a 
nonlinear discrete-time system

• To show this, consider a median filter with 
a window of length 3

• Output of the filter for an input

is

29
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Nonlinear DiscreteNonlinear Discrete--Time Time 
SystemSystem

• Output for an input

is

• However, the output for an input 

is

30
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Nonlinear DiscreteNonlinear Discrete--Time Time 
SystemSystem

• Note:

• Hence, the median filter is a nonlinear 
discrete-time system

• The second form of the accumulator with 
non-zero initial condition is another 
example

31
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ShiftShift--Invariant SystemInvariant System

• For a shift-invariant system, if           is the 
response to an input         , then the response 
to an input

is simply

where      is any positive or negative integer

• The above relation must hold for any 
arbitrary input and its corresponding output

ny1
nx1

onnxnx 1

onnyny 1

on
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ShiftShift--Invariant SystemInvariant System

• In the case of sequences and systems with 
indices n related to discrete instants of time, 
the above property is called time-invariance
property

• Time-invariance property ensures that for a 
specified input, the output is independent of 
the time the input is being applied
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ShiftShift--Invariant SystemInvariant System
• Example - Consider the up-sampler 

with an input-output relation given by

0
20 LLnLnxnxu

L][nx ][nxu
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ShiftShift--Invariant SystemInvariant System
• For an input                            the output           

is given by
onnxnx1

nx u1

0
201

1
LLnLnx

nx u

0
20 LLnLLnnx o
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ShiftShift--Invariant SystemInvariant System

• However from the definition of the up-sampler

• Hence, the up-sampler is a time-varying system

ou nnx

0
2LnLnnnLnnx oooo

nx u1
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Linear TimeLinear Time--Invariant SystemInvariant System
• Linear Time-Invariant (LTI) System -

A system satisfying both the linearity and 
the time-invariance property

• LTI systems are mathematically easy to 
analyze and characterize, and consequently, 
easy to design

• Highly useful signal processing algorithms 
have been developed utilizing this class of 
systems over the last several decades
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Causal SystemCausal System

• In a causal system, the     -th output sample    
depends only on input samples x[n] 

for        and does not depend on input 
samples for

• Let          and           be the responses of a 
causal discrete-time system to the inputs              
and          , respectively

on

onn

onn

ony

ny1 ny2

nx2

nx1
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Causal SystemCausal System

• Then

for n < N

implies also that

for n < N

• For a causal system, changes in output 
samples do not precede changes in the input 
samples

][][ 21 nxnx

][][ 21 nyny
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Causal SystemCausal System
• Examples of causal systems:

• Examples of noncausal systems:

21 210 nxbnxbnxbny
21 21 nyanya

nxnyny 1

11
2
1 nxnxnxny uuu

21
3
1 nxnxnxny uuu

12
3
2 nxnx uu
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Causal SystemCausal System

• A noncausal system can be implemented as 
a causal system by delaying the output by 
an appropriate number of samples

• For example a causal implementation of the 
factor-of-2 interpolator is given by

nxnxnxny uuu 21
2
1

41
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Stable SystemStable System
• There are various definitions of stability

• We consider here the bounded-input,
bounded-output (BIBO) stability

• If y[n] is the response to an input x[n] and if

for all values of n

then

for all values of n

xBnx

yBny
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Stable SystemStable System
• Example - The M-point moving average

filter is BIBO stable:

• For a bounded input                 we have

1

0

1
M

k
M

knxny

xBnx
1

0

1
1

0

1
M

k
M

M

k
M

knxknxny

xxM
BMB1
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Passive and Lossless SystemsPassive and Lossless Systems

• A discrete-time system is defined to be
passive if, for every finite-energy input x[n],
the output y[n] has, at most, the same energy, 
i.e.

• For a lossless system, the above inequality is 
satisfied with an equal sign for every input

nn
nxny 22
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Passive and Lossless SystemsPassive and Lossless Systems

• Example - Consider the discrete-time 
system defined by                             with N
a positive integer

• Its output energy is given by

• Hence, it is a passive system if            and is 
a lossless system if

nn
nxny 222 ][][

1
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Impulse and Step ResponsesImpulse and Step Responses

• The response of a discrete-time system to a 
unit sample sequence { [n]} is called the 
unit sample response or simply, the 
impulse response, and is denoted by {h[n]}

• The response of a discrete-time system to a 
unit step sequence { [n]} is called the unit
step response or simply, the step response, 
and is denoted by {s[n]}
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Impulse ResponseImpulse Response
• Example - The impulse response of the 

system

is obtained by setting x[n] = [n] resulting 
in

• The impulse response is thus a finite-length 
sequence of length 4 given by

47
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Impulse ResponseImpulse Response

• Example - The impulse response of the 
discrete-time accumulator

is obtained by setting x[n] = [n] resulting 
in

n
xny
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Impulse ResponseImpulse Response
• Example - The impulse response {h[n]} of 

the factor-of-2 interpolator

• is obtained by setting                      and is 
given by

• The impulse response is thus a finite-length 
sequence of length 3:

11
2
1 nxnxnxny uuu

50150nh
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Input-Output Relationship -
A consequence of the linear, time-
invariance property is that an LTI discrete-
time system is completely characterized by 
its impulse response

• Knowing the impulse response one 
can compute the output of the system for 
any arbitrary input

50
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Let h[n] denote the impulse response of a 
LTI discrete-time system

• We compute its output y[n] for the input:

• As the system is linear, we can compute its 
outputs for each member of the input 
separately and add the individual outputs to 
determine y[n] 

]5[75.0]2[]1[5.1]2[5.0][ nnnnnx
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Since the system is time-invariant

input output

]2[]2[ nhn

]1[]1[ nhn

]2[]2[ nhn

]5[]5[ nhn
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Likewise, as the system is linear

• Hence because of the linearity property we 
get

]5[75.0]5[75.0 nhn

input                    output

]2[5.0]2[5.0 nhn

]2[]2[ nhn
]1[5.1]1[5.1 nhn

151250 nhnhny
57502 nhnh
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Now, any arbitrary input sequence x[n] can 
be expressed as a linear combination of 
delayed and advanced unit sample 
sequences in the form

• The response of the LTI system to an input   
will be

k
knkxnx ][][][

][][ knkx knhkx
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Hence, the response y[n] to an input

is given by

which can be alternately written as

k knkxnx ][][][

k
knhkxny ][][][

k
khknxny
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Convolution SumConvolution Sum

• The summation

is thus the convolution sum of the 
sequences x[n] and h[n] and represented 
compactly as

kk
y n x k h n k x n k h k

y[n] = x[n]     h[n]*
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Convolution SumConvolution Sum
• Properties -

• Commutative property:

• Associative property :

• Distributive property :

x[n]     h[n] = h[n]     x[n]* *

(x[n]    h[n])    y[n] = x[n]    (h[n]    y[n])****

x[n]    (h[n] + y[n]) = x[n]    h[n] + x[n]    y[n]** *

57
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Convolution SumConvolution Sum

• Interpretation -

• 1) Time-reverse h[k] to form

• 2) Shift          to the right by n sampling 
periods if n > 0 or shift to the left by n
sampling periods if n < 0 to form

• 3) Form the product

• 4) Sum all samples of v[k] to develop the   
n-th sample of y[n] of the convolution sum

kh

kh

knh
knhkxkv
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Convolution SumConvolution Sum
• Schematic Representation -

• The computation of an output sample using 
the convolution sum is simply a sum of 
products

• Involves fairly simple operations such as 
additions, multiplications, and delays

nz
knh

kh

kx

kv
ny

k
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Convolution SumConvolution Sum
• We illustrate the convolution operation for 

the following two sequences:

• Figures on the next several slides the steps 
involved in the computation of

y[n] = x[n]    h[n]*

otherwise,0

50,1
][

n
nx

otherwise,0

50,3.08.1
][

nn
nh
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Convolution SumConvolution Sum

k k
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Convolution SumConvolution Sum

kk
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Convolution SumConvolution Sum

kk

63



Copyright © 2010, S. K. Mitra45

Convolution SumConvolution Sum

kk
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Convolution SumConvolution Sum
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Convolution SumConvolution Sum

kk

66



Copyright © 2010, S. K. Mitra48

Convolution SumConvolution Sum
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Convolution SumConvolution Sum
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Convolution SumConvolution Sum
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Convolution SumConvolution Sum
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Convolution SumConvolution Sum

kk
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Convolution SumConvolution Sum

• Example - Develop the sequence y[n] 
generated by the convolution of the 
sequences x[n] and h[n] shown below

nn

x[n]
h[n]
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Convolution SumConvolution Sum

• As can be seen from the shifted time- 
reversed version                 for n < 0, shown 
below for            , for any value of the 
sample index k, the k-th sample of either 
{x[k]} or                  is zero

3n
knh

knh

]3[ kh

k
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Convolution SumConvolution Sum

• As a result, for n < 0, the product of the k-th 
samples of {x[k]} and                 is always 
zero, and hence

y[n] = 0     for  n < 0

• Consider now the computation of y[0]
• The sequence

is shown
on the right

knh

kh
k

][ kh
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Convolution SumConvolution Sum

• The product sequence                    is plotted 
below which has a single nonzero sample  

for k = 0

• Thus

khkx

x[0]h[0]

2000 hxy

k

][][ khkx
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Convolution SumConvolution Sum

• For the computation of y[1], we shift           
to the right by one sample period to form      

as shown below on the left

• The product sequence                       is 
shown below on the right

• Hence, 40401101 hxhxy

khkx 1

kh

kh 1

k

k
]1[ kh ]1[][ khkx

76



Copyright © 2010, S. K. Mitra58

Convolution SumConvolution Sum

• To calculate y[2], we form                 as 
shown below on the left

• The product sequence                       is 
plotted below on the right

11000211202 hxhxhxy

kh 2

khkx 2

kk

]2[ kh
]2[][ khkx
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Convolution SumConvolution Sum

• Continuing the process we get
031221303 hxhxhxhxy

041322314 hxhxhxhxy

1423325 hxhxhxy

10124336 hxhxy

3347 hxy

31002

13200

5601
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Convolution SumConvolution Sum

• From the plot of                 for n > 7 and the 
plot of {x[k]} as shown below, it can be 
seen that there is no overlap between these 
two sequences

• As a result y[n] = 0   for n > 7

knh

]8[ kh

kk

x[k]
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Convolution SumConvolution Sum

• The sequence {y[n]} generated by the 
convolution sum is shown below

n

y[n]

80



Copyright © 2010, S. K. Mitra62

Convolution SumConvolution Sum

• Note: The sum of indices of each sample 
product inside the convolution sum is equal 
to the index of the sample being generated 
by the convolution operation

• For example, the computation of y[3] in the 
previous example involves the products 
x[0]h[3], x[1]h[2], x[2]h[1], and x[3]h[0]

• The sum of indices in each of these 
products is equal to 3 
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Convolution SumConvolution Sum

• In the example considered the convolution 
of a sequence {x[n]} of length 5 with a 
sequence {h[n]} of length 4 resulted in a 
sequence {y[n]} of length 8

• In general, if the lengths of the two 
sequences being convolved are M and N, 
then the sequence generated by the 
convolution is of length 1NM
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• In practice, if either the input or the impulse 
response is of finite length, the convolution 
sum can be used to compute the output 
sample as it involves a finite sum of 
products

• If both the input sequence and the impulse 
response sequence are of finite length, the 
output sequence is also of finite length

83
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TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• If both the input sequence and the impulse 
response sequence are of infinite length, 
convolution sum cannot be used to compute 
the output

• For systems characterized by an infinite 
impulse response sequence, an alternate 
time-domain description involving a finite 
sum of products will be considered
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Convolution Using MATLABConvolution Using MATLAB

• The M-file implements the convolution 
sum of two finite-length sequences

• If

then yields
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Simple Interconnection Simple Interconnection 
SchemesSchemes

• Two simple interconnection schemes are:

• Cascade Connection

• Parallel Connection
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Cascade ConnectionCascade Connection

• Impulse response h[n] of the cascade of two 
LTI discrete-time systems with impulse 
responses         and          is given by

nh1nh2nh1 nh2

nhnh 1
nh2nh1 *

nh1 nh2

nh2nhnh 1 *
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Cascade ConnectionCascade Connection

• Note: The ordering of the systems in the 
cascade has no effect on the overall impulse 
response because of the commutative 
property of convolution

• A cascade connection of two stable systems 
is stable

• A cascade connection of two passive 
(lossless) systems is passive (lossless)
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Cascade ConnectionCascade Connection

• An application is in the development of an 
inverse system

• If the cascade connection satisfies the 
relation

then the LTI system         is said to be the 
inverse of           and vice-versa

nh1
nh2

nh2][1 nh ][n*

89

3362
Highlight



38
Copyright © 2010, S. K. Mitra

Cascade ConnectionCascade Connection
• An application of the inverse system 

concept is in the recovery of a signal x[n]
from its distorted version          appearing at 
the output of a transmission channel

• If the impulse response of the channel is 
known, then x[n] can be recovered by 
designing an inverse system of the channel

nx

nh2nh1][nx ][nx
channel inverse system

][nx̂

nh2nh1 ][n*
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Cascade ConnectionCascade Connection

• Example - Consider the discrete-time 
accumulator with an impulse response [n]

• Its inverse system satisfy the condition

• It follows from the above that                for  
n < 0 and

for

02 nh

1]0[2h

0
0

2

n
h 1n

nh2][n ][n*
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Cascade ConnectionCascade Connection

• Thus the impulse response of the inverse 
system of the discrete-time accumulator is 
given by

which is called a backward difference 
system

]1[][][2 nnnh
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Parallel Connection

• Impulse response h[n] of the parallel 
connection of two LTI discrete-time 
systems with impulse responses         and           

is given by

nh2

nh1

nhnh 1
nh2nh1

nh1
nh2

nhnhnh 21
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Simple Interconnection SchemesSimple Interconnection Schemes

• Consider the discrete-time system where

nh2

nh1

nh4

nh3

],1[5.0][][1 nnnh

],1[25.0][5.0][2 nnnh

],[2][3 nnh

][)5.0(2][4 nnh n
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Simple Interconnection SchemesSimple Interconnection Schemes

• Simplifying the block-diagram we obtain

nh2

nh1

][][ 43 nhnh

nh1

])[][(][ 432 nhnhnh *
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Simple Interconnection SchemesSimple Interconnection Schemes

• Overall impulse response h[n] is given by

• Now,

nhnhnhnhnh 42321

nhnhnhnhnh 4321 *

* *

][2])1[][(][][
4
1

2
1

32 nnnnhnh

]1[][
2
1 nn

* *
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Simple Interconnection SchemesSimple Interconnection Schemes

• Therefore

]1[)(][)( 1
2
1

2
1

2
1 nn nn

]1[)(][)(
2
1

2
1 nn nn

][][)(
2
1 nnn

][][]1[][]1[][][
2
1

2
1 nnnnnnnh

][)(2])1[][(][][ 2
1

4
1

2
1

42 nnnnhnh n* *
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