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Abstract—We propose a novel image denoising strategy based
on an enhanced sparse representation in transform domain. The
enhancement of the sparsity is achieved by grouping similar 2-D
image fragments (e.g., blocks) into 3-D data arrays which we call
“groups.” Collaborative filtering is a special procedure developed
to deal with these 3-D groups. We realize it using the three suc-
cessive steps: 3-D transformation of a group, shrinkage of the
transform spectrum, and inverse 3-D transformation. The result
is a 3-D estimate that consists of the jointly filtered grouped image
blocks. By attenuating the noise, the collaborative filtering reveals
even the finest details shared by grouped blocks and, at the same
time, it preserves the essential unique features of each individual
block. The filtered blocks are then returned to their original
positions. Because these blocks are overlapping, for each pixel,
we obtain many different estimates which need to be combined.
Aggregation is a particular averaging procedure which is exploited
to take advantage of this redundancy. A significant improvement
is obtained by a specially developed collaborative Wiener filtering.
An algorithm based on this novel denoising strategy and its effi-
cient implementation are presented in full detail; an extension to
color-image denoising is also developed. The experimental results
demonstrate that this computationally scalable algorithm achieves
state-of-the-art denoising performance in terms of both peak
signal-to-noise ratio and subjective visual quality.

Index Terms—Adaptive grouping, block matching, image de-
noising, sparsity, 3-D transform shrinkage.

I. INTRODUCTION

PLENTY of denoising methods exist, originating from var-
ious disciplines such as probability theory, statistics, partial

differential equations, linear and nonlinear filtering, and spectral
and multiresolution analysis. All these methods rely on some ex-
plicit or implicit assumptions about the true (noise-free) signal
in order to separate it properly from the random noise.

In particular, the transform-domain denoising methods typi-
cally assume that the true signal can be well approximated by
a linear combination of few basis elements. That is, the signal
is sparsely represented in the transform domain. Hence, by
preserving the few high-magnitude transform coefficients that
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convey mostly the true-signal energy and discarding the rest
which are mainly due to noise, the true signal can be effectively
estimated. The sparsity of the representation depends on both
the transform and the true-signal’s properties.

The multiresolution transforms can achieve good sparsity
for spatially localized details, such as edges and singularities.
Because such details are typically abundant in natural images
and convey a significant portion of the information embedded
therein, these transforms have found a significant application
for image denoising. Recently, a number of advanced denoising
methods based on multiresolution transforms have been de-
veloped, relying on elaborate statistical dependencies between
coefficients of typically overcomplete (e.g., translation-in-
variant and multiply-oriented) transforms. Examples of such
image denoising methods can be seen in [1]–[4].

Not limited to the wavelet techniques, the overcomplete rep-
resentations have traditionally played an important role in im-
proving the restoration abilities of even the most basic trans-
form-based methods. This is manifested by the sliding-window
transform-domain image denoising methods [5], [6] where the
basic idea is to apply shrinkage in local (windowed) transform
domain. There, the overlap between successive windows ac-
counts for the overcompleteness, while the transform itself is
typically orthogonal, e.g., the 2-D DCT.

However, the overcompleteness by itself is not enough to
compensate for the ineffective shrinkage if the adopted trans-
form cannot attain a sparse representation of certain image de-
tails. For example, the 2-D DCT is not effective in representing
sharp transitions and singularities, whereas wavelets would typ-
ically perform poorly for textures and smooth transitions. The
great variety in natural images makes impossible for any fixed
2-D transform to achieve good sparsity for all cases. Thus, the
commonly used orthogonal transforms can achieve sparse rep-
resentations only for particular image patterns.

The adaptive principal components of local image patches
was proposed by Muresan and Parks [7] as a tool to overcome
the mentioned drawbacks of standard orthogonal transforms.
This approach produces good results for highly-structured
image patterns. However, the computation of the correct PCA
basis is essentially deteriorated by the presence of noise.
With similar intentions, the K-SVD algorithm [8] by Elad
and Aharon utilizes highly overcomplete dictionaries obtained
via a preliminary training procedure. A shortcoming of these
techniques is that both the PCA and learned dictionaries impose
a very high computational burden.

Another approach [9] is to exploit a shape-adaptive trans-
form on neighborhoods whose shapes are adaptive to salient
image details and, thus, contain mostly homogeneous signal.
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The shape-adaptive transform can achieve a very sparse repre-
sentation of the true signal in these adaptive neighborhoods.

Recently, an elaborate adaptive spatial estimation strategy,
the nonlocal means, was introduced [10]. This approach is dif-
ferent from the transform domain ones. Its basic idea is to build
a pointwise estimate of the image where each pixel is obtained
as a weighted average of pixels centered at regions that are sim-
ilar to the region centered at the estimated pixel. The estimates
are nonlocal as in principle the averages can be calculated over
all pixels of the image. A significant extension of this approach
is the exemplar-based estimator [11], which exploits pairwise
hypothesis testing to define adaptive nonlocal estimation neigh-
borhoods and achieves results competitive to the ones produced
by the best transform-based techniques.

In this paper, we propose a novel image denoising strategy
based on an enhanced sparse representation in transform-do-
main. The enhancement of the sparsity is achieved by grouping
similar 2-D fragments of the image into 3-D data arrays which
we call “groups.” Collaborative filtering is a special procedure
developed to deal with these 3-D groups. It includes three suc-
cessive steps: 3-D transformation of a group, shrinkage of trans-
form spectrum, and inverse 3-D transformation. Thus, we ob-
tain the 3-D estimate of the group which consists of an array of
jointly filtered 2-D fragments. Due to the similarity between the
grouped fragments, the transform can achieve a highly sparse
representation of the true signal so that the noise can be well
separated by shrinkage. In this way, the collaborative filtering
reveals even the finest details shared by grouped fragments and
at the same time it preserves the essential unique features of each
individual fragment.

An image denoising algorithm based on this novel strategy is
developed and described in detail. It generalizes and improves
our preliminary algorithm introduced in [12]. A very efficient
algorithm implementation offering effective complexity/perfor-
mance tradeoff is developed. Experimental results demonstrate
that it achieves outstanding denoising performance in terms of
both peak signal-to-noise ratio (PSNR) and subjective visual
quality, superior to the current state-of-the-art. Extension to
color-image denoising based on [13] is also presented.

The paper is organized as follows. We introduce the grouping
and collaborative filtering concepts in Section II. The developed
image denoising algorithm is described in Section III. An effi-
cient and scalable realization of this algorithm can be found in
Section IV and its extension to color-image denoising is given
in Section V. Experimental results are presented in Section VI.
Section VII gives an overall discussion of the developed ap-
proach and Section VIII contains relevant conclusions.

II. GROUPING AND COLLABORATIVE FILTERING

We denominate grouping the concept of collecting similar
-dimensional fragments of a given signal into a -dimen-

sional data structure that we term “group.” In the case of images
for example, the signal fragments can be arbitrary 2-D neigh-
borhoods (e.g., image patches or blocks). There, a group is a
3-D array formed by stacking together similar image neighbor-
hoods. If the neighborhoods have the same shape and size, the
formed 3-D array is a generalized cylinder. The importance of
grouping is to enable the use of a higher dimensional filtering of

each group, which exploits the potential similarity (correlation,
affinity, etc.) between grouped fragments in order to estimate
the true signal in each of them. This approach we denominate
collaborative filtering.

A. Grouping

Grouping can be realized by various techniques; e.g.,
K-means clustering [14], self-organizing maps [15], fuzzy
clustering [16], vector quantization [17], and others. There
exist a vast literature on the topic; we refer the reader to [18]
for a detailed and systematic overview of these approaches.

Similarity between signal fragments is typically computed as
the inverse of some distance measure. Hence, a smaller distance
implies higher similarity. Various distance measures can be em-
ployed, such as the -norm of the difference between two signal
fragments. Other examples are the weighted Euclidean distance

used in the nonlocal means estimator [10], and also
the normalized distance used in the exemplar-based estimator
[11]. When processing complex or uncertain (e.g., noisy) data, it
might be necessary to first extract some features from the signal
and then to measure the distance for these features only [18].

B. Grouping by Matching

Grouping techniques such as vector quantization or K-means
clustering are essentially based on the idea of partitioning. It
means that they build groups or clusters (classes) which are dis-
joint, in such a way that each fragment belongs to one and only
one group. Constructing disjoint groups whose elements enjoy
high mutual similarity typically requires recursive procedures
and can be computationally demanding [18]. Furthermore, the
partitioning causes unequal treatment of the different fragments
because the ones that are close to the centroid of the group are
better represented than those far from it. This happens always,
even in the special case where all fragments of the signal are
equidistantly distributed.

A much simpler and effective grouping of mutually similar
signal fragments can be realized by matching where, in con-
trast to the above partitioning methods, the formed groups are
not necessarily disjoint. Matching is a method for finding signal
fragments similar to a given reference one. That is achieved
by pairwise testing the similarity between the reference frag-
ment and candidate fragments located at different spatial loca-
tions. The fragments whose distance (i.e., dissimilarity) from
the reference one is smaller than a given threshold are consid-
ered mutually similar and are subsequently grouped. The sim-
ilarity plays the role of the membership function for the con-
sidered group and the reference fragment can be considered as
some sort of “centroid” for the group. Any signal fragment can
be used as a reference one, and, thus, a group can be constructed
for it.

We remark that for most distance measures, establishing a
bound on the distance between the reference fragment and all
of the matched ones means that the distance between any two
fragments in that group is also bounded. Roughly speaking, this
bound is the diameter of the group. While for an arbitrary dis-
tance measure such a statement may not hold precisely, for the
case of metrics (e.g., -norms) it is just a direct consequence
of the triangle inequality.
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Fig. 1. Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation 15 and zero mean. Each fragment
shows a reference block marked with “R” and a few of the blocks matched to it.

Block-matching (BM) is a particular matching approach that
has been extensively used for motion estimation in video com-
pression (MPEG 1, 2, and 4, and H.26x). As a particular way of
grouping, it is used to find similar blocks, which are then stacked
together in a 3-D array (i.e., a group). An illustrative example of
grouping by block-matching for images is given in Fig. 1, where
we show a few reference blocks and the ones matched as similar
to them.

C. Collaborative Filtering

Given a group of fragments, the collaborative filtering of
the group produces estimates, one for each of the grouped
fragments. In general, these estimates can be different. The term
“collaborative” is taken literally, in the sense that each grouped
fragment collaborates for the filtering of all others, and vice
versa.

Let us consider an illustrative example of collaborative fil-
tering for the estimation of the image in Fig. 2 from an observa-
tion (not shown) corrupted by additive zero-mean independent
noise. In particular, let us focus on the already grouped blocks
shown in the same figure. These blocks exhibit perfect mutual
similarity, which makes the elementwise averaging (i.e., aver-
aging between pixels at the same relative positions) a suitable
estimator. Hence, for each group, this collaborative averaging
produces estimates of all grouped blocks. Because the corre-
sponding noise-free blocks are assumed to be identical, the esti-
mates are unbiased. Therefore, the final estimation error is due
only to the residual variance which is inversely proportional to
the number of blocks in the group. Regardless of how complex
the signal fragments are, we can obtain very good estimates pro-
vided that the groups contain a large number of fragments.

However, perfectly identical blocks are unlikely in natural
images. If nonidentical fragments are allowed within the same
group, the estimates obtained by elementwise averaging be-
come biased. The bias error can account for the largest share
of the overall final error in the estimates, unless one uses an
estimator that allows for producing a different estimate of each

Fig. 2. Simple example of grouping in an artificial image, where for each ref-
erence block (with thick borders) there exist perfectly similar ones.

grouped fragment. Therefore, a more effective collaborative
filtering strategy than averaging should be employed.

D. Collaborative Filtering by Shrinkage in Transform Domain

An effective collaborative filtering can be realized as
shrinkage in transform domain. Assuming -dimensional
groups of similar signal fragments are already formed, the
collaborative shrinkage comprises of the following steps.

• Apply a -dimensional linear transform to the group.
• Shrink (e.g., by soft- and hard-thresholding or Wiener fil-

tering) the transform coefficients to attenuate the noise.
• Invert the linear transform to produce estimates of all

grouped fragments.
This collaborative transform-domain shrinkage can be partic-
ularly effective when applied to groups of natural image frag-
ments, e.g., the ones in Fig. 1. These groups are characterized
by both:

• intrafragment correlation which appears between the
pixels of each grouped fragment—a peculiarity of natural
images;

• interfragment correlation which appears between the cor-
responding pixels of different fragments—a result of the
similarity between grouped fragments.

The 3-D transform can take advantage of both kinds of correla-
tion and, thus, produce a sparse representation of the true signal
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in the group. This sparsity makes the shrinkage very effective in
attenuating the noise while preserving the features of the signal.

Let us give a simple illustration of the benefit of this col-
laborative shrinkage by considering the grouped image blocks
shown in Fig. 1. Let us first consider the case when no collab-
orative filtering is performed but instead a 2-D transform is ap-
plied separately to each individual block in a given group of

fragments. Since these grouped blocks are very similar, for
any of them we should get approximately the same number, say

, of significant transform coefficients. It means that the whole
group of fragments is represented by coefficients. In con-
trast, in the case of collaborative filtering, in addition to the 2-D
transform, we apply a 1-D transform across the grouped blocks
(equivalent to applying a separable 3-D transform to the whole
group). If this 1-D transform has a DC-basis element, then be-
cause of the high similarity between the blocks, there are ap-
proximately1 only significant coefficients that represent the
whole group instead of . Hence, the grouping enhances the
sparsity, which increases with the number of grouped blocks.

As Fig. 1 demonstrates, a strong similarity between small
image blocks at different spatial locations is indeed very
common in natural images. It is a characteristic of blocks that
belong to uniform areas, edges, textures, smooth intensity gra-
dients, etc. Therefore, the existence of mutually similar blocks
can be taken as a very realistic assumption when modeling
natural images, which strongly motivates the use of grouping
and collaborative filtering for an image denoising algorithm.

III. ALGORITHM

In the proposed algorithm, the grouping is realized by
block-matching and the collaborative filtering is accomplished
by shrinkage in a 3-D transform domain. The used image frag-
ments are square blocks of fixed size. The general procedure
carried out in the algorithm is as follows. The input noisy image
is processed by successively extracting reference blocks from
it and for each such block:

• find blocks that are similar to the reference one (block-
matching) and stack them together to form a 3-D array
(group);

• perform collaborative filtering of the group and return the
obtained 2-D estimates of all grouped blocks to their orig-
inal locations.

After processing all reference blocks, the obtained block esti-
mates can overlap, and, thus, there are multiple estimates for
each pixel. We aggregate these estimates to form an estimate of
the whole image.

This general procedure is implemented in two different forms
to compose a two-step algorithm. This algorithm is illustrated in
Fig. 3 and proceeds as follows.

Step 1) Basic estimate.
a) Block-wise estimates. For each block in the

noisy image, do the following.
i) Grouping. Find blocks that are similar

to the currently processed one and then

1This is just a qualitative statement because the actual number of significant
coefficients depends on the normalization of the transforms and on the thresh-
olds used for the 2-D and 3-D cases.

stack them together in a 3-D array
(group).

ii) Collaborative hard-thresholding. Apply
a 3-D transform to the formed group,
attenuate the noise by hard-thresholding
of the transform coefficients, invert the
3-D transform to produce estimates
of all grouped blocks, and return the
estimates of the blocks to their original
positions.

b) Aggregation. Compute the basic estimate of
the true-image by weighted averaging all of
the obtained block-wise estimates that are
overlapping.

Step 2) Final estimate: Using the basic estimate, perform
improved grouping and collaborative Wiener
filtering.

a) Block-wise estimates. For each block, do the
following.

i) Grouping. Use BM within the basic
estimate to find the locations of the
blocks similar to the currently processed
one. Using these locations, form two
groups (3-D arrays), one from the noisy
image and one from the basic estimate.

ii) Collaborative Wiener filtering. Apply
a 3-D transform on both groups.
Perform Wiener filtering on the noisy
one using the energy spectrum of the
basic estimate as the true (pilot) energy
spectrum. Produce estimates of all
grouped blocks by applying the inverse
3-D transform on the filtered coefficients
and return the estimates of the blocks to
their original positions.

b) Aggregation. Compute a final estimate of the
true-image by aggregating all of the obtained
local estimates using a weighted average.

There are two significant motivations for the second step in the
above algorithm:

• using the basic estimate instead of the noisy image allows
to improve the grouping by block-matching;

• using the basic estimate as the pilot signal for the empirical
Wiener filtering is much more effective and accurate than
the simple hard-thresholding of the 3-D spectrum of the
noisy data.

Observation Model and Notation: We consider a noisy image
of the form

where is a 2-D spatial coordinate that belongs to the image
domain , is the true image, and is i.i.d. zero-mean
Gaussian noise with variance , . With we
denote a block of fixed size extracted from , where is
the coordinate of the top-left corner of the block. Alternatively,
we say that is located at in . A group of collected 2-D
blocks is denoted by a bold-face capital letter with a subscript
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Fig. 3. Flowchart of the proposed image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block (marked with
“R”).

that is the set of its grouped blocks’ coordinates, e.g., is a
3-D array composed of blocks located at . In
order to distinguish between parameters used in the first and in
the second step, we respectively use the superscripts “ht” (hard-
thresholding) and “wie” (Wiener filtering). For example, is
the block size used in Step 1 and is the block size used in
Step 2. Analogously, we denote the basic estimate with
and the final estimate with .

The following subsections present in detail the steps of the
proposed denoising method.

A. Steps 1a and 2a: Block-Wise Estimates

In this step, we process reference image blocks in a
sliding-window manner. Here, “process” stands for per-
forming grouping and estimating the true signal of all grouped
blocks by:

• collaborative hard-thresholding in Step 1aii;
• collaborative Wiener filtering in Step 2aii.

The resultant estimates are denominated “block-wise
estimates.”

Because Steps 1a and 2a bear the same structure, we re-
spectively present them in the following two sections. Therein,
we fix the currently processed image block as (located at
the current coordinate ) and denominate it “reference
block.”

1) Steps 1ai and 1aii: Grouping and Collaborative Hard-
Thresholding: We realize grouping by block-matching within
the noisy image , as discussed in Section II-B. That is, only
blocks whose distance (dissimilarity) with respect to the refer-
ence one is smaller than a fixed threshold are considered similar
and grouped. In particular, we use the -distance as a measure
of dissimilarity.

Ideally, if the true-image would be available, the block-
distance could be calculated as

(1)

where denotes the -norm and the blocks and are
respectively located at and in . However, only the
noisy image is available and the distance can only be calcu-
lated from the noisy blocks and as

(2)

If the blocks and do not overlap, this distance is a non-
central chi-squared random variable with mean

and variance

(3)
The variance grows asymptotically with . Thus, for rela-
tively large or small , the probability densities of the dif-
ferent are likely to overlap heavily and this re-
sults in erroneous grouping.2 That is, blocks with greater ideal
distances than the threshold are matched as similar, whereas
blocks with smaller such distances are left out.

To avoid the above problem, we propose to measure the
block-distance using a coarse prefiltering. This prefiltering is
realized by applying a normalized 2-D linear transform on both
blocks and then hard-thresholding the obtained coefficients,
which results in

(4)

where is the hard-thresholding operator with threshold
and denotes the normalized 2-D linear transform.3

Using the -distance (4), the result of BM is a set that contains
the coordinates of the blocks that are similar to

(5)

where the fixed is the maximum -distance for which two
blocks are considered similar. The parameter is selected
from deterministic speculations about the acceptable value of
the ideal difference, mainly ignoring the noisy components of
the signal. Obviously , which implies that

, where denotes the cardinality of . After
obtaining , a group is formed by stacking the matched noisy
blocks to form a 3-D array of size ,

2The effect of this is the sharp drop of the output-PSNR observed for two of
the graphs in Fig. 9 at about � = 40.

3For simplicity, we do not invert the transform T and compute the distance
directly from the spectral coefficients. When T is orthonormal, the distance
coincides with the ` -distance calculated between the denoised block-estimates
in space domain.
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which we denote . The matched blocks can in general
overlap. We do not restrict the ordering, which is discussed in
Section IV-B.

The collaborative filtering of is realized by
hard-thresholding in 3-D transform domain. The adopted
normalized 3-D linear transform, denoted , is expected
to take advantage of the two types of correlation, discussed
in Section II-D, and attain good sparsity for the true signal
group . This allows for effective noise attenuation by
hard-thresholding, followed by inverse transform that yields a
3-D array of block-wise estimates

(6)

where is a hard-threshold operator with threshold . The
array comprises of stacked block-wise estimates

, . In , the subscript denotes the loca-
tion of this block-estimate and the superscript indicates the
reference block.

2) Steps 2ai and 2aii: Grouping and Collaborative Wiener
Filtering: Given the basic estimate of the true image ob-
tained in Step 1b, the denoising can be improved by performing
grouping within this basic estimate and collaborative empirical
Wiener filtering.

Because the noise in is assumed to be significantly at-
tenuated, we replace the thresholding-based -distance (4) with
the normalized squared -distance computed within the basic
estimate. This is a close approximation of the ideal distance (1).
Hence, the coordinates of the matched blocks are the elements
of the set

(7)

We use the set in order to form two groups, one from the
basic estimate and one from the noisy observation:

• by stacking together the basic estimate blocks

;

• by stacking together the noisy blocks .
We define the empirical Wiener shrinkage coefficients from

the energy of the 3-D transform coefficients of the basic estimate
group as

(8)

Then the collaborative Wiener filtering of is realized as
the element-by-element multiplication of the 3-D transform
coefficients of the noisy data with the Wiener
shrinkage coefficients . Subsequently, the inverse trans-

form produces the group of estimates

(9)

This group comprises of the block-wise estimates lo-
cated at the matched locations .

B. Steps 1b and 2b: Global Estimate by Aggregation

Each collection of block-wise estimates and ,

, obtained respectively in Steps 1a and 2a, is an over-
complete representation of the true-image because in general
the block-wise estimates can overlap. In addition, more than
one block-estimate can be located at exactly the same coordi-
nate, e.g., and are both located at but obtained
while processing the reference blocks at and , respectively.
One can expect substantially overcomplete representation of the
signal in regions where there are plenty of overlapping block-
wise estimates, i.e., where a block is matched (similar) to many
others. Hence, the redundancy of the method depends on the
grouping and, therefore, also on the particular image.

To compute the basic and the final estimates of the true-image
in Steps 1b and 2b, respectively, we aggregate the corresponding
block-wise estimates and , . This ag-

gregation is performed by a weighted averaging at those pixel
positions where there are overlapping block-wise estimates. The
selection of weights is discussed in the following section.

1) Aggregation Weights: In general, the block-wise estimates
are statistically correlated, biased, and have different variance
for each pixel. However, it is quite demanding to take into con-
sideration all these effects. Similarly to [6] and [9], we found
that a satisfactory choice for aggregation weights would be ones
that are inversely proportional to the total sample variance of
the corresponding block-wise estimates. That is, noisier block-
wise estimates should be awarded smaller weights. If the ad-
ditive noise in the groups and is independent, the
total sample variance in the corresponding groups of estimates
(6) and (9) is respectively equal to and ,
where is the number of retained (nonzero) coefficients
after hard-thresholding and are the Wiener filter coef-
ficients (8). Based on this, in Step 1b for each , we
assign the weight

if

otherwise
(10)

for the group of estimates . Similarly, in Step 2b for each

, we assign the weight

(11)

for the group of estimates .

We remark that independence of the noise in a group is only
achieved when the noisy blocks that build this group do not
overlap each other. Therefore, on the one hand, the cost of en-
suring independence would constitute a severe restriction for
the BM, i.e., allowing matching only among nonoverlapping
blocks. On the other hand, if the possible overlaps are consid-
ered, the computation of the individual variance of each trans-
form coefficient in or becomes a pro-
hibitive complication that requires considering the covariance
terms in the corresponding transform coefficients. In our algo-
rithm we use overlapping blocks but do not consider the co-
variances. Hence, the proposed weights (10) and (11) are only
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loosely inversely proportional to the corresponding total sample
variances.

2) Aggregation by Weighted Average: The global basic esti-
mate is computed by a weighted average of the block-wise
estimates obtained in Step 1a, using the weights

defined in (10), i.e.,

(12)

where is the characteristic function of the
square support of a block located at , and the block-wise
estimates are zero-padded outside of their support.

The global final estimate is computed by (12), where
, , , and are replaced respectively by ,

, , and .

IV. FAST AND EFFICIENT REALIZATION

A straightforward implementation of the method presented
in the previous section is highly computationally demanding. In
order to realize a practical and efficient algorithm, we impose
constraints and exploit certain expedients which we present in
the following list.

Reduce the number of processed blocks.
• Rather than sliding by one pixel to every next reference

block, use a step of pixels in both hori-
zontal and vertical directions. Hence, the number of ref-
erence blocks is decreased from approximately to

.
Reduce the complexity of grouping.
• Restrict the maximum size of a group by setting an upper

bound on the number of grouped blocks; i.e.,
ensuring .

• Search for candidate matching blocks in a local neigh-
borhood of restricted size centered about the
currently processed coordinate .

• To further speed-up the BM, we use predictive search,
i.e., the search neighborhoods are nonrectangular and
depend on the previously matched blocks. We form such
a neighborhood as the union of (where

) ones centered at the previous matched co-
ordinates correspondingly shifted by in the direc-
tion of processing the image, e.g., in horizontal direc-
tion for raster scan. For every th processed block,
we nevertheless perform an exhaustive-search BM in the
larger neighborhood. In particular,
implies that only exhaustive-search in is used.

Reduce the complexity of applying transforms.
• Restrict the transforms and to the class of sep-

arable transforms and use respectively and
across the matched blocks and a 1-D transform, ,
along the third dimension of a group, along which the
blocks are stacked.

• The spectra , , and are
precomputed for each block in a neighborhood

around the currently processed coordinate. Later,

these are reused for subsequent reference blocks whose
neighborhoods overlap the current one. Thus,

these transforms are computed exactly once for each
processed coordinate; e.g., they are not recomputed each
time in (4). In addition, in (6), (8), and (9), we com-
pute the forward and transforms simply by
applying across precomputed - and -trans-
formed blocks, respectively.

Realize efficiently the aggregation.
• First, in Steps 1aii and 2aii, the obtained block-wise esti-

mates are weighted and accumulated in a buffer (with the
size of the image). At the same time, the corresponding
weights are accumulated at the same locations in another
buffer. Then, in Steps 1b and 2b, the aggregation (12) is
finally realized by a simple element-wise division be-
tween the two buffers.

Reduce the border effects.
• Use a Kaiser window (with parameter ) as

part of the weights in (12) in order to reduce border
effects which can appear when certain 2-D transforms
(e.g., the 2-D DCT, the 2-D DFT, or periodized wavelets)
are used.

A. Complexity

The time complexity of the algorithm is and, thus,
depends linearly on the size of the input image, as all parameters
are fixed.

Given the restrictions introduced in the previous subsection,
without exploiting predictive-search BM, the number of opera-
tions per pixel is approximately

where for simplicity we omit the superscripts “ht” and “wie”
from the parameters/operators, and where:

• the first addend is due to precomputing for each sliding
block (within a neighborhood);

• the second is due to grouping by exhaustive-search BM in
a neighborhood;

• the third addend is due to the transforms that is a sep-
arable composition of and .

Above, denotes the number of arithmetic operations required
for a transform ; it depends on properties such as availability
of fast algorithms, separability, etc. For example, the DFT can
be computed efficiently by a fast Fourier transform algorithm
and a dyadic wavelet decomposition can be realized efficiently
using iterated filterbanks.

By exploiting fast separable transforms and the predictive-
search BM, we can significantly reduce the complexity of the
algorithm.

B. Parameter Selection

We studied the proposed algorithm using various transforms
and parameters. As a results, we propose sets of parameters
that are categorized in two profiles, “Normal” and “Fast,” pre-
sented in Table I. The main characteristics of these profiles are
as follows.
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TABLE I
PARAMETER SETS FOR THE FAST AND NORMAL PROFILES

• Normal Profile. This profile offers a reasonable compro-
mise between computational complexity and denoising
performance. It is divided in two cases depending on the
level of noise.
— the noise is not too severe to affect the cor-

rectness of the grouping; hence, the thresholding in the
-distance (4) is disabled by setting and rela-

tively small block sizes are used, , .
— corresponds to high level of noise; hence,

is used to improve the correctness of the grouping and
larger block sizes are used, and .

• Fast Profile. Provides lower computational complexity at
the cost of decreased denoising performance. It exploits
the proposed fast predictive-search BM (unlike the Normal
Profile, which uses only the exhaustive-search BM).

The benefit of using thresholding for the -distance
and larger block sizes when is illustrated in Fig. 9 and
discussed in Section VI.

To show how the denoising performance depends on the
choice of the transforms , , and , we present
some experimental results in Table II. As already stated, the
3-D transforms and used in Steps 1 and 2 of our
method are formed by a separable composition of and

, respectively, with . Furthermore, both and
are separable compositions of 1-D transforms such as the ones
specified in the table. The following normalized transforms
were used in our experiment.

• DST, DCT: The discrete sine and cosine transforms.
• WHT: The Walsh–Hadamard transform.
• A few full dyadic wavelet decompositions using the

following.

TABLE II
DEPENDENCY OF THE OUTPUT PSNR (dB) ON THE USED TRANSFORMS. THE

COLUMNS CORRESPONDING TO T CONTAIN PSNR RESULTS OF THE BASIC

ESTIMATE y AND ALL OTHER COLUMNS CONTAIN RESULTS OF THE FINAL

ESTIMATE y . THE NOISE IN THE OBSERVATIONS HAD � = 25

— : The Daubechies wavelet with vanishing mo-
ments, where ,2,4,6; when , it coincides
with the Haar wavelet.

— : A bi-orthogonal spline wavelet, where the
vanishing moments of the decomposing and the recon-
structing wavelet functions are 1 and , respectively.

• DC+rand: An orthonormal transform that has a DC basis
element and the rest of its basis elements have random na-
ture, i.e., obtained by orthonormalization of realizations of
a white Gaussian process.

In addition, only for , we experimented with elementwise
averaging, i.e., preserving only the DC in the third dimension
(and discarding all other transform coefficients), hence its name
“DC-only.” For this case, all grouped blocks are estimated by
elementwise averaging, exactly as in the illustrative example of
Section II-C.

In Table II, we present results corresponding to various ,
, and . There, the Normal Profile parameters were

used in all cases, where only the transform corresponding to
a particular table column was changed. Boldface result corre-
spond to the best performing transform. We observe that the
choice of and does not have a significant impact on
the denoising performance. Even the “DC+rand” transform,
whose basis elements except for the DC are random, shows
only a modest PSNR decrease in the range 0.1–0.4 dB. This
can be explained by the fact that the collaborative filtering
depends mainly on for exploiting the interfragment corre-
lation among grouped blocks. The estimation ability does not
significantly depend on the energy compaction capabilities of

and . In this sense, the interfragment correlation ap-
pears as a much more important feature than the intrafragment
correlation.

Let us now focus on the results corresponding to the var-
ious transforms in Table II. One can distinguish the moder-
ately worse performance of the DST as compared with not only
the other standard transforms but also with the “DC+rand.” We
argue that the reason for this is the lack of DC basis element in
the DST—in contrast with all other transforms, which have this
element. Why is the DC of important? Roughly speaking,
this is so because the DC basis element captures the similarity
between elements along the 3rd dimension of a group. Since

gr
Rectangle
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TABLE III
GRAYSCALE-IMAGE DENOISING: OUTPUT PSNR (dB) OF THE PROPOSED BM3D ALGORITHM

Fig. 4. Grayscale-image denoising: output PSNR as a function of � for the following methods. “ ”: proposed BM3D; “�”: FSP+TUP BLS-GSM [4]; “+”:
BLS-GSM [3]; “�”: exemplar-based [11]; “�”: K-SVD [8]; “�”: pointwise SA-DCT [9]. (Note that the result of [4] for Boats and the results of [4] and [11] for
Cameraman are missing since they were neither reported in the corresponding articles, nor were implementations of these methods publicly available.)

the grouped blocks are similar, so are their corresponding 2-D
spectra and the DC terms reflect this similarity.

However, as it has been discussed in Section II, the existence
of perfectly matching blocks is unlikely. In order to avoid trivial
groups containing only the reference block, a strictly positive
threshold is used in (5) and (7). Additionally, as follows from
(3), the accuracy of the block-distance is affected by the noise.
In practice this means that within a group there can be blocks
for which the underlying true signal is much farther from

than . Therefore, the sole DC element is not able to
capture the potential differences between grouped blocks. This
is confirmed by the poor results of the “DC-only” for . The
availability of additional basis elements in any of the other trans-
forms, even the random ones in “DC+rand,” results in big per-
formance improvement over the “DC-only.”

We experimentally found that the ordering of blocks in
the group does not have a significant effect on the estimation
ability of the algorithm. This is confirmed by the results of the
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Fig. 5. Noisy (� = 25) grayscale House image and the BM3D estimate (PSNR 32.86 dB).

Fig. 6. Fragments of noisy (� = 25, PSNR 20.18 dB) grayscale images and the corresponding BM3D estimates. (a) Lena (PSNR 32.08 dB); (b) Barbara (PSNR
30.73 dB); (c) Cameraman (PSNR 29.45 dB); (d) Man (PSNR 29.62 dB); (e) Boats (PSNR 29.91 dB); (f) Couple (PSNR 29.72 dB).

“DC+rand” for which achieves the same results as any
of the other (structured, nonrandom) orthogonal transforms.
For this transform, the ordering is irrelevant for the DC and is
relevant only for the other basis elements which, however, are
generated randomly. Hence, we may conclude that the ordering
of the blocks in the groups does not influence the final results.
Given this and because in our implementation the BM already
produces a collection of blocks ordered by their block-distance,
we resort to using exactly this ordering. Naturally, first in a
group is always the reference block as the distance to itself is
trivially equal to zero.

Note that, even though a group is constructed based on the
similarity with respect to a given reference block, this does not
imply that this block is better represented by the group than any
of the others. For example, it can happen that all the matched
blocks (except the reference block) are quite dissimilar from
the reference one but tightly similar to each other. Such a group
could be termed as “unbalanced.”

We choose the Haar full dyadic decomposition for
because it can be efficiently implemented with iterated filter-
banks using 2-tap analysis/synthesis filters. To apply such an
orthonormal full dyadic decomposition, the transform size must
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Fig. 7. On the left: Fragment of a noisy (� = 100, PSNR 8.14 dB) grayscale Barbara; on the right: the corresponding fragment of the BM3D estimate (PSNR
23.49 dB).

be a power of 2. We enforced this requirement by restricting
the number of elements of both (5) and (7) to be the
largest power of 2 smaller than or equal to the original number
of elements in and , respectively.

V. EXTENSION TO COLOR-IMAGE DENOISING

We consider a natural RGB image with additive i.i.d. zero-
mean Gaussian noise in each of its channels. Let a luminance-
chrominance transformation be applied on such a noisy image,
where the luminance channel is denoted with and the chromi-
nance channels are denoted with and . Prominent examples
of such transformations are the and the opponent color
transformations, whose transform matrices are, respectively

(13)

Due to properties of the underlying natural color image, such
as high correlation between its , , and channels, the fol-
lowing observations can be made.

• has higher signal-to-noise ratio (SNR) than and
(decorrelation of the , , and channels).

• contains most of the valuable information (edges,
shades, objects, texture patterns, etc.).

• and contain mostly low-frequency information (very
often these channels come from undersampled data).

• Iso-luminant regions with variation only in and are
unlikely.

A straightforward extension of the developed grayscale
denoising method for color-image denoising would be to apply
it separately on each of the , , and channels. This naive
approach, however, would suffer from the lower SNR in the

chrominances since the grouping is sensitive to the level of
noise. Because a proper grouping is essential for the effective-
ness of our method, we propose to perform the grouping only
once for the luminance and reuse exactly the same grouping
when applying collaborative filtering on the chrominances

and . That is, the sets of grouped blocks’ coordinates
from (5) and (7) are found for , respectively in Steps 1ai
and 2ai, and reused for both and ; using these sets, the
collaborative filtering (Steps 1aii and 2aii) and the aggregation
(Steps 1b and 2b) are performed separately on each of the
three channels. The grouping constraint on the chrominances
is based on the assumption that if the luminances of two blocks
are mutually similar, then their chrominances are also mutually
similar. Furthermore, given that grouping by block-matching
takes approximately half of the execution time of the BM3D,
the grouping constraint enables a computational reduction of
approximately one third as compared to applying the grayscale
BM3D separately on the three channels.

VI. RESULTS

In this section, we present and discuss the experimental re-
sults obtained by the developed algorithms; the grayscale ver-
sion is denominated block-matching and 3-D filtering (BM3D)
and the color version is accordingly abbreviated C-BM3D. For
all experiments, we used the Matlab codes available at http://
www.cs.tut.fi/~foi/GCF-BM3D. At this website, we also pro-
vide further results and the original and denoised test images
used in our experiments. Unless specified otherwise, we use the
parameters of the “Normal Profile” from Table I for both the
BM3D and the C-BM3D.

A. Grayscale-Image Denoising

The output PSNR results of the BM3D algorithm for a stan-
dard set of grayscale images are given in Table III. The PSNR
of an estimate of a true image , is computed according to the
standard formula
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Fig. 8. Fragments of the grayscale (top row) Boats and (bottom row) Cameraman denoised by (from left to right): [3], [8], [9], [12], and the proposed BM3D for
noise with � = 25 (fragments of the noisy images can be seen in Fig. 6).

In Fig. 4, we compare the output PSNR results of the pro-
posed BM3D with those of the state-of-the-art techniques
BLS-GSM [3], FSP+TUP BLS-GSM [4], exemplar-based [11],
K-SVD [8], Pointwise SA-DCT [9]; for the K-SVD method
[8], we report its best results, which are those obtained with
an adaptive dictionary trained on the noisy image. It can be
seen from the figure that the proposed BM3D demonstrates the
best performance and uniformly outperforms all of the other
techniques. In particular, a significant improvement is observed
for House and Barbara since these images contain structured
objects (edges in House and textures in Barbara) which enable
a very effective grouping and collaborative filtering.

In Fig. 5, we show a noisy House image and the cor-
responding BM3D estimate. In this test image, similarity among
neighboring blocks is easy to perceive in the uniform regions
and along the regular-shaped structures, some of which are il-
lustrated in Fig. 1. Hence, such details are well-preserved in the
estimate.

The denoising performance of the BM3D algorithm is further
illustrated in Fig. 6, where we show fragments of a few noisy

test images and fragments of the corresponding de-
noised ones. The denoised images show good preservation of:

• uniform areas and smooth intensity transitions (cheeks of
Lena, and the backgrounds of the other images);

• textures and repeating patterns (the scarf in Barbara);
• sharp edges and singularities (borders of objects in

Cameraman and Boats).
A denoising example for an extreme level of noise such as

is shown in Fig. 7. Given that the original image is al-
most completely buried into noise, the produced estimate shows
reasonable detail preservation. In particular, repeated patterns,
such as the stripes on the clothes, are faithfully reconstructed.

Regarding the subjective visual quality, we find that various
image details are well preserved and at the same time very few

artifacts are introduced; one can observe this in Figs. 6–8. The
state-of-the-art subjective visual quality of our algorithm is con-
firmed by the result of the psycho-visual experiment carried out
by Vansteenkiste et al. [19]. There, 35 evaluators classified the
preliminary version [12] of the BM3D algorithm as the best
among 8 evaluated state-of-the-art techniques. The criteria in
this evaluation were perceived noisiness, perceived blurriness,
and overall visual quality. Furthermore, we consider the sub-
jective visual quality of the current BM3D algorithm to be sig-
nificantly better (in terms of detail preservation) than that of its
preliminary version evaluated in [19]. In Fig. 8, we show im-
ages denoised by the current and by the preliminary versions of
the BM3D algorithm. A close inspection reveals that the images
denoised by the current BM3D have both fewer ringing artifacts
and better preservation of details.

We show the PSNR performance of the Fast and Normal
BM3D Profiles in Fig. 9. The two cases of the Normal Profile
from Table I are considered separately for in order
to show the sharp PSNR drop of the “ ” graph at about

due to erroneous grouping. On the other hand, for the
“ ” graph, where the thresholding-based -distance (4)
is used with a relatively large block-size , one can observe
that there is no sharp PSNR drop. It is noteworthy that, for up
to moderate levels of noise such as , the PSNR differ-
ence between the Fast and the Normal Profiles is in the range
0.05–0.2 dB. This can be an acceptable price for the 6-fold re-
duction of the execution time shown in Table I; more precisely,
the approximate execution time (for denoising a 256 256
image calculated on a 1.5-GHz Celeron M) decreases from 4.1 s
for the Normal Profile to 0.7 s for the Fast Profile. The BM3D
algorithm allows for further complexity/performance tradeoff
by varying . As a rough comparison, the execution times
(for denoising a 256 256 image on a 1.5-GHz Celeron M)
of the other methods considered in Fig. 4 were: 22.1 s for the
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Fig. 9. Comparison between the output PSNR corresponding to the profiles in Table I. Notation is: “�” for fast profile, “ ” for the normal profile in the case
“� � 40” and “+” in the case “� > 40”; both instances of the normal profile are shown for all considered values of � in the range [10, 75].

TABLE IV
COLOR-IMAGE DENOISING: OUTPUT PSNR

OF THE PROPOSED C-BM3D ALGORITHM

BLS-GSM, 6.2 s for the SA-DCT filter, 9–30 min (depending
on ) for training the adaptive K-SVD on an input noisy image,
and 25–120 s to perform the filtering using the found dictio-
nary. The execution time of the exemplar-based method was re-
ported in [11] to be about 1 min when measured on a 2-GHz
Pentium IV. The execution time of the FSP+TUP BLS-GSM
was not reported; however, it is a two-step BLS-GSM extension
that should not be faster than the BLS-GSM.

B. Color-Image Denoising

We performed experiments with the C-BM3D using the op-
ponent color space transformation (13) and the Normal Profile
algorithm parameters. In all experiments, we considered noisy
images with i.i.d. zero-mean Gaussian noise of variance in
each of their , , and channels. The PSNR for RGB images
is computed using the standard formula

where the subscript denotes the color channel.
Table IV presents the output-PSNR results of the proposed
C-BM3D algorithm for a few standard test images. A com-
parison with the two recent state-of-the-art methods [9], [20]
is given in Table V. One can see that the proposed algorithm
outperforms them for the three test images considered there.

TABLE V
COLOR-IMAGE DENOISING: OUTPUT-PSNR COMPARISON WITH

THE TWO STATE-OF-THE-ART RECENT METHODS [20] AND [9]

Fig. 10. Color-image denoising: On the left are a noisy Lena image (� = 50,
PSNR 14.15 dB) and a fragment of it; on the right are the C-BM3D estimate
(PSNR 29.72 dB) and the corresponding fragment.

The visual quality can be inspected from Fig. 10 where a
noisy (with ) color Lena and the C-BM3D estimate are
shown. One can observe the faithfully preserved details on the
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hat, the sharp edges, and the smooth regions. The approximate
execution time of the C-BM3D for a 256 256 RGB image
was 7.6 s on a 1.5-GHz Celeron M.

VII. DISCUSSION

The approach presented in this paper is an evolution of our
work on local approximation techniques. It started from the
classical local polynomial approximation with a simple sym-
metric neighborhood. The adaptive pointwise varying size of
this neighborhood was a first step to practically efficient al-
gorithms. A next step was devoted to anisotropic estimation
based on adaptive starshaped neighborhoods allowing nonsym-
metric estimation areas. The nonsymmetry of these estimates is
a key-point in designing estimators relevant to natural images.
This development has been summarized in the recent book [21].

These techniques are based on fixed-order approximations.
For image processing, these approximations are in practice
reduced to zero and first order polynomials. It became clear
that the developed neighborhood adaptivity had practically
exhausted its estimation potential.

The breakthrough appears when the adaptive order local
approximations are introduced. First, it was done in terms of
the orthonormal transform with varying window size [22]. The
hard-thresholding of the spectrum of these transforms means
that some terms in the approximating series are adaptively
dropped, and, thus, the order of the model becomes data de-
pendent [23]. The most efficient development of the idea of
the adaptive order estimation in local neighborhoods was the
pointwise shape-adaptive DCT filter [9], where the orthonormal
transform is calculated in adaptive shape neighborhoods de-
fined by special statistical rules.

The next essential step in the development of the local ap-
proximations is presented in this paper. The spatial adaptivity is
realized by selection of sets of blocks similar to a given refer-
ence one. Thus, local estimates become nonlocal. The selected
blocks are grouped in 3-D arrays, jointly filtered, and aggregated
at the places where they were taken from. The joint filtering of
the blocks in the 3-D arrays is realized by shrinkage of the spec-
trum items; thus, the idea of the order adaptive estimation is ex-
ploited again but in quite a specific way. The main advantages of
this approach are the nonlocality and the collaborative filtering.
The latter results in effective preservation of local features in
image blocks and very efficient denoising.

We wish to mention the work of a few other authors in order
to clarify the context of our contribution and to state what makes
it different from other similar approaches.

Since our method and the nonlocal estimators [10] and
[11] are based on the same assumptions about the signal, it is
worth comparing this class of techniques with our method. The
weighted mean used in the nonlocal estimation corresponds
to a zero-order polynomial approximation. Its effectiveness
depends on an elaborate computation of adaptive weights,
depending on the similarity between image patches centered
at the estimated pixel and the ones used in the averaging.
Our approach is different; by using a more flexible set of
the basis functions (embedded in the transform), we enable

order-adaptivity of the model and a more efficient exploitation
of the similarity between grouped blocks. This is realized by
collaborative filtering that allows for high-order estimates (not
only weighted means) to be calculated for all grouped blocks.

The algorithm proposed in [8] is derived from a global opti-
mization formulation. The image is segmented in a set of over-
lapping blocks and the filtering is enabled by fitting a minimum
complexity model to each of these blocks. The final image es-
timate is obtained by fusing these models. A very good per-
formance of the algorithm mainly follows from using a set of
basis functions (dictionaries) obtained by training. In contrast,
our collaborative filtering is essentially different because the
model induced by hard-thresholding has low-complexity only
in relation to the group as a whole. For the block-wise esti-
mates and for the image overall, the model can instead be highly
complex and redundant as each block can enter in many groups
and, thus, can participate in many collaborative estimates. This
redundancy gives a very good noise attenuation and allows to
avoid artifacts typical for the standard thresholding schemes.
Thus, we may say that instead of some low-complexity mod-
eling as in [8], we exploit specific overcomplete representations.

The collaborative Wiener filtering used in the second step and
the aggregation of block-wise estimates using adaptive weights
are major features of our approach. The Wiener filtering uses
the power spectrum of the basic estimate to filter the formed
groups. As a result, the estimation improves significantly over
the hard-thresholding used in the first step. The improvement in
PSNR can be seen from Table II (by comparing the numbers in
the column of “ ” with the numbers in any of the other two
columns “ ” or “ ”); one can observe that the improve-
ment is substantial, typically greater than 0.5 dB.

The basis functions used in our algorithm are standard ones,
computationally efficient, and image independent. We believe
that the proposed denoising method could be improved by using
more sophisticated bases such as adaptive PCA [7], or overcom-
plete learned dictionaries [8]. However, the computational com-
plexity would significantly increase because these transforms
are typically nonseparable and do not have fast algorithms. As
it is shown in the previous section, even with the currently used
standard transforms, our algorithm already demonstrates better
performance than both [8] and [11].

The proposed extension to color images is nontrivial because
we do not apply the grayscale BM3D independently on the three
luminance-chrominance channels, but we impose a grouping
constraint on both chrominances. The grouping constraint
means that the grouping is done only once, in the luminance
(which typically has a higher SNR than the chrominances), and
exactly the same grouping is reused for collaborative filtering
in both chrominances. It is worth comparing the performance
of the proposed C-BM3D versus the independent application
of the grayscale BM3D on the individual color channels. This
is done in Table VI which shows that the C-BM3D achieves
0.2–0.4 dB better PSNR than the independent application of the
BM3D on the opponent color channels and 0.3–0.8 dB better
PSNR than the independent application of the BM3D on the
RGB channels. This improvement shows the significant benefit
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TABLE VI
PSNR RESULTS OF THREE DIFFERENT APPROACHES TO COLOR-IMAGE

DENOISING. THE NOISE WAS ADDED IN RGB WITH � = 25 AND ALL

PSNR (dB) VALUES WERE ALSO COMPUTED IN RGB SPACE

of using the grouping constraint on the chrominances in the
C-BM3D.

We note that a similar idea of filtering the chrominances
using information from the luminance was exploited already
in the Pointwise SA-DCT denoising method [9]. There, adap-
tive-shape estimation neighborhoods are determined only for

and then reused for both and . The PSNR improvement
(0.1–0.4 dB) of the proposed approach compared with [9]
is consistent with the improvement between the grayscale
versions of these two methods.

VIII. CONCLUSION

The image modeling and estimation algorithm developed in
this paper can be interpreted as a novel approach to nonlocal
adaptive nonparametric filtering. The algorithm demonstrates
state-of-the-art performance. To the best of our knowledge, the
PSNR results shown in Tables III and IV are the highest for de-
noising additive white Gaussian noise from grayscale and color
images, respectively. Furthermore, the algorithm achieves these
results at reasonable computational cost and allows for effective
complexity/performance tradeoff, as shown in Table I.

The proposed approach can be adapted to various noise
models such as additive colored noise, non-Gaussian noise,
etc., by modifying the calculation of coefficients’ variances in
the basic and Wiener parts of the algorithm. In addition, the
developed method can be modified for denoising 1-D-signals
and video, for image restoration, as well as for other problems
that can benefit from highly sparse signal representations.

REFERENCES

[1] L. Sendur and I. W. Selesnick, “Bivariate shrinkage functions for
wavelet-based denoising exploiting interscale dependency,” IEEE
Trans. Signal Process., vol. 50, no. 11, pp. 2744–2756, Nov. 2002.

[2] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A joint inter-
and intrascale statistical model for Bayesian wavelet based image de-
noising,” IEEE Trans. Image Process., vol. 11, no. 5, pp. 545–557, May
2002.

[3] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image de-
noising using a scale mixture of Gaussians in the wavelet domain,”
IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, Nov.
2003.

[4] J. Guerrero-Colon and J. Portilla, “Two-level adaptive denoising using
Gaussian scale mixtures in overcomplete oriented pyramids,” presented
at the IEEE Int. Conf. Image Process., Genova, Italy, Sep. 2005.

[5] L. Yaroslavsky, K. Egiazarian, and J. Astola, “Transform domain image
restoration methods: Review, comparison and interpretation,” in Proc.
Nonlinear Image Process. and Pattern Analysis XII, 2001, vol. 4304,
pp. 155–169.

[6] O. Guleryuz, “Weighted overcomplete denoising,” in Proc. Asilomar
Conf. Signals, Systems, Computers, Pacific Grove, CA, Nov. 2003, vol.
2, pp. 1992–1996.

[7] D. Muresan and T. Parks, “Adaptive principal components and image
denoising,” presented at the IEEE Int. Conf. Image Processing, Sep.
2003.

[8] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[9] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive
DCT for high-quality denoising and deblocking of grayscale and color
images,” IEEE Trans. Image Process., vol. 16, no. 5, May 2007.

[10] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2,
pp. 490–530, 2005.

[11] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,” IEEE Trans. Image Process., vol. 15, no. 10,
pp. 2866–2878, Oct. 2006.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
with block-matching and 3D filtering,” presented at the SPIE Electronic
Imaging: Algorithms and Systems V, San Jose, CA, Jan. 2006.

[13] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Color image de-
noising via sparse 3D collaborative filtering with grouping constraint in
luminance-chrominance space,” presented at the IEEE Int. Conf. Image
Process., San Antonio, TX, Sep. 2007.

[14] J. B. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proc. Berkeley Symp. Math. Statist. Prob.,
Berkeley, CA, 1967, pp. 281–297.

[15] T. Kohonen, Self-Organizing Maps, ser. Information Sciences, 2nd
ed. Heidelberg, Germany: Springer, 1997, vol. 30.

[16] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Anal-
ysis. Chichester, U.K.: Wiley, 1999.

[17] A. Gersho, “On the structure of vector quantizers,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 157–166, Feb. 1982.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[19] E. Vansteenkiste, D. Van der Weken, W. Philips, and E. E. Kerre,
“Perceived image quality measurement of state-of-the-art noise reduc-
tion schemes,” in Proc. Lecture Notes in Computer Science ACIVS,
Antwerp, Belgium, Sept. 2006, vol. 4179, pp. 114–124.

[20] A. Pizurica and W. Philips, “Estimating the probability of the presence
of a signal of interest in multiresolution single- and multiband image
denoising,” IEEE Trans. Image Process., vol. 15, no. 3, pp. 654–665,
Mar. 2006.

[21] V. Katkovnik, K. Egiazarian, and J. Astola, Local Approximation Tech-
niques in Signal and Image Process. Bellingham, WA: SPIE, 2006,
vol. PM157.

[22] V. Katkovnik, K. Egiazarian, and J. Astola, “Adaptive window size
image de-noising based on intersection of confidence intervals (ICI)
rule,” Math. Imag. Vis., vol. 16, no. 3, pp. 223–235, May 2002.

[23] A. Foi and V. Katkovnik, “From local polynomial approximation to
pointwise shape-adaptive transforms: An evolutionary nonparametric
regression perspective,” presented at the Int. TICSP Workshop Spectral
Methods Multirate Signal Process., Florence, Italy, Sep. 2006.

Kostadin Dabov (S’07) received the M.Sc. degree in
digital signal processing from the Institute of Signal
Processing, Tampere University of Technology, Tam-
pere, Finland, in April 2006, where he is currently
pursuing the D.Tech. degree in signal restoration with
locally adaptive transform-based techniques.

His interests include signal enhancement and
restoration and efficient design and realization of
signal processing algorithms.

3362
Highlight

3362
Highlight



DABOV et al.: IMAGE DENOISING BY SPARSE 3-D TRANSFORM-DOMAIN COLLABORATIVE FILTERING 2095

Alessandro Foi received the M.Sc. degree in mathe-
matics from the Università degli Studi di Milano, Mi-
lano, Italy, in 2001, and the Ph.D. degree in mathe-
matics from the Politecnico di Milano in 2005.

His research interests include mathematical and
statistical methods for signal processing, functional
analysis, and harmonic analysis. Currently, he is
a Researcher at the Institute of Signal Processing,
Tampere University of Technology, Tampere,
Finland. His work focuses on spatially adaptive
algorithms for anisotropic denoising and deblurring

of digital images and on noise modeling for digital imaging sensors.

Vladimir Katkovnik received the M.Sc., Ph.D.,
and D.Sc. degrees in technical cybernetics from the
Leningrad Polytechnic Institute, Leningrad, Russia,
in 1960, 1964, and 1974, respectively.

From 1964 to 1991, he held the positions of As-
sociate Professor and Professor at the Department of
Mechanics and Control Processes, Leningrad Poly-
technic Institute. From 1991 to 1999, he was a Pro-
fessor of statistics with the Department of the Uni-
versity of South Africa, Pretoria. From 2001 to 2003,
he was a Professor of mechatronics with the Kwangju

Institute of Science and Technology, Korea. From 2000 to 2001, and since 2003,
he has been a Research Professor with the Institute of Signal Processing, Tam-
pere University of Technology, Tampere, Finland. He has published seven books
and more than 200 papers. His research interests include stochastic signal pro-
cessing, linear and nonlinear filtering, nonparametric estimation, imaging, non-
stationary systems, and time-frequency analysis.

Karen Egiazarian (SM’96) was born in Yerevan,
Armenia, in 1959. He received the M.Sc. degree in
mathematics from Yerevan State University in 1981,
the Ph.D. degree in physics and mathematics from
Moscow State University, Moscow, Russia, in 1986,
and the D.Tech. degree from the Tampere University
of Technology (TUT), Tampere, Finland, in 1994.

He was a Senior Researcher with the Department
of Digital Signal Processing, Institute of Information
Problems and Automation, National Academy of Sci-
ences of Armenia. Since 1996, he has been an As-

sistant Professor with the Institute of Signal Processing, Tampere University
of Technology, where he is currently a Professor, leading the Transforms and
Spectral Methods Group. His research interests are in the areas of applied math-
ematics, signal processing, and digital logic.


