
www.eink.com 

Electronic Ink 
E Ink is the inventor of several novel types of electrophoretic ink, often called electronic ink. When laminated 
to a plastic film, and then adhered to electronics, it creates an Electronic Paper Display (EPD). It's so much like 
paper, it utilizes the same pigments used in the printing industry today. 

 

Two Pigment Ink System 

The two pigment electronic ink system is made up of millions of tiny microcapsules, each about the diameter of 

a human hair (100m). Each microcapsule contains positively charged white particles (TiO2) and negatively 
charged black particles (carbon black) suspended in a clear fluid. When a positive or negative electric field is 
applied, corresponding particles move to the top of the microcapsule where they become visible to the viewer. 
This makes the surface appear white or black at that spot. 

 

E Ink Pearl™ 

E Ink Pearl™ gives eReaders a contrast ratio close to that of a paperback book. Pearl's 16 levels of grey produce 
the sharpest rendering of images with smooth tones and rich detail. E Ink Pearl offers update times ranging from 
50-250ms. In addition, E Ink Pearl supports localized animation for more enticing advertising content for 
eNewspaper or eMagazines and a richer educational experience in eTextbooks. 

E Ink Pearl modules consist of a TFT (thin film transistor), Ink layer and Protective Sheet. In addition, product 
designers can include a touch solution. E Ink currently offers digitizer and capacitive touch solutions. Digitizer 
touch technology utilizes a stylus to update the display, with the touch sensor sitting under the TFT. Capacitive 
touch technology utilizes finger swipes, and is placed on top of the display module. E Ink's touch solutions will 
not affect the reflectivity of the display. 

 

Three Pigment Ink System 

E Ink also offers a 3-pigment (b+w+red or b+w+yellow) ink system in a microcup structure. This ink was 
engineered specifically for Electronic Shelf Labels (ESL). It works similarly to the dual pigment system, in that a 
charge is applied to the pigments, and to a top and bottom electrode to facilitate movement.  

 

Advanced Color ePaper (ACeP) 

In 2016 E Ink showcased a multi-pigment ink system, Advanced Color ePaper (ACeP). ACeP achieves a full color 
gamut using only colored pigments. Color is achieved by having all the colored pigments in every pixel, removing 
the need for a color filter array.  
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A Full-Color Electrophoretic Display† 

Stephen J. Telfer and Michael D. McCreary 
E Ink Corporation, 1000 Technology Park Drive, Billerica, MA 01821, USA 

 
Abstract 
Full color electrophoretic displays utilizing colored particles, no 
color filter array, and a single TFT array backplane have been 
demonstrated for the first time.  A full color gamut including all 
eight primary colors has been achieved with a single layer of 
electrophoretic fluid addressed with voltages compatible with 
commercially demonstrated TFT backplanes. Displays have been 
made with incorporation of the electrophoretic fluid into both 
Microcup® and microcapsule structures. 

Author Keywords 
E Ink; Microcup®; microcapsules; electrophoretic display; full 
color; Advanced Color ePaper; ACeP 

1. Introduction 
For many years researchers have been seeking a reflective display 
technology that reproduces the appearance of printed paper – with 
high reflectivity and high contrast over a full range of viewing 
angles – while at the same time providing an image that is stable 
when the display is not driven.  Black and white electrophoretic 
displays satisfy all these requirements, but extending their 
advantages to full color has proved to be very challenging.   
Adding a color filter array (CFA) to a monochrome display is a 
simple approach but has achieved only limited success for several 
fundamental reasons.  Color filters absorb light and thereby limit 
reflectivity, most obviously in the white state.  Further, the color 
filter pattern permits only side-by-side combinations of the 
primary colors, reducing resolution, color saturation and lightness.  
While approaches to side-by-side color reflective displays without 
using a CFA result in a more reflective white state [1], colors are 
still compromised.  The ideal color reflective display has no 
filters, a single backplane, and a design in which every pixel can 
be switched from the white state to every color.  
E Ink recently introduced electrophoretic displays without a CFA 
that include a highlight color in addition to black and white [2].    
The additional color is provided by a light-scattering pigment 
whose opacity hides the other pigments when it is closest to the 
viewing surface.  It might seem natural to extend this concept to 
all colors, but in a set of scattering pigments only those at the 
surface are visible, limiting the range of colors to those 
corresponding to the pigments. However, a full-color reflective 
display must render, at a minimum, eight primary colors: the three 
subtractive primaries (cyan, magenta and yellow), three 
combinations of two subtractive primaries (red, green, and blue), 
a combination of all subtractive primaries (black), and white.  
This is most efficiently achieved by the use of four pigments: a 
white, scattering pigment, and three minimally scattering 
pigments that are cyan, magenta and yellow in color.  All primary 
colors may be achieved by mixtures of these four pigments [3].   
There have been several prior investigations into four-pigment, 
full-color electrophoretic displays.  Multilayer, stacked 
electrophoretic displays have been proposed by several research 
groups and in some cases demonstrated [4].   The three color 
channels can be independently addressed, since each color 
pigment layer is provided with its own array of addressing 
electrodes, but this requires a complex structure that would be 

costly to manufacture and would suffer from parallax issues at 
high resolution. Other attempts at stacked reflective color displays 
using cholesteric LCD [5][6], electrochromic layers [7], or 
electro-osmosis [8] suffer from similar issues complexity and 
performance issues. 
A full-color display using four pigments and only a single 
electrophoretic layer has been described in which adhesion 
thresholds are provided between the pigments and the front and 
rear surfaces of cavities containing them [9], but in practice only a 
three-pigment device of this kind, which did not demonstrate full 
color, has been reduced to practice with a thin-film transistor 
(TFT) array.    
In summary, despite multiple efforts using a wide variety of 
different approaches, there has been no demonstration of a 
reflective electrophoretic display using colored pigments and no 
CFA that can achieve full color without significant compromise.  
E Ink’s new ACeP technology now provides a solution to this 
problem.  

2. Advanced Color ePaper (ACeP) 
ACeP uses a single electrophoretic layer that contains three 
transparent, colored pigments (cyan, magenta, and yellow) and a 
light-scattering white pigment. Two of the pigments are positively 
charged and two negatively charged. The four pigments are 
induced to move in such a way that the relative position of each 
colored pigment with respect to the white pigment is controlled. 
Although the minimum number of pigments required for rendition 
of full color is four, it is possible to add additional pigments in 
order to enhance particular colors.  For example, the color black 
in the baseline ACeP formulation is a composite of yellow, 
magenta and cyan.  A more complex system could also include a 
true black pigment.  The techniques for pigment separation 
described below may be applied to mixtures of more than four 
pigments, although of course the difficulty of separating the 
pigments will increase.  
Several methods are known for achieving selective electrophoretic 
motion of particles. The simplest involves “racing” between 
pigments having different electrophoretic mobilities [10]. Such a 
race is complicated by the fact that the motion of charged 
pigments itself changes the electric fields experienced locally 
within the electrophoretic fluid. In addition, the mobilities of 
certain pigments are sometimes voltage- or current-dependent 
[11]. ACeP formulations take advantage of pigment racing, but on 
its own it is not sufficient to ensure full control of color. 
It is well known that when pigments of different types are mixed 
together they will usually associate in some way. Pigment 
aggregation may be charge-mediated (Coulombic) or may arise as 
a result of, for example, Van der Waals or hydrogen bonding 
interactions. Whatever its origin, the interparticle bonding 
strength may be influenced by the surface treatment of the 
pigment particles, the use of polymeric additives, and the choice 
of charge control surfactants (among other factors).  
There are four possible pairings of oppositely-charged pigments 
in the simplest ACeP formulations. The electric field strengths 
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E Ink’s Advanced 
Color ePaper 
(ACeP) uses 
four different 
types of pigment 
particles, 
varying in size 
and charge. The 
system applies 
varying electric 
fields to push 
and pull them 
to different 
positions in 
each trapezoidal 
Microcup to 
create the 
desired colors.

While our researchers were coming up with this 
filtered display, others in our labs focused on a dif-
ferent approach, called multipigment, that didn’t 
rely on color filters. However, that approach requires 
far more complicated chemistry and mechanics.

 
Multipigment e-paper also shares fundamentals 
with its monochrome predecessors. However, 
instead of only two types of particles, there are now 
three or four, depending on the colors chosen for a 
particular application.

We needed to get these particles to respond 
uniquely to electric fields, not simply be attracted or 
repelled. We did a few things to our ink particles to 
allow them to be better sorted. We made the particles 
different sizes—larger particles will generally move 
more slowly in liquid than smaller ones. We varied 
the charges of the particles, taking advantage of the 
fact that charge is more analog than digital. That is, 
it can be very positive, a little positive, very negative, 
or a little negative. And a lot of gradations in between.

Once we had our particles differentiated, we had 
to adapt our waveforms; instead of just sending one 
set of particles to the top as another goes to the 
bottom, we both push and pull them to create an 
image. For example, we can push particles of one 
color to the top, then pull them back a little so they 
mix with other particles to create a specific shade. 
Cyan and yellow together, for example, produce 
green, with white particles providing a reflective 
background. The closer a particle is to the surface, 
the greater the intensity of that color in the mix.

We also changed the shape of our container, from 
a sphere to a trapezoid, which gave us better control 
over the vertical position of the particles. We call 
these containers Microcups.

For the three-particle system, now on the market 
as E Ink Spectra and used primarily in electronic shelf 
labels (ESLs), we put black, white, and red or black, 
white, and yellow pigments into each Microcup. In 
2021, we added a fourth particle to this system; our 

new generation uses black, white, red, and yellow 
particles. These are great for generating deeply sat-
urated colors with high contrast, but these four colors 
cannot be combined to create full-color images. This 
technology was first launched in 2013 for retail ESLs. 
Companies have built E Ink screens into millions of 
these tags, shipping them throughout the world to 
retailers such as Best Buy, Macy’s, and Walmart. Sim-
ilar electrophoretic shelf labels that use displays from 
China’s DKE Co. have since come on the market.

For our true, full-color system, which we call 
Advanced Color ePaper (ACeP), we also use four 
particles, but we have dropped the black and rely on 
white—our paper—along with cyan, magenta, and 
yellow, the colors used in inkjet printers. By stopping 
the particles at different levels, we can use these 
particles to create up to 50,000 colors. The resulting 
display renders colors like those in newspapers or 
even watercolor art.

E Ink launched ACeP as E Ink Gallery in 2016. 
Again, it wasn’t appropriate for consumer devices, 
because of slow refresh rates. Also, as it’s a reflective 
display without a backlight, the colors were too 
muted for consumers accustomed to bright smart-
phone and tablet displays. For now, it has been geared 
predominantly toward use in retail signs in Asia.

 

R
ealizing we still weren’t hitting the 
consumer-market sweet spot with our 
color displays, our R&D team went 
back to take another look at Triton, the 
system that used RGB color filters. 
What worked and what didn’t? Were 

there modifications we could make to finally pro-
duce a color e-reader that consumers would want?

We knew the filters were sapping brightness. We 
were pretty sure we could significantly reduce this 
loss by getting the filters closer to the electronic ink.

We also wanted to increase the resolution of the 
displays, which meant a much finer color-filter array. 
To get a resolution more in line with what consum-

Green Orange Black White Yellow
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