i % UNIVERSITA
¢} DEGLI STUDI
=< \’\v::, / DITRIESTE

Image segmentation

- Towards image analysis

Goal: Describe the contents of an image, distinguishing meaningful
information from irrelevant one.

First step: Segmentation, i.e. subdivision of the image into its
constituent parts or objects. Autonomous segmentation is one of the
most difficult tasks in image processing!

Segmentation algorithms are based on two basic properties of gray-
level values:

e Discontinuity: the image is partitioned based on abrupt changes in
gray level. Main approach is edge detection.

e Similarity: the image is partitioned into homogeneous regions. Main
approaches are thresholding, region growing, and region splitting
and merging.

Copyright notice: Most images in these slides are
© Gonzalez and Woods, Digital Image Processing, Prentice-Hall



Toy problem & kids’ problem
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FIGURE 10.1 (a) Image containing a region of constant intensity. (b) Image showing the
boundary of the inner region, obtained from intensity discontinuities. (c) Result of
segmenting the image into two regions. (d) Image containing a textured region.
(e) Result of edge computations. Note the large number of small edges that are
connected to the original boundary, making it difficult to find a unique boundary using
only edge information. (f) Result of segmentation based on region properties.
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Image segmentation: discontinuities

3 basic types of discontinuities in digital images: Points, Lines, Edges.

SNR-optimal linear filter in i.i.d. Gaussian noise: matched filter, a.k.a.
template matching, a.k.a. cross-correlation approach

- . i
Point detection IR R Sl

FIGURE 10.2
—1 8 —1 (a) Point
detection mask.

e.g. detect a tiny hole in a turbine blade 1 1 1 Uj’f]' I’f—r:-tiyi[n{ﬂfaei
. . . . - o o ol a turbine dlade
(dar“k pixel v:nthm the bright zone below) with 2 porosity.

N

(c) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems

(c): g = |filter(f)] (d): |g|>T, with T= 0.9*max(|g|)
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Image segmentation: discontinuities

Thin line detection

The output of the convolution will be stronger where a one-pixel-wide
line is present in the corresponding direction.

Note: zero-sum masks (~ second-order directional derivative)

—1 —1 —1 —1 —1 2 —1 2 —1 2 —1 —]

2 2 2 —1 2 —1 —1 2 —1 —1 2 —1

—1 —1 —1 2 —1 —1 —1 2 —1 —1 —1 2
Horizontal +45° Vertical —45"
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Image segmentation: discontinuities

Edge: boundary between two regions
with significantly distinct gray levels

Edge models, (also for roof edge):

_
7

Typical real-world problems:

« edges with different slopes
« objects with different sizes
- scale-space operators?
« uneven illumination
« not significant (?) details
* noise
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Image segmentation: discontinuities

of 1-D case
—=f(x+D)-f(x)
OX

First-order derivative has

nonzero phase response
o* f
W:[f(x+1)— f(x)]-[f(x)— f(x-1)] /—
= f(x+1)+ f(x-1)-2f(x) t_-

/M

9
Ideal ramp edge plus noise .;
naving st = 0.1, 1, 10 gy [N NN

levels (out of 256); first- and
second-order derivatives M MWM
I




Image segmentation: discontinuities
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2-D case y
Gradient vector Gradient vector
Gradient .‘)
Vf=|:i i:| | i__/‘ al- ofe! '
5X ’ 8y M I : Edg,u direction
2 2
f of
| VI |= Q + 6— . a=tan™ i/— -1 | =2 | -1 1| o 1
OX oy oy OX
0 0 0 -2 0 2
-1 -1 | 1 -1 0 0 | -1
1 2 1 -1 0 1
1 0 1 1 0
Roberts 0 1 2 -2 | -1 0
2 2
Laplacian vy?f :8 f+5 f -1 0 1 -1 | 0 1
aXZ ayZ
-2 | -1 0 0 1 2

Sobel H/V or45/135 degq.

Sobel
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Image segmentation: discontinuities =
cd

FIGURE 10.16

(a) Original image
of size

834 X 1114 pixels,
with intensity
values scaled to
the range [0, 1].
(b) |8/, the
component of the
gradient in the
x-direction,
obtained using
the Sobel mask in
Fig. 10.14(%) to
filter the image.
(c) |8/, obtained
using the mask in
Fig. 10.14(g).

(d) The gradient
image, |8x| + |8y|.
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Image segmentation: discontinuities

Edges from diagonal masks




Image segmentation: discontinuities
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FIGURE 10.18
Same sequence as
in Fig. 10.16, but
with the original
image smoothed
usinga S X 5
averaging filter
prior to edge
detection.



FE%  UNIVERSITA
Y DEGLI STUDI

[ 5 ( CELET
A
H{_:\ %f/
S DITRIESTE

Image segmentation: discontinuities

Thresholded images

ab

FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold
selected as 33% of the highest value in the image; this threshold was just high enough to
eliminate most of the brick edges in the gradient image. (b) Thresholded version of the
image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in
that image.
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Image segmentation: discontinuities

Edge detection based on zero crossings of second-order derivative
(Marr-Hildreth operator)

Standard implementation of a Laplacian: ool TS
—1 4 —1 —1 8 —1
e Its magnitude produces double edges L -1 | -1 | -1

e Unable to detect the edge direction
e \VVery sensitive to noise - use Laplacian of Gaussian instead:

G(r)=exp(-r®/2c%); ri’=x*+y*, —-K<xy<K

VG(r) =(_—£jexp(—r2/202); VZG(r) :_L
O

2 2

_26 jexp(— r?/2c°)

O



Image segmentation: discontinuities

"Mexican hat" filter

VG

VG

Zero crossing —\

/— Zero crossing

— X200 i+

0 -1 0 0
-1 -2 | -1 0
-2 16 -2 | -1
-1 -2 | -1 0
0 -1 0 0
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FIGURE 10.21

(a) Three-
dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
Crossings.

(d) 5 X 5 mask
approximation to
the shape in (a).



Image segmentation: discontinuities

To detect the zero crossings of the LoG image:

« center a 3x3 mask on each pixel p(x,y) of the LoG image

« check all pairs (p1,p>) of opposite neighbors (l/r, u/d, 45,
135)

« pis edge if at least in one pair pixels have different sign

« to reduce "noise”, consider only {p: abs(pi-p>)>thresh.}

FIGURE 10.22

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0, 1]. (b) Results
of Steps 1 and 2 of
the Marr-Hildreth
algorithm using

o =4and n = 25.
(c) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).

(d) Zero crossings
found using a
threshold equal to
4% of the
maximum value of
the image in (b).
Note the thin
edges.



Quality criteria
small false alarm rate, small missed detection rate
good localization
one-pixel-wide edges

- Canny edge detector
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Comparison between
Sobel (before
thresholding) and
zero crossings of LoG

Edges in LoG are
thinner and tend to
form loops; objects
size is altered
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Image segmentation: discontinuities

Canny operator

« A good approximation of an ideal detector for 1-D noisy step-
edges is the derivative of the Gaussian
VG(X) = ( jexp( x*/20?)
o°

« In 2D, its response should be independent of the direction of the
edge - circularly symmetric lowpass Gaussian filter, followed
by computation of the gradient

 |G(x,y)| shows thick patterns =2 non-maxima suppression:
1. determine the quantized direction d, of the gradient
2. if |G(x,y)| < at least one of its neighbours along dy
then set it to zero

« Perform hysteresis thresholding to reduce false alarms



Image segmentation: discontinuities

Canny operator
Non-maxima suppression: gradient directions

-1575° +157.5°

Edge normal
'

nplpplpalle | 2| P

-y

Pa Pe P4 ps Ps

Edge Edge normal

(gradient vector)

Pr|BRs | Po|| P | Ps | P

Edge normal \+22.5°

-1575° ‘ +157.5°

-112.5°

<— Vertical edge

-67.5° +67.5°

~45°%dge

-22.5° +22.5°

Horizontal edge
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FIGURE 10.24

(a) Two possible
orientations of a
horizontal edge (in
gray)ina3 X 3
neighborhood.

(b) Range of values
(in gray) of a, the
direction angle of
the edge normal,
for a horizontal
edge. (c) The angle
ranges of the edge
normals for the
four types of edge
directions in a

3 X3
neighborhood.
Each edge
direction has two
ranges, shown in
corresponding
shades of gray.
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Image segmentation: discontinuities

Canny operator:
Hysteresis thresholding
reduces both false alarms and missed detections

1. Set two thresholds: T, and Ty, with Ty =3 T,
2. Generate two binary images:
= {lG(x,y)| > T4} (strong edges)
G =A{|G(x,y)| > T} (strong and weak edges)
3. Eliminate from G all strong edge pixels (pixels that are nonzero in
Gh): GL = GL - G
4. Label all pixels in Gy as edge
5. Fill edge gaps:
a. Visit each nonzero pixel p in Gy and mark as edge all pixels
in G| that are 8-connected to p
b. Reset all unmarked pixels in G
c. Final edge image = Gy + G|
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I = 0.04, Ty = 0.10 (normalized pixel values) FIGURE 10.25
o = 4, mask size =25x25 (a) Original image

of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0,1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.




T|_ = 005,
Ty = 0.15
o= 2,
mask size
=13x13

FIGURE 10.26

(a) Original head
CT image of size
512 X 512 pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.

(d) Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)
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Image segmentation: edge linking

We need closed boundaries for objects in image

- Local processing: image points with similar gradient
Join the detected edge pixels according to their similarity (e.g., similar
amplitude and direction of the gradient), and form a boundary

E.g.: looking for rectangles

« calculate image gradient G(x,y)

« scan G(x,y) along rows and build binary edge image, setting pixels

« re-scan by rows and fill gaps shorter than L
- do the same by columns, Gapgre = 0£6, or 180+ deg.
« add the two resulting images
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-2 Note
detected
license plate

FIGURE 10.27 (a) A 534 X 566 image of the rear of a vehicle. (b) Gradient magnitude
image. (c) Horizontally connected edge pixels. (d) Vertically connected edge pixels.
(e) The logical OR of the two preceding images. (f) Final result obtained using
morphological thinning. (Original image courtesy of Perceptics Corporation.)



Image segmentation: edge linking

- Global processing: the Hough transform

« A more efficient method to detect straight lines
« Can be generalized to curves

Principle: transform (edge) points into lines

1.
2.
3.

6.

Generic line through a point in the image (X, Y;): Y, =ax +b

In the parameters space (a,b), (X;,Y;) define a line b=-x.a+.
Take a second point in the image along the same generic line; its
representation in the parameters space is:

Note that the two lines in the parameters space are no longer the
same line (their slope and intercept x, y are different)

Let (a’,b’) be the coordinates at which the two lines intercept in the
parameters space

a’and b’ are the slope and intercept of the specific line through
(X%, ¥i) s (X, Y5)



Image segmentation: edge linking

- Global processing: the Hough transform

- - b
|
| bh=—-xa+y
s (2. ¥;) :
|
» |:-'r.|,-. _1,.-!} \
b = _-TF'IIT + |I-'r
¥ ¥
X il
image Space parameter Space

7. All points located on such a line in the image plane map to lines in
the parameters space which intersect at (a’,b”) [indeed, the line in
the image plane sets a well-defined pair of (slope,intersect) values]
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Image segmentation: edge linking

- Global processing: the Hough transform

a,. Umin 0 bua . Suppose the image contains discontinuous
. straight edges that we want to connect
i Subdivide the parameters space into a

matrix A(a,b) of cells and reset it

Of ooe coe For each edge point (X.,Y.) in the image

For each value of a Each run of the

. solve b=-xa+y. inner loop plots
a line in A that
corresponds to
an edge point

. increment A(a,b)

max

Y
a

The value Q in A(a,b) indicates that Q edge points in the image lie on a
line of slope a and intersect b
- Bright points in A show the parameters of the main edges in the image.

Problem: vertical edges are difficult to represent since a tends to infinity
Solution: use the normal form (trigonometric form) of a line:
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Image segmentation: edge linking

- Global processing: the Hough transform

-y

i
5 /

L]
f

x;cost) + y;sinfl = p

xjcostl +|y;sinfl = p

XCOSF+ysind=p p

¥

* p
Points in the image space now define a sinusoid in the parameters space

Let (X, ¥;), (X;,Y;) define two sinusoids that intersect in (p',0') > these
are the parameters of a line through (X;,¥;), (X;,Y;) in the image

Define a matrix A(p,0) and reset it.
For each edge point in the image

For each value of @, find p; increment A(p,0)
- Bright points in A show the parameters of the main edges in the image



Image of size
101x101;
origin in pt.1

=50 —

50

100

(ol @ s
Sinusoids in the Hough domain:

pt.1 > p= 0 for any value of 4

pt.2 2> 0+ 100 sind=p

pt.4 > 100 cosféd+ 0 =p

pt.3 > 50 cosf + 50 sind = p

pt.5 > 100 cosf + 100 sinfd = p

Points 1,...5 in (x,y) are
mapped to sinusoids
with amplitude p

1,3,5 are aligned;
sinusoids intersect at
(0,45) (A)

2,3,4 are aligned;

sinusoids intersect at
(70.7, -45) (B)

p reflects specularly at
0 =90, 6 =-90 (Q,R,S):
edges are both vertical
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FIGURE 10.34 (a) A 502 X 564 aerial image of an airport. (b) Edge image obtained using Canny’s algorithm.
(c) Hough parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in
the image plane corresponding to the points highlighted by the boxes). (e¢) Lines superimposed on the
original image.

E.g.: The Hough transform can be used to find reference lines in
sports-field homographies (see slide in GeometricTransf)
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Image segmentation: edge linking

- Global processing: the Hough transform
* Note 1:

Length of a segment is determined looking back at the positions of the
edge points (first, last, aligned clusters) that contribute to A(p,0)

* Note 2:

The HT can be used in principle for any edge shape, represented by a
function of the type g(v,coef)=0, where v is a vector of coordinates and
coef is a vector of coefficients.

- E.qg.: looking for circular obiects: (x-a)™2 + (y-b)"2 = c”2

Three parameters (a,b,c), 3-D parameter space, cube-like cells,
accumulator takes the form A(/,j, k).

Procedure:
1. Increment ag and b
2. Solve for c
3. Update the accumulator associated with (a,b,c)

it.mathworks.com/help/images/hough-transform.html



Image segmentation: similarities

Thresholding

1 if f(x,y)>T

g(x’y):{o it f(x,y)<T

|||||“ |‘I| | II‘ |I| - ||‘ hllll,-ll”|‘lllll‘ Ml .
T T, T

a b

FIGURE 10.26 (a) Grray-level histograms that can be partitioned by {a) a single thresh-
old, and (b) multiple thresholds.
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Image segmentation: similarities

Thresholding (global) for noisy or textured objects

abc
de f

FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard
deviation of 10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of
50 intensity levels. (d)—(f) Corresponding histograms.

(Edge-preserving noise smoothing preprocessing useful)

=)

63 127 151 255| o 63 127 191 255| [0 63 127 191 255
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Image segmentation: similarities

Thresholding (global) illumination x reflectance model

abc ; , 3
NBEE 0 63 127 191 255 |0 0.2 04 0.6 08 1] [0 63 127 191 255

FIGURE 10.37 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c¢) Product of (a) and (b).
(d)—(f) Corresponding histograms.

(Retinex preprocessing useful)
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Image segmentation: similarities

Thresholding (global)

(IMorphoIogicaI postprocessing useful)

0 63 127 191 255

A simple algorithm: Select a first value for T=T7(0); threshold the
image; evaluate the average gray-levels Ga, Gb of the two groups; set

T(1)=(Ga+Gb)/2; repeat until |T(k)-T(k-1)| < ¢

Optimal for split histograms, suboptimal for generic bimodal histograms
(see later), unusable for single mode or multimodal histograms
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Image segmentation: similarities

Thresholding (global, optimal)

FIGURE 10.32 p(z)
Grav-level i
probability
density functions
of two regions in
an image.

More formally: A bimodal histogram can indicate the presence of two
objects in the image, i.e. it can be the weighted sum of two unimodal
densities (one for light, one for dark areas): p(z) = P; p1(2) + Py p>(2)

The parameters (probabilities P; and P, , with P, + P, =1) are proportional
to the areas of the picture of each brightness.

If a mathematical expression for the densities p,(2), p,(z) is known or
assumed, determining an optimal (e.g. MMSE) threshold is possible.
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Image segmentation: similarities

Thresholding (global, optimal)

Consider a simple case (Ming Jiang 5.1.2).

(a) optimal optimal optimal
threshold

! ' distribution of objects
" distribution of background

optimal ;
(h) threshold lt:-phmall
conyventional
cofventional 1{
threshold

Figure 5.4 (rey level histograms approzimated by two normal distribu-
tions; the threshold is set to give minimum probability of segmenfafion er-
ror: {a) Probability distributions of background and objects, {b) corresponding
histograms and opiimal threshold.
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Image segmentation: similarities

Thresholding (global, optimal) using a confusion matrix

actual value

Q oS ne
S P d
S o
8_ FP o
©
L o =
O o
T £ 1 1 )
— L :
tot P N

Above threshold  TP: # true positive
FP: # false positive

Below threshold TN: # true negative
FN: # false negative



""" % UNIVERSITA

kl.'\ & ﬁﬁ& DEGLI STUDI

.\f“ " DITRIESTE

Image segmentation: similarities

Thresholding (global, optimal)

Assume the image consists of object(s) and background, where the
object occupy P, of the pixels (P; + P, =1). Assume both object and
background are subject to a Normal distribution; by the total probability
rule, the image has the following density function:

__ kR _(Z ﬂl) 2 _(Z_:Uz)2
P(z) = Glx/g exp( 20, )+ azx/ﬂ exp 207 )

Let 7 be the threshold. A mis-segmentation takes place in two cases:

* Background pixels mis-classified into object pixels (FP): the error
probability (or the number of errors) is E1

* Object pixels mis-classified into background pixels (FN): the error
probability (or the number of errors) is E2

(00]

T
EL(T) = j py(2)dz; E2(T) = j py(2)dz

T

The total segmentation error is E(T) = P; E1(T) + P, E2(T)
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Image segmentation: similarities
Thresholding (global, optimal)

The total mis-segmentation erroris E(T) = P; E1(T) + P, E2(T)

The optimal threshold is T = arg min{E(T)}. Differentiating E(T):
Py E1Y(T) + P, E2(T) =0

Substituting the formula for the Gaussian into the above equation:

R (T_/Ul)z 2
exp(— =——2 __exp(-
glﬂ P 207 ) sz/g 3 207 )

=) (=) _ o R0
207 207 P,o,

Two specific examples: — o2 o P LAt
e If the s.d. are the same: = g

H— P, 2

o If the s.d. are the same and P;=P,=1/2: T*=%



Image segmentation: similarities
Thresholding (Otsu) no hypotheses on the distribution;

method based just on image histogram

For any interval of gray levels [K1, K2], define CDF, mean, variance:

Z' a? Z =K1 )N H= Zu Kli Pis o’ :Zitil(i_ﬂ)z Pi,

All are functions of (K1,K2), omitted

« Let class 1 be formed by all pixels whose gray level is < a threshold T;
class 2 by pixels > T;

- Define the between-class variance o?; as the squared distance of the
mean intensity value of each class y,, 1, from the global mean g,
weighted by the relative fraction of pixels in the class P,, P, :

He = P+ Py,
0% = Pyt~ 1e)? + Py (tp— pig)? = P1 Py (1 — 1)
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Image segmentation: similarities

Thresholding (Otsu)

Otsu: All possible thresholds are evaluated, and the one (T*) that
maximizes the between-class variance is chosen.

« BTW, this is equivalent to finding the minimum intra-class variance

« 025 is a measure of separation between the classes

« Quality of result is given by the normalized between-class variance,
called separability, measured at T*

n(T)=oci(T)/ o’ 0<n(T)<1

« Otsu’s method can be extended to multiple thresholds



Image segmentation: similarities

Thresholding (Otsu)

127

255

T =169
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FIGURE 10.39

(a) Original
image.

(b) Histogram
(high peaks were
clipped to
highlight details in
the lower values).
(c) Segmentation
result using the
basic global
algorithm from
Section 10.3.2.
(d) Result
obtained using
Otsu’s method.

™ =181

n = 0.467



Image segmentation: similarities
Region growing

A defective weld

1. Select seed regions (e.q.
values in the upmost 1% of
the distribution)

4000 |-

0

/
N
13

) H‘
&3 1

T T
oy &




Image segmentation: similarities
Region growing

2. Detect all connected components, then erode them to one pixel
3. Define a predicate for the pixels of the image. E.qg.:
«the luminance difference wrt the average of the original
seed area is below a threshold; and the pixel is 8-
connected to at least one pixel in the region»
4. Sequentially append to the eroded seeds all the pixels that
satisfy the predicate




Image segmentation: similarities

Region splitting and merging

FIGURE 10.42
(a) Partitioned
image.
(b) Corresponding R R,
quadtree.
Ry | Ry
K;
Ry; | Ry

Define a predicate P [e.g.: «the variance is below a threshold»], and
subdivide the image in regions for which P is satisfied. More precisely:

1. Split into four quadrants any region Ri for which P(R/)=false. Stop
when a given min. size is reached (e.g. 1x1) - a quadtree is created

2. Merge any adjacent regions Ri, Rj for which P(R/ U Rj)=true. Stop
when no further merging is possible
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Image segmentation: similarities

Watersheds

« The image is treated as
a topographic map: gray
level = height

« Watershed lines divide
catchment basins

- Flooding is applied (a
hole is punched in each
local minimum, and
water enters from
below)

« Dams are built to
prevent merging
between basins

FIGURE 10.44

{a) Original
Image.

(b) Topographic
view. (¢)—(d) Two
stages of flooding.




Image segmentation: similarities

Watersheds

« The final
dams are the
desired

segmentation

result (fig. h)
« Watershed
lines form a
connected
path =2
continuous
boundaries

Watershed
segmentation is
often applied to
the gradient of
the image
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Y« FIGURE 10.44

(Continted)

(e) Result of
further flooding.
() Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them). (g) Longer
dams. (h) Final
watershed
(segmentation)
lines. (Courtesy of
Dr. S. Beucher.
CMM/Ecole des
Mines de Pans.)



Lol () srerss
"»'»‘fy/ DITRIESTE
Image segmentation: similarities

Watersheds

Example

LR ]
cd

FIGURE 10.46
(a) Image of
blobs. (b) Image
gradient.

(c) Watershed
lines,

(d) Watershed
lines
superimposed on
original image.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)




Image segmentation: similarities
Fast Marching
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Article

Lung Nodule Segmentation with a Region-Based Fast
Marching Method

Marko Savic 2, Yanhe Ma 3, Giovanni Ramponi *{", Weiwei Du ? and Yahui Peng *
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Video segmentation

« Refers to both (spatial) frame segm. and (temporal) shot segm.
« We study frame segmentation here

MOTION is a useful cue for segmentation, even for humans.

- The trivial way: compare two successive frames, pixel by pixel, and
search pixels for significant changes; Difference Image takes value 1 in
positions where | framen(x,y) - framep_ i (x,y) | > T (k>=1)

This is sensitive to noise, spatial misregistration (camera motion or
shake), variations of illumination

- Accumulative Difference Image (ADI): each pixel is a counter,
incremented every time a significant difference is found between that
location in a frame of the sequence and the same location in a reference
frame. The reference frame can be the first one of the sequence.

E.qg. Absolute ADI (A-ADI):
increment if | ref(x,y) — framep(x,y) | > T
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Video frame segmentation

Determination of the reference image is not trivial

Example: build a static reference image using ADIs

« when the white car has moved completely out of its position in the ref.
frame, copy the corresponding background in the present frame into
the ref. frame.

« repeat for all moving objects.

- :
FIGURE 10.50 Building a static reference image. (a) and {b) Two frames in a sequence.
(¢) Eastbound automaobile subtracted from (a) and the background restored from the
corresponding area in (b). (Jain and Jain.)
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Video frame segmentation

Example: intrusion detection
Acquire a frame once per second and compare to the previous one:

divide each frame into 8x8 blocks

compute the SAD (sum of absolute differences) for each block in the
same position in the two frames

group 16 adjacent blocks to form 32x32 macroblocks (MBs)

for each MB, calculate N; = number of blocks with SAD > T,

calculate N> = number of MBs with N; > T,
if Ny > T3 > alarm
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MBs with at least 6 blocks
“with movement” (7, =6 )
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Video frame segmentation
Further reading (e.qg.)

Main topic Subtopics

Main points

Moving
object
extraction

Tracking
moving
objects

Analysis

How do we separate moving objects from their
background. Methods of estimating the background.
Methods of adapting the background model. Using
morphology to improve silhouette quality.

Tracking single and multiple objects; achieving
temporal consistency in the tracking process;
modelling linear system dynamics.

Moving shape analysis and description.

Averaging and median filter for estimation of
background image; background separation by
subtraction; improvement by mixture of
Gaussians and thresholding. Problems: Colour,
lighting and shadows. Using erosion and
dilation; opening and closing. Connected
component analysis.

Tracking by local search; the Lucas—Kanade
approach. Including movement in the tracking
process; Kalman filter; multiple object tracking;
the Condensation algorithm; feature point versus
background subtraction; problems and solutions.
Camshift and Meanshift approaches. Tracking
with object detection.

Describing motion and extracting moving shapes
by evidence gathering. Adding velocity and
movement into the shape description. Describing
the moving object for recognition purposes.

Mark S. Nixon and Alberto S. Aguado, "Feature Extraction and Image Processing for Computer Vision",
Academic Press, Fourth Edition, 2020 (Ch.9)
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