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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Signals represented as sequences of numbers, 
called samples

• Sample value of a typical signal or sequence 
denoted as x[n] with n being an integer in
the range

• x[n] defined only for integer values of n and 
undefined for noninteger values of n

• Discrete-time signal represented by {x[n]}

n
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Discrete-time signal may also be written as 
a sequence of numbers inside braces:

• In the above,

etc. 

• The arrow is placed under the sample at 
time index n = 0

},9.2,7.3,2.0,1.1,2.2,2.0,{]}[{ nx

,2.0]1[x ,2.2]0[x ,1.1]1[x
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Stem plot: Graphical representation of a dis-
crete-time signal with real-valued samples
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• In some applications, a discrete-time 
sequence {x[n]} may be generated by 
periodically sampling a continuous-time 
signal          at uniform intervals of time)(txa
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Here, n-th sample is given by

• The spacing T between two consecutive 
samples is called the sampling interval or 
sampling period

• Reciprocal of sampling interval T, denoted 
as       , is called the sampling frequency:

),()(][ nTxtxnx anTta ,1,0,1,2,n

TF

T
FT

1
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Unit of sampling frequency is cycles per 
second, or hertz (Hz), if T is in seconds

• Whether or not the sequence {x[n]} has 
been obtained by sampling, the quantity 
x[n] is called the n-th sample of the 
sequence

• {x[n]} is a real sequence, if the n-th sample 
x[n] is real for all values of n

• Otherwise, {x[n]} is a complex sequence
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• A complex sequence {x[n]} can be written 
as                                                where 

and            are the real and imaginary 
parts of x[n]

• The complex conjugate sequence of {x[n]} 
is given by

• Often the braces are ignored to denote a 
sequence if there is no ambiguity

][nxre ][nxim

]}[{]}[{]}[{ nxjnxnx imre

]}[{]}[{]}[*{ nxjnxnx imre
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Example - is a real 
sequence

• is a complex sequence

• We can write

where

nnx 250

njeny 30

njnny 3030

njn 3030

nnyre 30

nnyim 30
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Example -

is the complex conjugate sequence of {y[n]}

• That is,

njenjnnw 303030

nynw
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Two types of discrete-time signals:

- Sampled-data signals in which samples 
are continuous-valued

- Digital signals in which samples are 
discrete-valued

• Signals in a practical digital signal 
processing system are digital signals 
obtained by quantizing the sample values 
either by rounding or truncation
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Example -

ttime

A
m

pl
itu

de

Boxedcar signal Digital signal

A
m

pl
itu

de

ttime
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• A discrete-time signal may be a finite- 
length or an infinite-length sequence

• Finite-length (also called finite-duration or 
finite-extent) sequence is defined only for a 
finite time interval:

where                  and               with

• Length or duration of the above finite- 
length sequence is

21 NnN

1N 2N 21 NN

112 NNN
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Example - is a finite- 
length sequence of length

is an infinite-length sequence

432 nnnx
8134

nny 40
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• A length-N sequence is often referred to as 
an N-point sequence

• The length of a finite-length sequence can 
be increased by zero-padding, i.e., by 
appending it with zeros

14
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Example -

is a finite-length sequence of length 12 
obtained by zero-padding 
with 4 zero-valued samples

850
432

n
nnnxe

432 nnnx
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• A right-sided sequence x[n] has zero- 
valued samples for

• If             a right-sided sequence is called a 
causal sequence

,01N

1Nn

n
N1

A right-sided sequence
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• A left-sided sequence x[n] has zero-valued 
samples for

• If             a left-sided sequence is called a 
anti-causal sequence

,02N

2N
n

A left-sided sequence
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• Size of a Signal
Given by the norm of the signal

 
-norm

where p is a positive integer

18

3362
Callout
"Strength"



Copyright © 2010, S. K. Mitra19

DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

• The value of p is typically 1 or 2 or

 
-norm

is the root-mean-squared (rms) value of 
{x[n]}

2
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

 
-norm

is the mean absolute value of {x[n]}

 
-norm

is the peak absolute value of {x[n]}, i.e.

1
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DiscreteDiscrete--Time Signals:Time Signals: 
TimeTime--Domain RepresentationDomain Representation

Example

• Let {y[n]}, , be an approximation of 
{x[n]},

• An estimate of the relative error is given by the 
ratio of the 

 
-norm of the difference signal and 

the 
 

-norm of {x[n]}: 
2
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Operations on SequencesOperations on Sequences

• A single-input, single-output discrete-time 
system operates on a sequence, called the 
input sequence, according some prescribed 
rules and develops another sequence, called 
the output sequence, with more desirable 
properties

x[n] y[n]

Input sequence Output sequence

Discrete-time
system

22
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Operations on SequencesOperations on Sequences

• For example, the input may be a signal 
corrupted with additive noise

• Discrete-time system is designed to 
generate an output by removing the noise 
component from the input

• In most cases, the operation defining a 
particular discrete-time system is composed 
of some elementary operations

23



Copyright © 2010, S. K. Mitra24

Elementary OperationsElementary Operations

• Product (modulation) operation:

– Modulator

• An application is in forming a finite-length 
sequence from an infinite-length sequence 
by multiplying the latter with a finite-length 
sequence called an window sequence

• Process called windowing

x[n] y[n]

w[n]
nwnxny

24
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Elementary OperationsElementary Operations

• Multiplication operation

– Multiplier

• Addition operation
– Adder

A
x[n] y[n] nxAny

nwnxnyx[n] y[n]

w[n]

25



Copyright © 2010, S. K. Mitra27

Elementary OperationsElementary Operations

• Time-shifting operation:

where N is an integer

• If N > 0, it is delaying operation
– Unit delay

• If N < 0, it is an advance operation

– Unit advance

Nnxny

y[n]x[n] z

1z y[n]x[n] 1nxny

1nxny

26
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Elementary OperationsElementary Operations

• Time-reversal (folding) operation:

• Branching operation:  Used to provide 
multiple copies of a sequence

nxny

x[n] x[n]

x[n]

27
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Elementary OperationsElementary Operations

• Example - Consider the two following 
sequences of length 5 defined for               :

• New sequences generated from the above 
two sequences by applying the basic 
operations are as follows:

40 n
09643na

35412nb

28
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Elementary OperationsElementary Operations

• As pointed out by the above example, 
operations on two or more sequences can be 
carried out if all sequences involved are of 
same length and defined for the same range 
of the time index n

0452446nbnanc

341035nbnand

05139654
2
3 nane

29
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Elementary OperationsElementary Operations

• However if the sequences are not of same 
length, in some situations, this problem can 
be circumvented by appending zero-valued 
samples to the sequence(s) of smaller 
lengths to make all sequences have the same 
range of the time index

• Example - Consider the sequence of length 
3 defined for               : 312nf20 n

30
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Elementary OperationsElementary Operations

• We cannot add the length-3 sequence            
to the length-5 sequence {a[n]} defined 
earlier

• We therefore first append             with 2 
zero-valued samples resulting in a length-5 
sequence

• Then

nf

nf

00312nfe

}09351{]}[{]}[{]}[{ nfnang e

31
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Elementary OperationsElementary Operations

Ensemble Averaging
• A very simple application of the addition 

operation in improving the quality of 
measured data corrupted by an additive 
random noise

• In some cases, actual uncorrupted data 
vector s remains essentially the same from 
one measurement to next

32
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Elementary OperationsElementary Operations

• While the additive noise vector is random 
and not reproducible

• Let      denote the noise vector corrupting 
the i-th measurement of the uncorrupted 
data vector s:

Measured data vector

Uncorrupted data vector

Noise vector

33
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Elementary OperationsElementary Operations

• The average data vector, called the 
ensemble average, obtained after K 
measurements is given by

• For large values of K,          is usually a 
reasonable replica of the desired data vector 
s

dsdsxx )(

34
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Elementary OperationsElementary Operations

• Example

35
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Combinations of Basic Combinations of Basic 
OperationsOperations

• Example -

]3[]2[]1[][][ 4321 nxnxnxnxny

36
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Sampling Rate AlterationSampling Rate Alteration

• Employed to generate a new sequence y[n] 
with a sampling rate        higher or lower 
than that of the sampling rate        of a given 
sequence x[n]

• Sampling rate alteration ratio is

• If R > 1, the process called interpolation

• If R < 1, the process called decimation

TF

'
TF

T

T
F
F

R
'
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Sampling Rate AlterationSampling Rate Alteration

• In up-sampling by an integer factor L > 1,

equidistant zero-valued samples are 
inserted by the up-sampler between each 
two consecutive samples of the input 
sequence x[n]:

1L

otherwise,0

,2,,0],/[
][

LLnLnx
nxu

Lnx nxu

38
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Sampling Rate AlterationSampling Rate Alteration

• An example of the up-sampling operation

39
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Sampling Rate AlterationSampling Rate Alteration

• In down-sampling by an integer factor 

M > 1, every M-th samples of the input 
sequence are kept and            in-between 
samples are removed:

1M

][][ nMxny

nx nyM

40
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Sampling Rate AlterationSampling Rate Alteration

• An example of the down-sampling 
operation

41
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Classification of SequencesClassification of Sequences

• There are several types of classification
• One classification is in terms of the number 

of samples defining the sequence
• Another classification is based on its 

symmetry with respect to time index 
 

= 0
• Other classifications in terms of its other 

properties, such as periodicity, summability, 
energy and power

42
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Conjugate-symmetric sequence:

If [ ] is real, then it is an even sequence

][*][

An even sequence

43
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Conjugate-antisymmetric sequence:

If [ ] is real, then it is an odd sequence

][*][

An odd sequence

44
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• It follows from the definition that for a 
conjugate-symmetric sequence { [ ]}, [0] 
must be a real number

• Likewise, it follows from the definition that 
for a conjugate anti-symmetric sequence 
{ [ ]}, [0] must be an imaginary number

• From the above, it also follows that for an 
odd sequence { [ ]}, [0] = 0

45
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Any complex sequence can be expressed as 
a sum of its conjugate-symmetric part and 
its conjugate-antisymmetric part:

where
][][][

][*][][
2
1

][*][][
2
1
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Any real sequence can be expressed as a 
sum of its even part and its odd part:

where
][][][

][][][
2
1

][][][
2
1
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Classification of Sequences Classification of Sequences 
Based on PeriodicityBased on Periodicity

• A sequence          satisfying
is called a periodic sequence with a period 
where 

 
is a positive integer and 

 
is any 

integer
• Smallest value of 

 
satisfying

is called the fundamental period

][~

48



Copyright © 2010, S. K. Mitra25

Classification of Sequences Classification of Sequences 
Based on PeriodicityBased on Periodicity

• Example -

• A sequence not satisfying the periodicity 
condition is called an aperiodic sequence

49
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Classification of Sequences Classification of Sequences 
Based on PeriodicityBased on Periodicity

• If            and           are two periodic 
sequences with fundamental periods        
and       , respectively, then the sequence 

is a periodic sequence with a fundamental 
period 

 
given by

][~][~

][~][~][~

),(

50
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Classification of Sequences:Classification of Sequences: 
Energy and Power SignalsEnergy and Power Signals

• Total energy of a sequence [ ] is defined by

• An infinite length sequence with finite sample 
values may or may not have finite energy

• A finite length sequence with finite sample 
values has finite energy

2
x ][

51
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Classification of Sequences:Classification of Sequences: 
Energy and Power SignalsEnergy and Power Signals

• The average power of an aperiodic 
sequence is defined by

• Define the energy of a sequence [ ] over a 
finite interval                     as

2

12
1

x ][lim

2
, ][
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Classification of Sequences:Classification of Sequences: 
Energy and Power SignalsEnergy and Power Signals

• Then

• The average power of a periodic sequence     

with a period 
 

is given by

• The average power of an infinite-length 
sequence may be finite or infinite

.12
1lim

1

0

21
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Classification of Sequences:Classification of Sequences: 
Energy and Power SignalsEnergy and Power Signals

• Example - Consider the causal sequence 
defined by

• Note: [ ] has infinite energy

• Its average power is given by

5.4
12
)1(9

lim19
12

1
lim

0

00
013
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Classification of Sequences:Classification of Sequences: 
Energy and Power SignalsEnergy and Power Signals

• An infinite energy signal with finite average 
power is called a power signal

Example - A periodic sequence which has a 
finite average power but infinite energy

• A finite energy signal with zero average 
power is called an energy signal

Example - A finite-length sequence which 
has finite energy but zero average power

55
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Other Types of ClassificationsOther Types of Classifications

• A sequence [ ] is said to be bounded if

• Example - The sequence                           is a 
bounded sequence as

][

3.0cos][

13.0cos][
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Other Types of ClassificationsOther Types of Classifications

• A sequence [ ] is said to be absolutely 
summable if

• Example - The sequence                  

is an absolutely summable sequence as

][

00
030

428571
301

1
30

0
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Other Types of ClassificationsOther Types of Classifications

• A sequence [ ] is said to be square- 
summable if

• Example - The sequence

is square-summable but not absolutely 
summable

2][

4.0sin][

58
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Basic SequencesBasic Sequences

• Unit sample sequence -

• Unit step sequence -

0,0

0,1
][

1

–4 –3 –2 –1 0 1 2 3 4 5 6

0,0

0,1
][

–4 –3 –2 –1 0 1 2 3 4 5 6

1

59
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Basic SequencesBasic Sequences
• Real sinusoidal sequence -

where 
 

is the amplitude,      is the angular 
frequency, and    is the phase of [ ]

Example -

)cos(][

60
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Basic SequencesBasic Sequences
• Exponential sequence -

where 
 

and     are real or complex numbers

• If we write  

then we can express

where

,][

,)( ,

],[][][ )(

),cos(][

)sin(][
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Basic SequencesBasic Sequences
• and of a complex exponential 

sequence are real sinusoidal sequences with 
constant             , growing              , and 
decaying               amplitudes for 

 
> 0

][ ][

0 0
0

[ ] exp( 
1
1
2 6 

)
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Basic SequencesBasic Sequences
• Real exponential sequence -

where 
 

and 
 

are real numbers

,][
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Basic SequencesBasic Sequences
• Sinusoidal sequence                         and 

complex exponential sequence              

are periodic sequences of period 
 

if 

where 
 

and  
 

are positive integers

• Smallest value of 
 

satisfying

is the fundamental period of the sequence

• To verify the above fact, consider

)cos(
)exp(

2

2

)cos(][1

))(cos(][2

64
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Basic SequencesBasic Sequences

• Now

which will be equal to                                 
only if

and

• These two conditions are met if and only if

or                  

))(cos(][2

sin)sin(cos)cos(

][)cos( 1

0sin 1cos

2 2

65
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Basic SequencesBasic Sequences

• If              is a noninteger rational number, then 
the period will be a multiple of

• Otherwise, the sequence is aperiodic

• Example - is an aperiodic 
sequence

/2
/2

)3sin(][

66
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Basic SequencesBasic Sequences

• Here

• Hence period for 
 

= 0

0

1
0

2
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Basic SequencesBasic Sequences

• Here

• Hence for 
 

= 1                     

1.0

20
1.0

2
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Basic SequencesBasic Sequences

• Property 1 - Consider                             and 

with                    and  

where 
 

is any positive 
integer 

• If                          then [ ] = [ ]

• Thus, [ ] and [ ] are indistinguishable

)exp(][ 1

)exp(][ 2 10

)1(22 2

,212

69
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Basic SequencesBasic Sequences

• Property 2 - The frequency of oscillation of

increases as      increases from 0 
to , and then decreases as      increases from       

to

• Thus, frequencies in the neighborhood of   

are called low frequencies, whereas, 
frequencies in the neighborhood of            are 
called high frequencies

)cos(

2

0

70
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Basic SequencesBasic Sequences

• Because of Property 1, a frequency       in 
the neighborhood of 

 
= 2

  
is 

indistinguishable from a frequency               
in the neighborhood of 

 
= 0

and a frequency      in the neighborhood of      
is indistinguishable from a 

frequency                         in the 
neighborhood of 

 
= 

2

)12(
)12(

71
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Basic SequencesBasic Sequences

• Frequencies in the neighborhood of 
 

= 2
 are usually called low frequencies

• Frequencies in the neighborhood of              

 
= (2 +1) are usually called high 

frequencies

• is a low- 
frequency signal

• is a high- 
frequency signal

)9.1cos()1.0cos(][1

)2.1cos()8.0cos(][2

72
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Basic SequencesBasic Sequences
• An arbitrary sequence can be represented in 

the time-domain as a weighted sum of some 
basic sequence and its delayed (advanced) 
versions

]2[]1[5.1]2[5.0][
]6[75.0]4[
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The Sampling ProcessThe Sampling Process
• Often, a discrete-time sequence [ ] is 

developed by uniformly sampling a 
continuous-time signal           as indicated 
below

• The relation between the two signals is

)(

),()(][ ,2,1,0,1,2,

74
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The Sampling ProcessThe Sampling Process
• Time variable 

 
of         is related to the time 

variable 
 

of [ ] only at discrete-time 
instants      given by

with                 denoting the sampling 
frequency and

denoting the sampling angular 
frequency

)(

2

/1

2

75
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The Sampling ProcessThe Sampling Process
• Consider the continuous-time signal

• The corresponding discrete-time signal is

where

is the normalized digital angular frequency 
of [ ]

2

)
2

cos()cos(][

)cos(

/2
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The Sampling ProcessThe Sampling Process

• If the unit of sampling period 
 

is in 
seconds

• The unit of normalized digital angular 
frequency        is radians/sample

• The unit of normalized analog angular 
frequency        is radians/second

• The unit of analog frequency       is hertz 
(Hz)

77

3362
Text Box



Copyright © 2010, S. K. Mitra57

The Sampling ProcessThe Sampling Process
• The three continuous-time signals

of frequencies 3 Hz, 7 Hz, and 13 Hz, are 
sampled at a sampling rate of 10 Hz, i.e. 
with 

 
= 0.1 sec. generating the three 

sequences

)6cos()(1

)14cos()(2

)26cos()(3

)6.2cos(][3

)6.0cos(][1 )4.1cos(][2
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The Sampling ProcessThe Sampling Process
• Plots of these sequences (shown with circles) 

and their parent time functions are shown 
below:

• Note that each sequence has exactly the same 
sample value for any given 

79
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The Sampling ProcessThe Sampling Process

• This fact can also be verified by observing that

• As a result, all three sequences are identical 
and it is difficult to associate a unique 
continuous-time function with each of these 
sequences

)6.0cos()6.02(cos)4.1cos(][2

)6.0cos()6.02(cos)6.2cos(][3

80
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The Sampling ProcessThe Sampling Process

• The above phenomenon of a continuous- 
time signal of higher frequency acquiring 
the identity of a sinusoidal sequence of 
lower frequency after sampling is called 
aliasing

81
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• Since there are an infinite number of 

continuous-time signals that can lead to the 
same sequence when sampled periodically, 
additional conditions need to imposed so 
that the sequence                              can 
uniquely represent the parent continuous- 
time signal

• In this case,           can be fully recovered 
from { [ ]}
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• Example - Determine the discrete-time 
signal [ ] obtained by uniformly sampling 
at a sampling rate of 200 Hz the continuous- 
time signal

• Note:          is composed of 5 sinusoidal 
signals of frequencies 30 Hz, 150 Hz, 170 
Hz, 250 Hz and 330 Hz

)340cos(2)300sin(3)60cos(6)(
)660sin(10)500cos(4

)(
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• The sampling period is

• The generated discrete-time signal [ ] is 
thus given by

sec005.0
200
1

)7.1cos(2)5.1sin(3)3.0cos(6][

)()( )3.02(cos2)5.02(sin3)3.0cos(6

)3.3sin(10)5.2cos(4

)()( )7.04(sin10)5.02(cos4
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• Note: [ ] is composed of 3 discrete-time 
sinusoidal signals of normalized angular 
frequencies: 0.3 , 0.5 , and 0.

)5.0cos(4)3.0cos(2)5.0sin(3)3.0cos(6

)7.0sin(10

)7.0sin(10)6435.05.0cos(5)3.0cos(8
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• Note: An identical discrete-time signal is 
also generated by uniformly sampling at a 
200-Hz sampling rate the following 
continuous-time signals:

)140sin(10)6435.0100cos(5)60cos(8)(

)260sin(10)100cos(4)60cos(2)(

)700sin(3)460cos(6
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• Recall

• Thus if                  , then the corresponding 
normalized digital angular frequency       of 
the discrete-time signal obtained by 
sampling the parent continuous-time 
sinusoidal signal will be in the range

• No aliasing

2

2
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• On the other hand, if                  , the 

normalized digital angular frequency will 
foldover into a lower digital frequency           

in the range                        
because of aliasing

• Hence, to prevent aliasing, the sampling 
frequency        should be greater than 2 
times the frequency       of the sinusoidal 
signal being sampled

2

2/2

88



Copyright © 2010, S. K. Mitra68

The Sampling ProcessThe Sampling Process

• Generalization: Consider an arbitrary 
continuous-time signal           composed of a 
weighted sum of a number of sinusoidal 
signals

• can be represented uniquely by its 
sampled version { [ ]} if the sampling 
frequency        is chosen to be greater than 2 
times the highest frequency contained in

)(

)(

)(
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• The condition to be satisfied by the 
sampling frequency to prevent aliasing is 
called the sampling theorem

• A formal proof of this theorem will be 
presented later
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