
Theoretical size of a file representing

• a 5k x 4k colour photograph: 5000 x 4000 x 3 = 60 MB

• 1 min of UHD tv video: 3840 x 2160 x 3 x 24 x 60 = 36 GB

→ Compression is needed, either reversible (lossless) or

irreversible (lossy)

APPROACHES:

A. Increase coding efficiency

B. Exploit spatial and temporal redundancy

C. Eliminate irrelevant or imperceptible information

 → Size can be reduced by a factor in the approx. range [5, 100]

 A B C

Image compression

Efficient coding: image A has four gray levels

Bit rate:

• Fixed-length code: Lavg = Sk l(rk) pr(rk) = 8 bpp [bit per pixel]

• 4-levels fixed-length code: Lavg = 2 bpp

• “Code 2”: Lavg = 1.81 bpp

Image compression

Spatial redundancy: in image B

• rows are randomly ordered (vertical correlation = 0)

• columns are identical (horizontal correlation = 1)

→ A run-length code can be used, formed by a sequence of pairs
(graylevel, length)

Image compression

Irrelevant or imperceptible information: image C could be
represented by 1 byte only (average gray level)

But histogram equalization shows:

Its further coding becomes application-dependent

Note that if one decides to discard the "noise" and/or the "structure",
the compression becomes irreversible

Image compression

Huffman coding (1952) [exploits coding redundancy]

For a given source, it yields the smallest number of code symbols per
source symbols (among scalar coders; vector coders can do
better)

Step 1: combine symbols into a tree of groups based on probability
Step 2: descend the tree and progressively generate each code

Example:

Image compression

Image compression

 (assigning a ‘0’ or a ‘1’ to each level is irrelevant)

Lfixed-length = 3 bpp

Lavg = 1x0.4 + 2x0.3 + 3x0.1 + 4x0.1 + 5x(0.06+0.04) = 2.2 bpp

while the entropy of a zero-memory source having this pdf is:

 H = -Sk pr(rk) log2 pr(rk) = 2.14 bpp

Note: code strings are uniquely decodable. E.g.: 010101000111011...

Note: The code dictionary has to be saved/sent too, or has to be fixed

Note: More sophisticated (but sometimes proprietary) coding tools
 exist, such as Arithmetic coding

Image compression

Block transform coding

• Goal: pack most of the block information into the smallest
number of transform coefficients

• Quantized transform → Intrinsically lossy coding

• Risk of blocking artifacts

Image compression

In principle, any unitary (AN
-1= AN

*T) (orthogonal if real) transform can

be used: DFT, DCT, WHT, KLT...

e.g. Cosine and Walsh-Hadamard basis functions for n=4

• Periodicity artifact of DFT vs. DCT

and WHT

Image compression

Best transform?

Lena: reconstructed image and reconstruction error

• 8x8 blocks, largest 50% of the coefficients in each block are used

 DFT (rmse=2.32) WHT (1.78) DCT (1.13)

Image compression

Best way to select the
coefficients?

Reconstruction using

 →

Largest magnitude subset of
12.5% of the coefficients

 →

Maximum variance subset of
12.5% of the coefficients
(ideal in the information-
theoretic sense)

Image compression

Note: the positions of the selected coefficients
must be stored/sent too →

Or, a standardized path can be followed for the
selection, such as zigzag ordering

Image compression

Quantizer: coefficient selection in last slides was on/off

 → Can be refined using scaling + rounding

• Encoding:

• Decoding:),(),(ˆ),(
~

),(

),(
round),(ˆ

vuZvuTvuT

vuZ

vuT
vuT

=









=

Typical
quantization
matrix Z(u,v)
for coefficients
in the range
[-128:127]

c = desired
quantization
step

Image compression

The quantization matrix itself can be scaled to change its effects.
Compression ratios below are: 12, 19, 30; 49, 85, 182

Image compression: JPEG

JPEG baseline coding (lossy; a lossless version of JPEG exists too)

8 x 8 image block:

shifted by -128:

(to enable using
signed integer format
[-128,127] for all
data)

Image compression: JPEG

JPEG baseline coding

DCT:

Quantized DCT:

Zig-zag ordered DCT:

Image compression: JPEG

JPEG baseline coding

• The difference between the DC term and the one of the previous
block is calculated and Huffman-coded.

• For AC terms, a special Huffman coding allowing for runs of zeros is
used

 (-26 -DCprev) -3 1 -3 -2 -6 2 -4 ...

 →

Note: spaces are inserted here only for readability

Image compression: JPEG

JPEG baseline coding

When decoding, the DCT

block becomes (compare

to original one)

and a reconstruction

error is generated in

the data domain

(Was -415: risk of blocking artifact)

Image compression: JPEG

JPEG baseline coding

reconstructed image error detail

25:1

52:1

Image compression: JPEG

JPEG baseline coding of COLOR images

• Avoid separate coding of RGB channels

(correlated data) → convert to luma+chroma: YCbCr

• Chroma components are often downsampled

Quant=1; 4:4:4 Quant=1; 4:2:0 Quant=4; 4:2:0

Image compression

Wavelet coding (lossy)

• No need to operate on blocks, since wavelet transform is
inherently local

 → no blocking artifacts

• Images can however be split into a few tiles, to permit
independent coding/decoding of image portions

Image compression

Wavelet coding (lossy) Haar Daubechies

JPEG 2000
(lossy)

25:1

52:1

75:1

105:1

Image compression

Predictive coding (lossless)

• 1-D signals; easily extended to 2-D or 3-D data, provided a causality
description (ordering) is defined

• Optimal predictors can be derived basing on the correlation matrix of
the signal

𝑒 𝑛 = 𝑓 𝑛 − መ𝑓 𝑛

𝑓 𝑛 = 𝑒 𝑛 + መ𝑓 𝑛

signed integer

Image compression

Simplest 2-D predictor

• Note: prediction error
has 1 more bit than
original data. However...

• Error distribution is
approx. Laplacian

)]1,([round),(ˆ −= yxfyxf 

1=

Image compression

Predictive coding (lossy)

• Decoder is the same as in the lossless case, apart from rounding

• Predictor loop in the encoder avoids error buildup at the decoder

→ For both encoder and decoder,)(ˆ)()(nfnenf += 

𝑒 𝑛 = 𝑓 𝑛 − መ𝑓 𝑛

𝑓 𝑛 = 𝑒 𝑛 + መ𝑓 𝑛

→ dip14_2_LossyPredCodec.m

Image compression

Standard and popular image and video formats

Image compression

High Efficiency Video
Coding (HEVC) defined
jointly by ISO/IEC (as
ISO/IEC 23008-2) and
ITU-T (as H. 265) and
also referred to as
MPEG-H Part 2.

• Jpeg XT (High Dynamic Range & Wide Color Gamut)
• Jpeg Pleno (Plenoptic aka Lightfield imaging)

• … and of course: Jpeg AI

gr
Text Box
--> https://jpeg.org

	Slide 1: Image compression
	Slide 2: Image compression
	Slide 3: Image compression
	Slide 4: Image compression
	Slide 5: Image compression
	Slide 6: Image compression
	Slide 7: Image compression
	Slide 8: Image compression
	Slide 9: Image compression
	Slide 10: Image compression
	Slide 11: Image compression
	Slide 12: Image compression
	Slide 13: Image compression
	Slide 14: Image compression: JPEG
	Slide 15: Image compression: JPEG
	Slide 16: Image compression: JPEG
	Slide 17: Image compression: JPEG
	Slide 18: Image compression: JPEG
	Slide 19: Image compression: JPEG
	Slide 20: Image compression
	Slide 21: Image compression
	Slide 22
	Slide 23: Image compression
	Slide 24: Image compression
	Slide 25: Image compression
	Slide 26: Image compression
	Slide 27: Image compression

