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a b s t r a c t

This paper presents a novel interpolation approach for single image super-resolution based on ordinary
Kriging interpolation, which has been widely used in geostatistics. The proposed method simultaneously
considers the intensity distances and geometry of the pixel data. We employ a new intensity distance
definition and local windows surrounding each unknown high-resolution pixel to implement the
algorithm. The proposed approach is able to produce adaptive weights and edge preservation is
achieved. Our experimental results show the efficiency of the proposed approach compared to
conventional interpolation methods in terms of the peak signal-to-noise (PNSR) and visual perception.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image super-resolution (SR) is a significant image processing
technique which aims to generate a high-resolution (HR) image
from its low-resolution (LR) observations [1,2]. This technique is
essential in many applications, such as medical image and satellite
image processing. Conventional approaches employ a series of LR
versions of the same scene to obtain the corresponding HR image
[3]. Current image SR researches can be divided into three classes
which are based on reconstruction [4,5], interpolation [6–11] and
machine learning technique [12–14]. Here we mainly focus on the
approaches based on interpolation.

Early image interpolation methods include the nearest-
neighbor interpolation, bilinear and bicubic interpolation [6]. The
greatest advantage of these methods is the low computational
complexity. However, these methods tend to produce results with
artifacts, such as jagged edges and blurry effects, due to degrada-
tion of the high-frequency components of the image. Some edge-
guided image interpolation algorithms, which focus on preserving
the edge structures, have been proposed [7–11]. Li and Orchard [7]
proposed an edge-directed interpolation method adapted by local
covariance, and provided a solution to estimate the HR covariance
from the LR counterpart based on geometric duality. Zhang
and Wu [8] proposed to interpolate the LR image in two ortho-
gonal directions, and then adaptively fused the results to recon-
struct a single HR image. Jing and Wu [9] introduced a fast
image interpolation algorithm motivated by the inverse-distance

weighting method [15]. Recently, sparse representation and
dictionary learning have been successfully applied to image
SR. Yang et al. [12] proposed a sparse representation model
(SRM) to reconstruct HR image from its down-sampled LR version.
By introducing a nonlocal autoregressive model into SRM, Dong
and Zhang [10] proposed a sparse coding based image interpola-
tion method, which effectively reconstructs the edges structures
and reduces artifacts. Inspired by the impressive results of [10],
Romano et al. [11] proposed a two-stage interpolation algorithm
based on SRM and adaptive nonlocal self-similarities. Generally
these methods can improve the visual quality of the interpolated
images, but they are too complex and time-consuming compared
to conventional linear methods.

In this paper, we propose a new image interpolation method
based on ordinary Kriging interpolation technique. Unknown HR
pixels are estimated by weighting their four nearest diagonal
pixels. We propose to calculate the interpolation weights using
ordinary Kriging, which attempts to minimize the variance of the
expected error. In the proposed method, we estimate the intensity
distances in local windows surrounding the unknown HR pixel,
and choose a simple linear semivariogram to achieve a good
balance between computational efficiency and restoration perfor-
mance. Our experimental results clearly demonstrate that the
proposed method can generate visually attractive interpolated
images of better edge preservation when compared to the results
of other existing literature techniques.

The rest of this paper is organized as follows: Section 2 presents
how to derive interpolation weights using ordinary Kriging; In
Section 3, the proposed method based on ordinary Kriging interpola-
tion is described in detail. Experimental results in Section 4 demon-
strate the efficiency of this approach. Section 5 draws the conclusion.
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2. The Kriging interpolation

The Kriging, a geostatistical interpolation technique, is an
optimal and linear unbiased spatial interpolation method [16].
The characteristic of this interpolation technique is that semivar-
iogram is introduced to measure the spatial correlation of the
sample data with distance in the estimation of the interpolation
coefficients. There are several Kriging methods differing in
the interpolation formula [16]. In this paper, we choose ordinary
Kriging interpolation, which is the most common type of Kriging.

Let random function z(x) represent the value at point x in
spatial region R, and zðxþhÞ denotes the value of the same variable
spacing distance h apart. Assume that z(x) satisfies the conditions
of intrinsic hypothesis, then the semivariogram of z(x) is defined
as [16]

rðhÞ ¼ 1
2 Var½zðxÞ�zðxþhÞ� ¼ 1

2 E½zðxÞ�zðxþhÞ�2: ð1Þ
Several theoretical semivariogram models are available, such as

� The Gaussian model:

rðhÞ ¼
0; h¼ 0
C0þC1f1�expð�h2=a2Þg; h40

(
ð2Þ

� The Spherical model:

rðhÞ ¼
0; h¼ 0
C0þC1f32 ðh=aÞ�1

2 ðh=aÞ3g; 0ohra

C0þC1; h4a

8><>: ð3Þ

� The Linear model:

rðhÞ ¼
0; h¼ 0

C0þC1
h
a
; h40

8<: ð4Þ

where C0 is the nugget effect, C1 is the structured variance, C0þC1 is
the sill, and a is the variogram range (C0Z0;C1Z0, and aZ0) [16].
The above models are displayed in Fig. 1 using C0 ¼ 0;C1 ¼ 1, and
a¼1. An experimental semivariogram can be calculated from sam-
ples and then fitted a chosen model by tuning the parameters. More
details about constructing the semivariogram can be found in [17].

Given n sample observations zðx1Þ;…; zðxnÞ at points x1;…; xn,
the ordinary Kriging estimate formula of an unknown point x0 is
[16]

ẑðx0Þ ¼ ∑
n

i ¼ 1
λizðxiÞ; ð5Þ

where weights fλigni ¼ 1 are chosen such that the estimate is
unbiased and the variance of the estimate error is minimum. The
optimization problem can be formulated as [16]

fλigni ¼ 1 ¼ arg min
λi

Var zðx0Þ� ∑
n

i ¼ 1
λizðxiÞ

" #
�2μ ∑

n

i ¼ 1
λi�1

 !
; ð6Þ

where μ is a Lagrange multiplier that ensures∑n
i ¼ 1λi ¼ 1. Then the

optimal solutions can be obtained from [16]

r11 ⋯ r1n 1
⋮ ⋮ ⋮
rn1 ⋯ rnn 1
1 ⋯ 1 0

0BBB@
1CCCA

λ1
⋮
λn
μ

0BBBB@
1CCCCA¼

r01
⋮
r0n
1

0BBB@
1CCCA; ð7Þ

where rij ¼ rðxi�xjÞ. Now the interpolation weights can be calcu-
lated and used to estimate the value of unknown point by solving
the linear system of equations.

3. The proposed method

Kriging for image becomes more computationally expensive as
the data points to interpolate are much more than those in
geostatistics. In order to reduce the computational complexity,
only the four nearest diagonal pixels are included to estimate the
unknown pixel. We assume that the LR image Xi;j of size H �W is
directly downsampled from the HR image Yi;j of size 2H � 2W , i.e.
Y2i;2j ¼ Xi;j. As shown in [7], the interpolation problem can be
solved in two steps. The first step is to interpolate the interlacing
Y2iþ1;2jþ1 from the lattice Y2i;2j. Second, the other interlacing
lattice Yi;jðiþ j¼ oddÞ can be interpolated from the lattice
Yi;jðiþ j¼ evenÞ in a similar method, as their geometric structures
are isomorphic up to a scaling factor of

ffiffiffi
2

p
and a rotation factor of

π=4. Therefore, we will only discuss the interpolation of Y2iþ1;2jþ1.
Following (5), the problem can be formulated as

Ŷ 2iþ1;2jþ1 ¼ ∑
1

k ¼ 0
∑
1

l ¼ 0
λ2kþ lY2ðiþkÞ;2ðjþ lÞ: ð8Þ

where Y2ðiþkÞ;2ðjþ lÞ denote the four nearest diagonal pixels of
Y2iþ1;2jþ1, and λ2kþ l is the corresponding weights. Next, we will
introduce how to calculate λ2kþ l using ordinary Kriging
interpolation.

Note that as the fundamental element of Kriging method, the
semivariogram is closely related to the distances of the sample
data. Hence, it is critical to define a new distance in terms of pixel
intensities. In this paper, we adopt a distance definition as follows
[9]:

Definition 1 (Intensity distance). Let x and y be two pixels in an
image, the intensity distance between them can be defined as

hðx; yÞ ¼ J IðxÞ� IðyÞJ1; ð9Þ

where Ið�Þ denotes the pixel intensity, and J � J1 is the ℓ1�norm.

As described in (7), to interpolate bY 2iþ1;2jþ1, the first step is to
calculate the corresponding intensity distances. However, since
Y2iþ1;2jþ1 is an unknown pixel, how to obtain the distances
between Y2iþ1;2jþ1 and its four nearest diagonal pixels (i.e.
fh0pg3p ¼ 0 shown in Fig. 2) is a problem. We propose to estimate
the HR distance from its LR counterpart based on their intrinsic
“geometric duality”. Here, geometric duality refers to the corre-
spondence between the HR intensity distance and the LR intensity
distance that couples the pair of pixels along the same direction. It
suggests that the intensity change of pixels in a local image region
is consistent with their geometric trends. From the perspective of

Fig. 1. Three semivariogrammodels, using nugget effect C0 ¼ 0, structured variance
C1 ¼ 1 and variogram range a¼1.
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difference, the intensity distance satisfies [9]

hðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�y1Þ2þðx2�y2Þ2

q
J n!J1; ð10Þ

where n! is directional derivative along ðx1�y1; x2�y2Þ [18]. We
assume that the image function is differentiable and the gradients
have small perturbations [19]. Thus, the intensity distances
fh0pg3p ¼ 0 can be estimated as

h0p ¼
hp
2
; p¼ 0;1;2;3; ð11Þ

where fhpg3p ¼ 0 denote the intensity distances along the same
direction in the LR image, which are illustrated in Fig. 2.

In order to increase the accuracy of the proposed method and
make it more robust to noise and fine details in the image, we
propose to estimate the LR intensity distances in local windows.
For example to compute h1, we first employ two 5�5 windows
W1 and W2 around the pixel Y2iþ1;2jþ1. Then h1 is estimated by
averaging the intensity distances between the samples along the

same direction within the windows (see Fig. 2). The other intensity
distances can be derived similarly.

Thus far, we have derived the intensity distances used for (7),
the next step is to calculate the semivariogram. Reviewing semi-
variogram models discussed in Section 2, we know that it requires
much computational cost to obtain an experimental semivario-
gram by working with distances and corresponding values of
semivariogram. On the other hand, we exploit the fact that
semivariogram is a non-decreasing function. We propose to
choose a simple linear semivariogram to improve the computa-
tional efficiency of our method while maintaining the visual
quality. With the above considerations, we set r(h) as

rðhÞ ¼ h: ð12Þ
Then the weights λ2kþ l can be calculated according to (7) and (12).
Finally, the interpolated value of Y2iþ1;2jþ1 can be obtained
using (8). Specifically, if the corresponding system of equations is
ill-posed, we use bicubic interpolation as an alternative.

Following the approach mentioned above, we have proposed
a novel image interpolation method based on windowed ordinary
Kriging. We calculate the intensity distances in local windows, and
obtain four diagonal weights using ordinary Kriging interpolation.
The proposed method takes advantage of both geometrical struc-
tures and intensity distances of the pixel data, and attempts to
minimize the variance of the expected error. It is able to produce
adaptive weights according to the local image structures. It is
also derived that our interpolation method has better edge
preservation than other competitive and related algorithms.
In the next section, the experimental results will illustrate its
good performance.

4. Experimental results

We compare the proposed method with bicubic, NEDI [7],
LMMSE [8], C2xinterp [20], DIDW [9], and NARM [10] to illustrate
the efficiency of our proposal method. Six gray-level images
(Cameraman, Zebra, Lena, Baboon, Boat and Clock) and two
colorful images (Fence and Parrot) are used in the experiments
(see Fig. 3). The test images are directly downsampled with a

Fig. 2. Geometric duality when interpolating Y2iþ1;2jþ1 from Y2i;2j . The arrows
denote intensity distances. The bold squares W1 and W2 denote the local windows
employed to calculate h1.

Fig. 3. Test images from left to right and top to bottom: Cameraman, Zebra, Lena, Baboon, Boat, Clock, Fence and Parrot.
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scaling factor of 2, and then interpolated back by various methods.
The interpolation for a color image consists of three steps:
(i) convert the image from RGB space to YCbCr space; (ii) recover
the Y channel using the proposed method and interpolate Cb and
Cr channels by bicubic interpolation; (iii) convert the interpolated
channels back to the RGB color space. The structural similarity
index (SSIM)[21] and PSNR are applied to measure the objective
quality of the experimental results. All the experiments were
tested using MATLAB on an Intel E8400, 3.0 GHz, 3 G RAM.

Table 1 shows the PSNR and SSIM values of different methods
for the test images. It shows that our algorithm is competitive
with the current state-of-the-art NARM interpolation method.
The proposed method achieves higher PSNR and SSIM than the
bicubic, NEDI, LMMSE, C2xinterp and DIDW. In Figs. 4–7, we show

some cropped portions of the reconstructed HR images by the
above algorithms. From Figs. 4–7, we can see that HR images by
Bicubic have blurred edges and artifacts. The edge-guided inter-
polation methods NEDI, LMMSE and DIDW can generate sharp
edges in most places, but fail in areas with multiple or small scale
edges (e.g., Fig. 4(c), (f), Fig. 5(c), (d), Fig. 6(d) and Fig. 7(c), (f)).
This is mainly because that it is difficult to accurately estimate
edges' directions. By introducing contour stencils, the edge-
adaptive method C2xinterp can successfully reconstruct those
slight edges. However, some ringing artifacts can be clearly
observed in the HR images (e.g., grasses in Fig. 4(e) and walls in
Fig. 7(e)). NARM produces visually pleasant results, especially
in reconstructing images with sufficient repetitive patterns
(e.g., images Zebra and Parrot). It is because that NARM implicitly

Table 1
PSNR (dB) and SSIM values of different interpolation methods for the test images. For each column, the first row is PSNR, and the second row is SSIM.

Image Technique

Bicubic NEDI [7] LMMSE [8] C2xinterp[20] DIDW [9] NARM [10] Proposed

Cameraman 23.5269 25.4183 25.6674 25.5228 25.4849 25.8783 26.3129
0.8219 0.8632 0.8675 0.8633 0.8681 0.8690 0.8694

Zebra 22.7722 25.9359 26.1603 25.6713 25.2899 27.6764 26.6816
0.7877 0.8525 0.8625 0.8428 0.8541 0.8870 0.8645

Lena 28.8737 31.7542 31.7948 31.7244 31.7278 32.6481 32.2498
0.8328 0.8912 0.8862 0.8878 0.8875 0.9016 0.8932

Baboon 25.9986 27.7292 27.5704 27.3779 27.7745 27.8428 28.0258
0.7408 0.8115 0.8039 0.8221 0.8033 0.8221 0.8231

Boat 25.3642 27.6797 27.7439 27.6082 27.7084 28.3583 28.4188
0.8009 0.8569 0.8607 0.8557 0.8607 0.8675 0.8655

Clock 26.3245 28.0280 29.3998 28.9732 29.4331 29.8162 29.4465
0.9068 0.9346 0.9380 0.9318 0.9357 0.9401 0.9386

Fence 22.5510 22.9362 24.5598 24.4429 24.5499 24.6776 24.6823
0.6862 0.7420 0.7592 0.7578 0.7592 0.7998 0.7632

Parrot 24.7388 27.9427 27.8466 28.1980 27.6041 29.8703 28.6149
0.8274 0.8936 0.8866 0.8953 0.8866 0.9100 0.8971

The best PSNR/SSIM result for each image is highlighted.

Fig. 4. Reconstructed HR images of Zebra by different interpolation methods. (a) Original image, (b) bicubic, (c) NEDI [7], (d) LMMSE [8], (e) C2xinterp [20], (f) DIDW [9],
(g) NARM [10], and (h) Proposed method.
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relies on the nonlocal self-similarity in natural images. According
to these figures, the proposed method produces sharp edges, and
has the advantage of preserving fine image details (e.g., images
Cameraman and Fence). Visually, it outperforms the bicubic, NEDI,
LMMSE, C2xinterp and DIDW, and is comparable to NARM. For
some images, our method performs worse than NARM. But it

consumes much less time compared to NARM. In our experiment,
the average run time of the proposed method for interpolating the
test images is 4.19 s, which of NARM is 286.15 s.

From Table 1 and Figs. 4–7, we can see that the proposed
method achieves visually pleasant interpolated results with high
PSNR values. Note that both DIDW and the proposed method

Fig. 5. Reconstructed HR images of Cameraman by different interpolation methods. (a) Original image, (b) bicubic, (c) NEDI [7], (d) LMMSE [8], (e) C2xinterp [20], (f) DIDW
[9], (g) NARM [10], and (h) Proposed method.

Fig. 6. Reconstructed HR images of Parrot by different interpolation methods. (a) Original image, (b) bicubic, (c) NEDI [7], (d) LMMSE [8], (e) C2xinterp [20], (f) DIDW [9],
(g) NARM [10], and (h) Proposed method.
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utilize intensity distances to calculate the interpolation weights.
However, our algorithm produces higher quality reconstruction
images than DIDW. This clearly demonstrates the superiority of
the ordinary Kriging interpolation.

5. Conclusion

In this paper, we proposed a new interpolation method for
single image SR, which simultaneously considers the intensity
distances and geometrical structure of the pixel data. The wind-
owed ordinary Kriging interpolation technique and the intensity
distances were incorporated to implement the algorithm. Com-
pared to conventional interpolation methods, the proposed algo-
rithm has the advantage of preserving edges. The simulations
demonstrated that our method obtained qualitatively competitive
interpolation images with high values of PSNR and SSIM. Note that
the calculated intensity distances can be used to detect edge and
textured regions of the image. In future work, we would like to
apply the proposed method selectively in these edge regions, and
process smooth regions using bicubic interpolation to speed up
the algorithm.
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