
Pattern Recognition 45 (2012) 3810–3824
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

$This

(A*STAR
n Corr

Technol

Tel.: þ6

E-m
journal homepage: www.elsevier.com/locate/pr
Two-dimensional histogram equalization and contrast enhancement$
Turgay Celik a,b,n

a Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
b Electrical and Electronics Engineering, Meliksah University, 38280 Talas/Kayseri, Turkey
a r t i c l e i n f o

Article history:

Received 27 November 2010

Received in revised form

19 January 2012

Accepted 21 March 2012
Available online 4 April 2012

Keywords:

Contrast enhancement

Histogram equalization

Image quality enhancement
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.03.019

work is supported by the Agency for Scienc

) of Singapore.

espondence address: Bioinformatics Institute

ogy and Research), 30 Biopolis Street, #07-0

5 9800 1377.

ail address: celikturgay@gmail.com
a b s t r a c t

In this paper, we propose a two-dimensional histogram equalization (2DHE) algorithm which utilizes

contextual information around each pixel to enhance the contrast of an input image. The algorithm is

based on the observation that the contrast in an image can be improved by increasing the grey-level

differences between each pixel and its neighbouring pixels. The image equalization is achieved by

assuming that for a given image, the modulus of the grey-level differences between pixels and their

neighbouring pixels are equally distributed. The well-known global histogram equalization algorithm is

a special case of 2DHE when contextual information is not utilized. 2DHE is easy to implement

requiring only a small number of simple arithmetic operations and is thus suitable for real-time

contrast enhancement applications. Experimental results show that 2DHE produces better or compar-

able enhanced images than several state-of-the-art algorithms. The only parameter in 2DHE which

requires tuning is the size of the spatial neighbourhood support which provides the contextual

information for a given dynamic range of the enhanced image. An automated parameter selection

algorithm is also presented. The algorithm can be applied to a wide range of image types.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Contrast enhancement of digital images is used to process an
input image such that the visual content of the output image is
more pleasing or more useful for machine vision applications.
However, choosing an appropriate contrast enhancement algo-
rithm is not an easy task due to the lack of the dependable
measures to quantify the output image quality. Furthermore,
enhancement algorithms usually rely on proper parameter selec-
tion which also suffers from lack of the dependable measures. To
solve these problems, there are a large number of enhancement
algorithms that have been proposed in the literature.

Contrast enhancement algorithms can be categorized into two
major groups according to the data domain they are applied to:
(1) transform-domain algorithms; and (2) image-domain algo-
rithms. Transform-domain algorithms decompose an input image
into different subbands so as to modify, globally or locally, the
magnitude of the desired frequency components of the image data
using multiscale analysis [1–4]. These algorithms enable the simul-
taneous global and local contrast enhancement by transforming the
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appropriate subbands and in the appropriate scales. The algorithms
are computationally complex, and in order to avoid degrading the
image, they require appropriate settings of the associated para-
meters. For example, the centre-surround Retinex [1] algorithm was
developed to achieve lightness and colour constancy in images,
where constancy refers to the perception of colour and lightness
invariant to spatial and spectral illumination variations. The
enhanced image has the benefits of compressed dynamic range
and colour independent of the spatial distribution of the scene
illumination. However, the enhanced image may include ‘‘halo’’
artefacts, especially along boundaries between large uniform
regions. A ‘‘greying out’’ can also occur resulting in the image of
the scene tending to middle grey. Second-generation wavelets are
used to produce enhanced images without ‘‘halo’’ artefacts. In edge-
avoiding wavelets based contrast enhancement algorithm (EAW)
[4], the wavelet coefficients in transform domain are modified and
inverse transform is applied to obtain contrast enhanced images.
The method achieves both global and local contrast enhancement at
the same time with a proper parameter selection.

Although the transform-domain contrast enhancement algo-
rithms had shown promising results in a variety of problem
domains, image-domain contrast enhancement algorithms are
widely used. Among image-domain algorithms, global histogram
equalization (HE) remains as one of the most popular techniques
for its implementation simplicity and satisfactory performance in
general [5]. HE uses an input-to-output mapping derived from the
cumulative distribution function (CDF) of the input image
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histogram. The CDF of the input image is mapped to the CDF of
the uniform distribution. The mapping causes grey levels with
large pixel populations to be expanded to occupy a larger range of
grey levels while the other grey-level ranges with fewer pixels are
compressed to smaller ranges. Although HE utilizes the available
grey scale of the image efficiently, it tends to over-enhance the
image contrast if there are large peaks in the histogram, resulting
in a harsh and noisy appearance of the enhanced image. HE do not
always produce satisfactory enhancement, especially for images
with large spatial variation in contrast. HE also tends to over-
emphasize any noise in an image.

Local histogram equalization (LHE) based enhancement algo-
rithms have been developed, e.g., [6,7], to address the aforemen-
tioned problems. The LHE in [7] uses a small window that slides
through every image pixel sequentially and the histogram of
pixels within the current position of the window is equalized.
The grey-level mapping for enhancement is applied only to the
centre pixel of the window. LHE sometimes over-enhances some
portion of the image and enhances any noise along with the image
features. LHE based algorithms also produce undesirable checker-
board effects. The computational complexity of LHE based algo-
rithms and their requirement for window size selection have led
researchers to improve the performance of HE using alternative
algorithms. Algorithms that focus on improving HE include bright-
ness preserving bi-histogram equalization (BBHE) [8], equal area
dualistic sub-image histogram equalization (DSIHE) [9], minimum
mean brightness error bi-histogram equalization (MMBEBHE)
[10], and minimum within-class variance multi-histogram equal-
ization (MWCVMHE) [11]. BBHE attempts to solve the brightness
preservation problem and uses the average grey level of the input
image pixels to split the image histogram into two histograms. The
two histograms are then independently equalized. Following the
same basic ideas used by the BBHE algorithm of decomposing the
original image histogram into two sub-histograms and then
equalize the sub-histograms, DSIHE splits the input image histo-
gram into two sub-histograms aiming at the maximization of the
Shannon’s entropy of the output image. MMBEBHE, an extension
of BBHE, provides maximal brightness preservation by searching
for a threshold level that decomposes the input image histogram
into two sub-histograms, such that the minimum brightness
difference between the input image and the output image is
achieved, whereas the former algorithms consider only the input
image to perform the decomposition. Although these algorithms
can achieve satisfactory contrast enhancement, the variation in
the grey-level distribution may result in annoying side effects [12].
Similar to the above mentioned algorithms, MWCVMHE automa-
tically partitions the input histogram into multiple sub-histograms
(each sub-histogram forms a class) by minimizing within-class
variance and then applies histogram equalization in each sub-
histogram separately. MWCVMHE applies dynamic programming
in optimizing a cost function formed from within-class variances
to achieve automatic histogram partitioning. It overcomes the
performances of the histogram partitioning based algorithms.
MWCVMHE achieves brightness preservation which may result
in a low-contrast output image.

Optimization algorithms have also been used for contrast
enhancement. Convex optimization is used in flattest histogram
specification with accurate brightness preservation (FHSABP) [13]
to transform the input image histogram into the flattest histo-
gram, subject to a mean brightness constraint. This is followed by
applying an exact histogram specification algorithm to preserve
the image brightness. FHSABP behaves very similar to HE when
the grey levels of the input image are equally distributed or when
the average brightness value of the input image is mid point of the
dynamic range, i.e., 127.5 when 8-bit data representation is con-
sidered. Since it is designed to preserve the average brightness,
FHSABP may produce low contrast results when the average bright-
ness is either too low or too high. Contrast enhancement in
histogram modification framework (HMF) is treated as an optimiza-
tion problem that minimizes a cost function [14]. Penalty terms are
introduced in the optimization process in order to address noise and
black/white stretching. By using different adaptive parameters, HMF
can achieve different levels of contrast enhancement. However, these
parameters need to be manually adjusted according to the image
content to achieve high contrast. In order to design a parameter free
contrast enhancement algorithm, genetic algorithm (GA) is
employed in [15] to find a target histogram which maximizes a
contrast measure based on edge information. We refer this algorithm
as contrast enhancement based on GA (CEBGA). CEBGA suffers from
the drawbacks of GA based algorithms, namely dependency on
initialization and convergence to a local optimum. The mapping to
the target histogram is scored only by the maximum contrast,
measured using the average edge strength estimated from the
gradient information. Thus, the resulting enhancement may not be
spatially smooth. Furthermore, the convergence time is proportional
to the number of distinct grey levels of the input image.

In this paper, we propose an adaptive image enhancement
algorithm named as two-dimensional histogram equalization
(2DHE) algorithm which is effective in terms of improving the
visual quality of different types of input images. 2DHE has only
one parameter to tune, namely the size of the spatial neighbour-
hood support which provides the contextual information. It only
requires a small number of simple arithmetic operations and is
thus suitable for real-time applications. The enhancement process
is based on the observation that contrast of an image can be
improved by increasing the grey-level differences between the
pixels of an input image and their neighbours. Furthermore, for
the purpose of image equalization, grey-level differences should
be equally distributed over the entire input image. To realize
these observations, a two-dimensional (2D) histogram of the
input image is constructed using mutual relationship between
each pixel and its neighbouring pixels. The final mapping
between input grey-levels and output grey-levels is achieved by
considering 2D input and target histograms. 2DHE is a general-
ized form of HE. When a single pixel is considered, 2DHE acts as
HE. However 2DHE starts to behave differently when the con-
textual information is considered. A metric which considers
discrete entropy and measure of contrast at the same pixel is
also proposed to achieve automatic parameter selection for the
proposed algorithm.

The paper is organized as follows. Section 2 presents the
proposed automatic image equalization algorithm. Section 3 pre-
sents the subjective and quantitative comparisons of the proposed
algorithm with several state-of-the-art enhancement techniques.
Section 4 concludes the paper.
2. Proposed algorithm

2.1. Grey-scale image enhancement

Consider an input image, X¼ fxði,jÞ91r irH,1r jrWg, of size
H �W pixels, where xði,jÞA ½0,Zþ � and assume that X has a
dynamic range of ½xd,xu� where xði,jÞA ½xd,xu�. The main objective
of the proposed algorithm is to generate an enhanced image,
Y¼ fyði,jÞ91r irH,1r jrWg, which has a better visual quality
than X. The dynamic range of Y can be stretched or compressed into
the interval ½yd,yu�, where yði,jÞA ½yd,yu�, ydoyu and yd,yuA ½0,Zþ �.

The conventional approach to enhance the image contrast in
an image is to manipulate the grey-level of individual pixels to
the required value by constructing a one-dimensional (1D)
intensity histogram and then transforming it. However, such an
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approach does not take into account the local contextual informa-
tion content in the image when constructing the histogram. In
order to consider contextual information around each pixel, a 2D
histogram is created, i.e., for each grey-level of the input image,
the distribution of other grey-levels in the neighbourhood of the
corresponding pixel is computed.

Let X ¼ fx1,x2, . . . ,xKg be the sorted set of K distinct grey-levels
of the input image X where x1ox2o . . .oxK , x1 ¼ xd, xK ¼ xu, and
the 2D histogram be expressed as

Hx ¼ fhxðm,nÞ91rmrK ,1rnrKg, ð1Þ

where hxðm,nÞAR. The hxðm,nÞ is computed as

hxðm,nÞ ¼
X
8i

X
8j

Xbw=2c

k ¼ �bw=2c

Xbw=2c

l ¼ �bw=2c

fm,nðxði,jÞ,xðiþk,jþ lÞÞð9xm�xn9þ1Þ,

ð2Þ

where w is an odd integer number used in parametrizing a square
w�w neighbourhood around each pixel, and fm,nðxði,jÞ,
xðiþk,jþ lÞÞAf0;1g is a binary function used in identifying the
occurrence of the grey-levels xm and xn at the spatial locations of
ði,jÞ and ðiþk,jþ lÞ, respectively, i.e.,

fm,nðxði,jÞ,xðiþk,jþ lÞÞ ¼
1, if xm ¼ xði,jÞ and xn ¼ xðiþk,jþ lÞ;

0, otherwise:

(

ð3Þ

The entry hxðm,nÞ is the number of occurrences of the nth grey-
level (xn) in the neighbourhood of the mth grey-level (xm)
weighted by their absolute valued differences ð9xm�xn9þ1Þ. One
is added to the absolute valued difference 9xm�xn9 to avoid giving
0 weight to occurrence of xm ¼ xn. Eq. (2) assigns higher weights
to the entries of the 2D histogram when the difference between
xm and xn is large, and vice versa. When the contrast of the image
is taken into consideration, one expects larger grey-level differ-
ences between the pixel under consideration and its neighbours
for improved contrast. Hence, the weighting mimics the basic
notion of the contrast and favours the combinations of xm and xn

according to the differences between them.
The elements of the 2D histogram hxðm,nÞ is normalized

according to

hxðm,nÞ ¼ hxðm,nÞ
XK

i ¼ 1

XK

j ¼ 1

hxði,jÞ

,
ð4Þ

to give a probability distribution which is summed to provide a
cumulative distribution as

Px ¼ fPxðmÞ9m¼ 1, . . . ,Kg, ð5Þ
Fig. 1. The input House image (a) and its normalized 2D histograms according to Eq.

11�11 (g), and 13�13 (f). For display purpose, hxðm,nÞ is shown in logarithmic scale
where

PxðmÞ ¼
Xm

i ¼ 1

XK

j ¼ 1

hxði,jÞ:

Different types of local neighbourhood can be employed,
however for a typical implementation of the proposed algorithm
w�w square neighbourhood around each pixel is considered. For
example, Fig. 1 shows the House image and its normalized 2D
histograms according to Eq. (4) using different size of local
neighbourhoods. The House image has more brighter regions,
thus its 2D histogram has larger values located at higher grey-
values. When the 2D histogram is observed closely, one can see
that the diagonal elements of the 2D histogram have larger
values. This is mainly due to the homogeneous regions in the
image. In homogeneous regions, the neighbours of each pixel
have very similar grey-levels which result in higher peaks at
diagonal or near-diagonal values of the 2D histogram. As can be
observed from Fig. 1(b)–(h), when the size of local neighbourhood
gets larger, the more contextual information is utilized. In 2D
histogram, peaks around main-diagonal elements are smeared
and while regions representing high differences between xm and
xn are enhanced.

Let Y ¼ fy1,y2, . . . ,yLg be the sorted set of L distinct grey-levels
of the output image Y where y1oy2o � � �oyL, y1 ¼ yd, yL ¼ yu for
a given output range of ½yd,yu�. In order to map the elements of X
to the elements of Y, one needs to find a 2D target probability
distribution function and its cumulative histogram. In a contrast
enhanced image, one expects that different combinations of grey-
level pairs are equally distributed. Thus, in order to enhance every
possible occurrence of grey-levels of input image pixels and their
neighbours equally, an optimum 2D uniformly distributed target
probability distribution function is formed as

Ht ¼ fhtðm
0,n0Þ ¼ 1=L291rm0rL,1rn0rLg, ð6Þ

where L is the number of the distinct grey-levels in the range
½yd,yu�, and

XL

m0 ¼ 1

XL

m0 ¼ 1

htðm
0,n0Þ ¼ 1:

The target cumulative distribution function formed using the
target probability distribution function htðm0,n0Þ is defined as

Pt ¼ fPtðm
0Þ9m0 ¼ 1, . . . ,Lg, ð7Þ
(4) using neighbourhoods of size 1�1 (b), 3�3 (c), 5�5 (d), 7�7 (e), 9�9 (f),

.
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where

Ptðm
0Þ ¼

Xm0
i ¼ 1

XL

j ¼ 1

htði,jÞ ¼
Xm0
i ¼ 1

L
1

L2
¼

m0

L
: ð8Þ

In order to enhance the image, the grey-levels of the input
image are transformed to the output grey-levels for a given
output range of ½yd,yu� using the cumulative distribution functions
PxðmÞ and Ptðm0Þ. The input grey-level xm is mapped to the output
grey-level ym0 by finding an index m0 for a given index m

according to

m0 ¼ argmin
iA f1;2,...,Lg

9PxðmÞ�PtðiÞ9: ð9Þ

Using Eq. (9), each distinct grey-level of the input image X is
transformed to a corresponding output grey-level to create an
enhanced output image Y. For ease of mathematical notation, the
subscript w in Yw is used to note that the output image is
obtained using 2DHE with square w�w neighbourhood around
each pixel is used in creating 2D histogram.

The resultant enhanced House images for different values of w

are shown in the first row of Fig. 2 for ½yd,yu� ¼ ½0;255� with the
input to output grey-level data mappings shown in the second
row of Fig. 2 and enhanced image histograms shown in the last
row of Fig. 2. Fig. 2(b) shows the result of 2DHE when w¼1 which
is the same output with that of HE. Fig. 2 shows that when the
contextual information is utilized 2DHE increases the brightness
of the input image while keeping the high contrast between
object regions when it is compared with the performance of HE
Fig. 2. Enhancing the input image shown in (a) using different size of local neighbourho

grey-level data mapping, and 1D histogram of the corresponding grey-level image, res
shown in Fig. 2(b). Thus, the effect of 2DHE can be noticed when
w41.

The proposed 2D histogram representation is a generalized
version of HE. When 1�1 (only single pixel is considered without
its neighbourhood) is utilized, the diagonal elements of 2D
histogram as shown in Fig. 1(b) corresponds to 1D histogram of
the input image. Thus, HE is a special case of the proposed
algorithm with w¼1.

2.2. Automatic parameter selection

2DHE is designed to improve visual impact by contrast
enhancement without resulting in uncomfortable viewing. It
depends on the parameter w. Different parameter settings result
in different output images. One can fine tune the parameter w

according to perceived contrast to create desired output. How-
ever, automatic parameter setting for which the output image has
higher contrast with respect to the input image makes the
algorithm to be applicable for general purpose contrast enhance-
ment applications.

The parameter w has a finite feasible range. Thus, each
different value of w from a finite set of possible values can be
quantified using the output image. An output image is considered
to have been enhanced over the input image if it enables the
image details to be better perceived. The information content of
the input image should be conserved in the output image.
Considering these observations, the output image produced by
the 2DHE is quantified according to a metric which combines
discrete entropy together with measure of contrast.
od. The first, second, and third rows are grey scale images, input (X) to output (Y)

pectively. (a) Input, (b) w¼ 1, (c) w¼ 3, (d) w¼ 5.
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The discrete entropy (DE) [16] of the input image X with K

distinct grey-levels is

DEðXÞ ¼ �
XK

k ¼ 1

pðxkÞlog pðxkÞ, ð10Þ

where pðxkÞ is the probability of pixel intensity xk which is
estimated from the normalized histogram. Similarly, the discrete
entropy of the output image Yw with L distinct grey-levels is
defined as

DEðYwÞ ¼�
XL

l ¼ 1

pðylÞlog pðylÞ, ð11Þ

where pðylÞ is the probability of pixel intensity yl. A higher value
of DE indicates the image has richer details. Using the metrics
DEðXÞ and DEðYwÞ, the normalized discrete entropy (DENðX,YwÞA
½0;1�) between input image X and output image Yw is defined as

DENðX,YwÞ ¼
1

1þ
ðlog ð256Þ�DEðYwÞÞ

ðlog ð256Þ�DEðXÞÞ

, ð12Þ

where log ð256Þ is the maximum value of entropy that can be
achieved using 8-bits data representation. For DENðX,YwÞ40:5,
the output image Yw has higher discrete entropy than that of the
input image X, and vice versa. The higher the value of normalized
discrete entropy, the better the enhancement is in terms of
utilizing the dynamic range and providing better image details.

The edge based contrast measure (CM) is based on the
observation that the human perception mechanisms are very
sensitive to contours (or edges) [17]. The grey level corresponding
to object frontiers is obtained by computing the average value of
the pixel grey levels weighted by their edge values. The contrast
cði,jÞ for a pixel of an image X located at ði,jÞ is thus defined as

cði,jÞ ¼
9xði,jÞ�eði,jÞ9
9xði,jÞþeði,jÞ9

, ð13Þ

where the mean edge grey level is

eði,jÞ ¼
X

ðk,lÞAN ði,jÞ
gðk,lÞxðk,lÞ

, X
ðk,lÞAN ði,jÞ

gðk,lÞ, ð14Þ

N ði,jÞ is the set of all neighbouring pixels of pixel ði,jÞ, and gðk,lÞ is
the edge value at pixel ðk,lÞ. Without loss of generality we employ
3�3 neighbourhood, and gðk,lÞ is the magnitude of the image
gradient estimated using the Sobel operators [5]. CM for image X
is thus computed as the average contrast value, i.e.,

CMðXÞ ¼
XH

i ¼ 1

XW
j ¼ 1

cði,jÞ

,
HW : ð15Þ

It is expected that for an output image Yw of an input image X, the
contrast is improved when CMðYwÞZCMðXÞ. Using this observa-
tion, we define a new measure normalized edge based contrast
measure CMN between input image X and output image Yw as
follows:

CMNðX,YwÞ ¼
1

1þ
ð1�CMðYwÞÞ

ð1�CMðXÞÞ

, ð16Þ

where CMNðX,YwÞA ½0;1�. When the output image Yw has lower
contrast than that of the input image X, the corresponding
CMNðX,YwÞ becomes CMNðX,YwÞo0:5. CMNðX,YwÞZ0:5 corre-
sponds to cases where the output image Yw has higher contrast
value than that of the input image X.

By considering the finite range of w, the measures DENðX,YwÞ

and CMNðX,YwÞ between input image X and output image Yw are
first normalized into the interval of ½0;1� and are then combined
under a single measure, referred to as discrete entropy and
contrast measure (DECMðX,YwÞ) using harmonic mean, i.e.,

DECMðX,YwÞ ¼
2

1

DENðX,YwÞ
þ

1

CMNðX,YwÞ

, ð17Þ

where DECMðX,YwÞA ½0;1� gives high values when the normalized
discrete entropy and contrast measures are high, and vice versa.
Thus, for a range of possible values of parameter w, the value of w

(wo) can be automatically selected according to the first local
maximum value of DECMðX,YwÞ resulted from enhanced images
with different realizations of w, i.e.,

wo ¼ arglocalmax
8wA 3,minðH,WÞ=2½ �

DECMðX,YwÞ: ð18Þ

Although the range ½3,min H,Wð Þ=2� is large, the measure usually
converges to local maximum for wr15.

In the third row of Fig. 3 plots of metrics DENðX,YwÞ,
CMNðX,YwÞ, and DECMðX,YwÞ are shown for output images
resulted from applying 2DHE on input images shown in the first
row of Fig. 3 using variable window size parameter w. The second
row of Fig. 3 shows the output images resulted from 2DHE using
automatic window parameter selection according to Eq. (18). As
can be easily noticed, 2DHE with automatic window size para-
meter w selection produces visually pleasing results.

2.3. Colour image enhancement

One approach to extend the grey-level contrast enhancement
algorithm to colour images is to apply the algorithm to their
luminance component only and preserve the chrominance com-
ponents. Another is to multiply the chrominance values with the
ratio of their input and output luminance values to preserve the
hue. The former approach is employed in this paper where an
input RGB image is transformed to CIE Lnanbn colour space [5] and
the luminance component Ln is processed for contrast enhance-
ment. The inverse transformation is then applied to obtain the
contrast enhanced RGB image.
3. Experimental results

We used a dataset comprising standard test images from
[18,19] to evaluate and compare the proposed algorithm with
our implementations of HE [5], MWCVMHE [11], FHSABP [13], the
weighted histogram approximation of HMF [14], and CEBGA [15].
All algorithms except HMF do not require parameter tuning. The
parameter of HMF is set by maximizing its performance for a
given input image in terms of visual quality and quantitative
measures. For the proposed algorithm, automatic parameter
selection is used. The test images show wide variations in terms
of average image intensity and contrast. Thus they are suitable for
measuring the strength of a contrast enhancement algorithm
under different circumstances.

3.1. Quantitative measures

An output image is considered to have been enhanced over the
input image if it enables the image details to be better perceived.
An assessment of image enhancement is not an easy task as an
improved perception is difficult to quantify. Nevertheless, in
practice it is desirable to have both quantitative and subjective
assessments. It is therefore necessary to establish a basis which
defines a good measure of enhancement. In order to quantify
contrast enhancement between input image X and output image
Y, we use normalized discrete entropy DENðX,YÞ defined in



Fig. 3. Enhancing the input images shown in the first row by automatically selecting window parameter w according to Eq. (18) which utilizes metrics shown in the third

row to produce the output images shown in the second row. (a) wo ¼ 5, (b) wo ¼ 9, (c) wo ¼ 9, (d) wo ¼ 7.
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Eq. (12) and normalized edge based contrast measure CMNðX,YÞ
defined in Eq. (16).

For a consumer electronics application brightness preservation
may be used as pre-condition in contrast enhancement process.
Thus, one needs to quantify the brightness preservation. We
adopt absolute mean brightness error (AMBE) [10] which is the
absolute difference between the mean values of input image X
and output image Y to define the normalized absolute mean
brightness error (AMBENA ½0;1�), i.e.,

AMBENðX,YÞ ¼
1

1þ9MBðXÞ�MBðYÞ9
, ð19Þ

where MBðXÞ and MBðYÞ are the average values of X and Y,
respectively. The higher the value of AMBEN, the better is the
brightness preservation, and vice versa.
3.2. Qualitative assessment

3.2.1. Grey-scale images

Some example contrast enhancement results and correspond-
ing input to output grey-level mapping functions resulted
from the different algorithms for grey-scale images are shown
in Figs. 4–7.

The input (original) Plane image [18] in Fig. 4(a) shows a low-
contrast image comprising light and dark regions corresponding
to ground, plane and shadow. HE has darken the image consider-
ably to increase the contrast between regions. This is verified by
the mapping function in Fig. 4(h) which shows that the input
grey-level range [3, 150] is mapped to output grey-level range [0,
12]. Although HE has increased the contrast between different
regions of the input image, it considerably reduces the contrast
within each region of the image. The entire plane is mapped to
darker grey-levels, and thus most of its texture is not identifiable.
MWCVMHE produces visually pleasing output image. This is
because applying multi-histogram equalization reduces the over
darkening effect of HE. However, one can easily notice that
regions belonging to ground have low-contrast which makes it
difficult to see the ground texture. FHSABP produces a brighter
image which has better visual quality and contrast than the result
of HE. The mapping function of FHSABP follows a similar shape as
that of HE, but it maps the range [3, 150] to [0, 69]. Thus, it is also
easier to identify the texture on the plane. Like HE, HMF finds a
target histogram which is the minimum distance between input
histogram and uniformly distributed histogram. It thus produces
a similar shaped mapping function as that of HE. However, it
maps [3, 150] to [0, 16] which results in a slightly brighter output
image when it is compared with the result of HE. Due to the
image details not being sharp, CEBGA can only change the overall
brightness of the image. This is verified by the mapping function
which is almost parallel to the no-change mapping. CEBGA maps
input grey-level range [3, 150] to output grey-level range [1, 159]
which results in almost no change in the output image, except for
a slight increased in contrast. The contextual information in the
image is considered when producing the 2D histogram, which
makes it possible for the proposed algorithm to model the
intensity values of ground, plane and shadow regions. Input
grey-level values are assigned to output grey-level values accord-
ing to the contextual information extracted from input image. The
input grey-level range [3, 150] is mapped to output grey-level
range [0, 90]. Thus, 2DHE improves the overall contrast while
preserving the image details. In its output image, it is easy to
identify the texture of the ground as well as the plane.

The input Tank image [18] in Fig. 5(a) has an average bright-
ness value of 132. HE and FHSABP produce similar output images
and similar mapping functions as shown in Fig. 5(h). This is
because the average brightness value is very near to 127. The
contrast between the tank and its surrounding is significantly
increased. However, the details in the darker area of the tank
body are barely noticeable. The output of MWCVMHE has higher
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Fig. 4. Contrast enhancement results for image Plane. (a) Original image. Enhanced images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and

(g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images are shown in (h) where ‘‘NC’’ refers to no-change mapping.
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Fig. 5. Contrast enhancement results for image Tank. (a) Original image. Enhanced images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and

(g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images are shown in (h) where ‘‘NC’’ refers to no-change mapping.
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contrast than that of the input image, however, the overall
contrast can be further improved by using the whole dynamic
range. The output of HMF is visually pleasing and the contrast
between the tank and its surrounding is high enough to reveal
details on both the tank and its surrounding. However, when the
ground is closely observed, the details of the tank track created by
its palettes are lost in the enhanced image. CEBGA produces a
higher contrast image but bright when it is compared with the
input image. The output image of the 2DHE has high enough
contrast to reveal the different objects and their details in the
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Fig. 6. Contrast enhancement results for image Cameraman. (a) Original image. Enhanced images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA;

and (g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images are shown in (h) where ‘‘NC’’ refers to no-change mapping.
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Fig. 7. Contrast enhancement results for image Baboon. (a) Original image. Enhanced images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and

(g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images are shown in (h) where ‘‘NC’’ refers to no-change mapping.
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image. The tank and its details, tank tracks, bushes and other
details on the ground can be easily identified.

The input Cameraman image shown in Fig. 6(a) has very dark
and bright regions. The dark colour of the cameraman’s coat
makes it difficult to identify its details, e.g., buttons and front
pocket. Behind the cameraman are the light coloured sky and
buildings in shade varying between dark and light. The input
image has a dynamic range of ½7;253� and has average brightness
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value of 119. The output images of HE, MWCVMHE and FHSABP,
and their mapping functions in Fig. 6(h) reveal that they produce
very similar results. In both enhanced images, it is easy to identify
the details of the coat. However, the deformations caused by
mapping on the sky and cameraman’s face degrade the visual
quality. HMF improves the contrast significantly with slight
deformations on the sky. The deformations on the sky region
are caused by the sharp change in its mapping function toward
higher grey levels. Furthermore, it is hard to identify the details
on the coat. Due to the high contrast between the coat and the
background, and utilization of full dynamic range in input image,
CEBGA achieves slight enhancement which is verified by its
mapping function. 2DHE produces increased contrast while keep-
ing the details on the different regions in the enhanced image. The
details of the coat can be easily identified, and the enhanced
image is free of the deformations in the results of HE, FHSABP
and HMF.
Fig. 8. Contrast enhancement results for image Cessna. (a) Original image. Enhanced im

(g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images a

references to color in this figure caption, the reader is referred to the web version of t

Fig. 9. Contrast enhancement results for image Lighthouse. (a) Original image. Enhance

and (g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale ima

of the references to color in this figure caption, the reader is referred to the web versi
The input Baboon image shown in Fig. 7(a) has very rich
texture content and has an average brightness value of 129. HE
and FHSABP produces almost the same results which are verified
by their mapping function in Fig. 7(h). MWCVMHE, HMF and
CEBGA generate similar output images. However, the contrast of
these images is not as high as those of HE and FHSABP. 2DHE also
performs similarly to HE and FHSABP with slightly higher bright-
ness mapping for lower values of the input grey-levels. However,
when the output image of the proposed algorithm is compared
with those of HE and FHSABP, it provides clearer details especially
around the dark region left of the baboon’s nose.

3.2.2. Colour images

Some example contrast enhancement results and correspond-
ing input to output grey-level mapping functions resulted from
the different algorithms for colour images are shown in Figs.
8–11.
0 50 100 150 200 250
0

50

100

150

200

250

x (grey level)

y 
(g

re
y 

le
ve

l)

ages obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and

re shown in (h) where ‘‘NC’’ refers to no-change mapping. (For interpretation of the

his article.)

0 50 100 150 200 250
0

50

100

150

200

250

x (grey level)

y 
(g

re
y 

le
ve

l)

d images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA;

ges are shown in (h) where ‘‘NC’’ refers to no-change mapping. (For interpretation

on of this article.)



0 50 100 150 200 250
0

50

100

150

200

250

x (grey level)

y 
(g

re
y 

le
ve

l)

Fig. 10. Contrast enhancement results for image Beach. (a) Original image. Enhanced images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and

(g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images are shown in (h) where ‘‘NC’’ refers to no-change mapping. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 11. Contrast enhancement results for image Island. (a) Original image. Enhanced images obtained using: (b) HE; (c) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and

(g) 2DHE. Input to output grey-level mapping functions of enhanced grey-scale images are shown in (h) where ‘‘NC’’ refers to no-change mapping. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)
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The input image Cessna in Fig. 8(a) shows a plane on a grass
field against a background of sky. Due to the bright white sky
with a faint orange tint while the rest of the image (i.e., regions
below the plane) is relatively dark, it is difficult to discriminate
the details on the plane and its surrounding. HE, FHSABP and HMF
generate similar output images with high image degradations.
This is especially so in the sky region where the original orange
tint has been separated into noticeable layers of coloured regions
ranging from dark orange to light grey. The various details in the
image are not as clear as in the input image due to the darkening
of the image in the case of the results of HE and HMF, and the
lightening of the result of FHSABP. Fig. 8(h) shows that except for
the differences in terms of brightness level the input to output
grey-level mapping functions of HE, FHSABP and HMF are
very similar, i.e., similar shaped curves parallel to one another.
As can be noticed from mapping function of MWCVMHE, it makes
almost no change between the input and output images. CEBGA
generates a slightly improved output image in the area below the
plane with no degradations in the sky. Its mapping function is
similar to the no-change mapping function except for the mid-
grey level range. 2DHE, on the other hand, provides an output
image with no image degradations in the sky, and the details on
the plane are clearly visible. This is because of its input to output
grey-level mapping function shows both the low and mid-to-high
grey level ranges have been stretched with varying degree but not
too excessive to cause image degradations.

For the input Lighthouse image shown in Fig. 9(a), the over
enhancement provided by HE and FHSABP darken some areas of
the cliff, sea and sky. There is loss of details in the darkened
regions. Fig. 9(h) shows that this darkening effect is caused by
both mapping functions stretching the low to mid-grey level
range much more than the mid-grey to high grey level range.
Since the mapping functions of MWCVMHE, HMF and CEBGA are
both similar to the no-change mapping they generate similar



Table 2
Quantitative measurement results as AMBEN.

Image HE MWCVMHE FHSABP HMF CEBGA 2DHE

Plane 0.0260 0.0824 0.1246 0.2328 0.0330 0.3269

Tank 0.4928 0.1039 0.2140 0.0661 0.0239 0.0360

Cameraman 0.0944 0.1471 0.5470 0.2601 0.0782 0.0473

Baboon 0.3618 0.4936 0.7338 0.0938 0.0564 0.1276

Cessna 0.0197 0.2926 0.2308 0.0392 0.2225 0.5973

Lighthouse 0.1141 0.7862 0.5283 0.1587 0.4376 0.0973
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results with a slight increase in contrast. On the other hand, 2DHE
increases both the contrast and the average brightness to improve
the overall image quality. The details in the image are also clearer.

For the input Beach image as shown in Fig. 10(a), HE and HMF
cause the couple and the distant hill to be too dark, thus their
details are not visible. The darkening are verified by the mapping
of a greater range of low-to-high grey levels in the input image to
the low grey levels in the output image as shown in Fig. 10(h).
MWCVMHE, FHSABP, CEBGA and 2DHE increase the overall
contrast considerably by making the colours in the image richer
while maintaining high visual quality which enables image
details to be identified.

For the input Island image as shown in Fig. 11(a), MWCVMHE,
HMF and CEBGA produce output images which have slightly
improved contrast with respect to the input image. This can also
be verified from the mapping functions shown in Fig. 11(h). HE,
FHSABP and 2DHE provide contrast enhancement in terms of
richer colours and increased contrast, while retaining the details
and visual quality.
Beach 0.0198 0.1603 0.6743 0.0467 0.0371 0.0245

Island 0.2495 0.5470 0.5625 0.0932 0.1524 0.1873

Average 0.1723 0.3266 0.4519 0.1238 0.1301 0.1805

Table 3
Quantitative measurement results as DEN.

Image HE MWCVMHE FHSABP HMF CEBGA 2DHE

Plane 0.4920 0.4909 0.4973 0.4935 0.4975 0.4990

Tank 0.4880 0.4867 0.4895 0.4945 0.4525 0.4950

Cameraman 0.4458 0.4516 0.4432 0.4585 0.3876 0.4812

Baboon 0.4572 0.4630 0.4588 0.4785 0.3197 0.4802

Cessna 0.4623 0.4690 0.4558 0.4522 0.4560 0.4815

Lighthouse 0.4502 0.4597 0.4538 0.4847 0.3625 0.4866

Beach 0.4528 0.4630 0.4501 0.4619 0.4389 0.4767

Island 0.4532 0.4573 0.4517 0.4843 0.3787 0.4670

Average 0.4627 0.4677 0.4625 0.4760 0.4117 0.4830

Table 4
Quantitative measurement results as CMN.

Image HE MWCVMHE FHSABP HMF CEBGA 2DHE

Plane 0.5540 0.5138 0.5268 0.5299 0.5050 0.5264

Tank 0.5556 0.5197 0.5524 0.5296 0.5112 0.5351

Cameraman 0.5128 0.5060 0.5165 0.5071 0.5099 0.5158
3.2.3. Visual assessment score

In order to assign a visual assessment score to each algorithm
for each enhanced image, subjective perceived quality tests are
performed by a group of 15 subjects on the results of the six
contrast enhancement algorithm for the eight test images. For
each test on a test image, a subject is shown seven images at the
same time: the original test image (placed in the centre of view)
and the output images processed by six algorithms (randomly
placed around the original test image). The subject is then asked
to score the quality of the processed image by assigning one of the
six numeric scores (0, 1, 2, 3, 4 and 5), where score ‘‘0’’ is for very
bad and annoying enhancement (the image quality is totally
distorted), score ‘‘3’’ is for no noticeable enhancement (natural
and similar to the original image), score ‘‘5’’ is for significant
enhancement without annoying distortion (looks natural across
the overall image), and other values are selected according to the
perceived image quality.

The mean opinion scores (MOSs) and the corresponding
standard deviations of the visual assessment are shown in
Table 1. The MOS support the qualitative assessments in Section
3.2. For each test image, the standard deviations of MOS of
different algorithms are similar, which indicate the uncertainty
of each subject in scoring is similar. Table 1 also shows that only
2DHE always improve the image quality since all of their MOS are
greater than 3 (where score ‘‘3’’ indicates natural and similar to
the original image).
Baboon 0.5422 0.5096 0.5408 0.5103 0.5031 0.5266

Cessna 0.5220 0.5040 0.4975 0.5064 0.5067 0.5103

Lighthouse 0.5348 0.5078 0.5310 0.5103 0.5049 0.5192

Beach 0.5305 0.5061 0.5116 0.5191 0.5097 0.5164

Island 0.5256 0.5072 0.5261 0.5189 0.5124 0.5234

Average 0.5347 0.5093 0.5253 0.5164 0.5079 0.5217
3.3. Quantitative assessment

The visual assessments are supplemented by the computed
quantitative measures tabulated in Tables 2–4 for measures
Table 1
Subjective quality test scores as mean opinion score (MOS).

Image HE MWCVMHE FHS

Plane 1.371.1 3.570.5 2.1

Tank 4.170.9 3.170.9 4.2

Cameraman 2.171.1 2.371.0 2.1

Baboon 4.670.5 3.170.2 4.5

Cessna 0.770.8 2.571.1 0.9

Lighthouse 4.570.7 2.170.8 4.5

Beach 2.771.2 3.671.3 3.3

Island 4.371.3 2.471.1 4.4
AMBEN, DEN and CMN, respectively. For colour images, the
measures are calculated on their luminance channel only.

The average AMBEN in Table 2 values show that FHSABP
outperforms all other algorithms in brightness preservation
except. This is an expected result since FHSABP employs an
optimization algorithm with a constraint of keeping the mean
brightness values of input and output image the same. However,
preserving the mean brightness does not always preserve the
ABP HMF CEBGA 2DHE

70.3 0.370.4 3.170.9 4.570.5

70.8 4.170.8 3.370.6 4.370.7

70.9 3.270.7 3.570.6 3.870.6

70.5 3.271.1 3.270.9 4.570.3

71.1 0.770.9 3.771.0 3.971.2

70.6 2.970.7 2.970.5 4.470.3

71.2 1.171.2 3.870.7 3.571.0

71.2 3.171.3 3.370.9 4.470.9



T. Celik / Pattern Recognition 45 (2012) 3810–3824 3821
natural look of an image or increase the overall contrast. For
example although FHSABP provides the best AMBEN value of
0.5470 for the Cameraman image, its output image as shown in
Fig. 6(d) is worse than the input image in terms of visual quality
Table 5
Average quantitative measurement results as AMBEN, DEN and CMN on 300 test

images from Berkeley image dataset [20].

Method AMBEN DEN CMN

HE 0.1034 0.4496 0.5253

MWCVMHE 0.5014 0.4651 0.5064

FHSABP 0.5468 0.4531 0.5231

HMF 0.1182 0.4572 0.5141

CEBGA 0.1746 0.3610 0.5103

2DHE 0.2052 0.4822 0.5263

Fig. 12. Histograms of input images (a) and enhanced images obtained using: (b) HE; (c

each row shows the results for Plane, Tank, Cameraman, Baboon, Cessna, Lighthouse, Beac

luminance component (Ln component). (For interpretation of the references to color in
and contrast. Conversely, although the proposed algorithm per-
forms worse than FHSABP in terms of average AMBEN, unlike
FHSABP the visual assessment scores of all of its enhanced images
are above 3 which means it produces visually pleasing images
with respect to input images.

The DEN values in Table 3 show that the proposed algorithm
outperforms all the other algorithms. Although one would expect
HE to give a higher entropy as its results have a more uniform
histogram distribution, HE groups bins and this decreases the DEN

value. Since MWCVMHE and FHSABP behave similarly to HE, their
DEN values are similar to HE. Since HMF also preserves the overall
entropy of an image, its DEN values are thus high. CEBGA provides
the lowest DEN value because it generally maps consecutive grey
values of the input image to the same grey values in the output
image, which reduces the overall entropy of the output image.
The high value of DEN, which is generally very close to that of the
input image, shows that the proposed algorithm is successful in
) MWCVMHE; (d) FHSABP; (e) HMF; (f) CEBGA; and (g) 2DHE. From top to bottom

h and Island images, respectively. For colour images, the histograms are shown for

this figure caption, the reader is referred to the web version of this article.)
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preserving the contextual information while improving the visual
quality.

The CMN values in Table 4 show that HE achieves the best
performance. FHSABP and the proposed algorithm produces DEN

values that are larger than those of MWCVMHE, HMF and CEBGA,
but lower than that of HE. They thus achieve the second best in
performance according to this quantitative measure.

In order to evaluate the performance of the six algorithms for a
wide range of images, they are applied to 300 test images from
Berkeley image dataset [20]. The average measurement values of
AMBEN, DEN and CMN are reported in Table 5. Similar to the above
presented results, FHSABP overcomes the other algorithms in
terms of the average AMBEN value. Meanwhile, 2DHE achieves the
best in terms of average DEN and CMN values. Thus, 2DHE
achieves the best contrast enhancement due to the largest value
of CMN meanwhile it protects the content of the image better than
Table 6
Kullback–Leibler (KL) distances between the grey-level distributions of the

processed output images resulted from different algorithms and uniform

distribution.

Image HE MWCVMHE FHSABP HMF CEBGA 2DHE

Plane 4.13 4.14 4.04 4.10 4.04 4.01

Tank 2.63 2.64 2.61 2.56 3.03 2.55

Cameraman 1.23 1.20 1.24 1.17 1.56 1.07

Baboon 0.76 0.74 0.76 0.70 1.37 0.69

Cessna 2.27 2.21 2.33 2.37 2.33 2.11

Lighthouse 1.22 1.17 1.20 1.06 1.75 1.06

Beach 1.41 1.35 1.42 1.36 1.49 1.28

Island 0.94 0.92 0.94 0.83 1.27 0.89

Fig. 13. (b–k) Results of the proposed algorithm on an input image (a) from Kodak d

quantitative measurement results of the enhanced images of 24 test images from Ko

support parameter w. For display purpose all measures are normalized to ½0;1� by divi

w¼7, (e) w¼9, (f) w¼11, (g) w¼13, (h) w¼15, (i) w¼17, (j) w¼19, (k) w¼21 and (l)
the other algorithms considered in this paper as it produces the
largest value of DEN.
3.3.1. Assessing histogram equalization capability

Histogram equalization refers to processing input image to
utilize the dynamic range efficiently by mapping an input into
output image such that there is equal number of pixels at each
grey-level in output. Thus, it is expected that the equalized output
image has flattened grey-level distribution. However, it should be
noted that the process should not change the overall shape of the
input histogram to protect the image content.

In order to quantitatively measure how flattened the output
grey-level distribution is Kullback–Leibler (KL) distance between
the distribution of the processed output image (pðykÞ) and uni-
form distribution (qðykÞ) is used. The KL-distance is a natural
distance function from a ‘‘true’’ probability distribution, pðykÞ, to a
‘‘target’’ probability distribution, qðykÞ, i.e.,

KLðp,qÞ ¼
X
8k

pðykÞlog2
pðykÞ

qðykÞ

� �
: ð20Þ

The lower the value of KL, the better the histogram
equalization is.

In Fig. 12, the input and output histograms resulted from
different algorithms are shown for the test images. The corre-
sponding KL-distances are reported in Table 6. The results show
that 2DHE preserves the shape of the histogram while it flattens
it. According to the reported KL-distances, the best histogram
equalization is achieved by 2DHE.
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3.4. The effect of spatial neighbourhood support

The parameter w which is used to define a square w�w

spatial support of the neighbourhood around each pixel is the
only tuning parameter of the proposed algorithm. The results
presented in Sections 3.2 and 3.3 are for automatic parameter
selection. Although automated parameter selection produces
satisfactory results, one can further improve the output image
by varying w. The higher the value of w, the more contextual
information is utilized in the enhancement process. However, it
should be noted that when the value of w gets larger, the
contextual information around each pixel approaches the global
contextual information of the image.

To demonstrate the effects of varying the size of the spatial
neighbourhood support, 24 test images from Kodak dataset [19]
are enhanced using the proposed algorithm for different values of
w. The average of resulting quantitative measures is shown in
Fig. 13(l), where for display purpose all measures are normalized
to ½0;1� by dividing each measure with the maximum measure
obtained. Samples of enhanced images for varying values of w are
shown in Fig. 13(b)–(k) for a sample image from the Kodak
Fig. 14. Contrast enhancement results for image Flower. (a, e) Original image. Enhance

with fine scale enhancement; and (d, h) 2DHE.
dataset. It is clear that different performance results can be
achieved by varying the spatial neighbourhood size.

The plots for AMBEN and DEN in Fig. 13(l) suggest that the
algorithm achieves better enhancement with a bigger local
neighbourhood support. However, the plot for CMN indicates
slight performance loss, which is negligible, with high values of w.
3.5. Comparisons with edge-avoiding wavelets based contrast

enhancement algorithm

Edge-avoiding wavelet based contrast enhancement algorithm
(EAW) [4] achieves global and local contrast enhancement at the
same time with a proper parameter selection. Different scale
enhancements achieved by modifying the transform domain
coefficients reveal details on images. Meanwhile, 2DHE performs
a global contrast enhancement. Thus, one expects that EAW
outperforms the 2DHE in terms of contrast enhancement. In order
to make comparisons, the contrast enhancement results from
EAW [4] are utilized in experiments. The Flower image [4] shown
in Fig. 14(a) is used.
d images obtained using: (b, f) EAW with medium scale enhancement; (c, g) EAW
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In Fig. 14(b) and (c), the results of EAW are shown for medium
and fine scale enhancements. The output of 2DHE is shown in
Fig. 14(d). It is clear that EAW produces high contrast output.
Meanwhile, 2DHE algorithm also improves the contrast and
produces visually pleasing result. The difference in results is
caused from the reason that EAW can enhance the details locally,
meanwhile 2DHE can only enhance the details globally. However,
when the algorithms are applied on a subregion of Flower image
as shown in Fig. 14(e), it can be observed from Fig. 14(f)–(h) that
2DHE can produce comparable result with respect to EAW at a
very low computational requirement.
4. Conclusions

In this paper, we proposed an automatic image enhancement
algorithm which employs contextual data modelling using 2D
histogram of an input image to perform non-linear data mapping
for generating visually pleasing enhancement on different types
of images. The proposed algorithm can be applied to both grey-
level and colour images with only the size of the spatial neigh-
bour support requiring some tuning. Performance comparisons
with state-of-the-art enhancement algorithms show that the
proposed algorithm achieves satisfactory image equalization even
under diverse illumination conditions. It improves the colour
content, brightness and contrast of an image. By achieving high
discrete entropy preservation between the input and output
images, it preserves the overall content of an input image while
providing sufficient contrast enhancement. This is mainly because
the proposed algorithm employs contextual information between
pixels and their neighbours.

The size of the square local neighbourhood around each pixel
determines the performance of the proposed algorithm. The well-
known global histogram equalization is a special case of the
proposed algorithm when a single pixel with no neighbourhood is
used in computing 2D histogram. A metric which combines the
discrete entropy with edge based contrast measure is used to
automatically estimate the size of the local neighbourhood. It is
observed that metric based parameter estimation produces
visually pleasing results. However, one can fine tune the local
neighbourhood size to achieve different results which brings a
flexibility to the proposed algorithm.

The proposed algorithm is simple yet effective for image
contrast enhancement. It requires a small number of simple
mathematical operations to generate a contrast enhanced image.
Thus, it can be applied in real-time applications that require image
contrast enhancement while retaining overall image content.
Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:http://dx.doi.org.10.1016/j.patcog.
2012.03.019.
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