
Image segmentation

Copyright notice: Most images in these slides are
© Gonzalez and Woods, Digital Image Processing, Prentice-Hall

→ Towards image analysis

Goal: Describe the contents of an image, distinguishing meaningful

information from irrelevant one.

First step: Segmentation, i.e. subdivision of the image into its
constituent parts or objects. Autonomous segmentation is one of the
most difficult tasks in image processing!

Segmentation algorithms are based on two basic properties of gray-
level values:

• Discontinuity: the image is partitioned based on abrupt changes in
gray level. Main approach is edge detection.

• Similarity: the image is partitioned into homogeneous regions. Main
approaches are thresholding, region growing, and region splitting
and merging.

Toy problem & kids’ problem

Image segmentation: discontinuities

(c): g = |filter(f)| (d): |g|>T, with T= 0.9*max(|g|)

Point detection

e.g. detect a tiny hole in a turbine blade
(dark pixel within the bright zone below)

3 basic types of discontinuities in digital images: Points, Lines, Edges.

SNR-optimal linear filter in i.i.d. Gaussian noise: matched filter, a.k.a.
template matching, a.k.a. cross-correlation approach

Thin line detection

The output of the convolution will be stronger where a one-pixel-wide
line is present in the corresponding direction.

Note: zero-sum masks (∼ second-order directional derivative)

Image segmentation: discontinuities

Edge: boundary between two regions
with significantly distinct gray levels

Edge models, (also for roof edge):

Typical real-world problems:

• edges with different slopes
• objects with different sizes

→ scale-space operators?

• uneven illumination
• not significant (?) details
• noise

Image segmentation: discontinuities

First-order derivative has
nonzero phase response

→

Ideal ramp edge plus noise
having std = 0.1, 1, 10 gray
levels (out of 256); first- and
second-order derivatives

)()1(xfxf
x

f
−+=





)(2)1()1(

)]1()([)]()1([
2

2

xfxfxf

xfxfxfxf
x

f

−−++=

−−−−+=




Image segmentation: discontinuities

1-D case

2-D case

Gradient

Laplacian

Sobel H/V or 45/135 deg.

















=

y

f

x

f
,f

















=












+












= −

x

f

y

f

y

f

x

f
/tan;|| 1

22

f

2

2

2

2
2

y

f

x

f
f




+




=

Image segmentation: discontinuities

Image segmentation: discontinuities

Edges from diagonal masks

Image segmentation: discontinuities

Image segmentation: discontinuities

Thresholded images

Image segmentation: discontinuities

)2exp()(;)2exp()(

,,;)2exp()(

22

2

22
222

2

22222











r
r

rGr
r

rG

KyxKyxrrrG

−






 −
−=−







 −
=

−+=−=

Edge detection based on zero crossings of second-order derivative
(Marr-Hildreth operator)

Standard implementation of a Laplacian:

• Its magnitude produces double edges
• Unable to detect the edge direction
• Very sensitive to noise → use Laplacian of Gaussian instead:

Image segmentation: discontinuities

"Mexican hat" filter

Image segmentation: discontinuities

To detect the zero crossings of the LoG image:
• center a 3x3 mask on each pixel p(x,y) of the LoG image
• check all pairs (p1,p2) of opposite neighbors (l/r, u/d, 45,

135)
• p is edge if at least in one pair pixels have different sign

• to reduce “noise", consider only {p: abs(p1-p2)>thresh.}

Image segmentation: discontinuities

Quality criteria

• small false alarm rate, small missed detection rate

• good localization

• one-pixel-wide edges

→ Canny edge detector

Comparison between
Sobel (before
thresholding) and
zero crossings of LoG

Edges in LoG are
thinner and tend to
form loops; objects
size is altered

Image segmentation: discontinuities

Canny operator

• A good approximation of an ideal detector for 1-D noisy step-

edges is the derivative of the Gaussian

• In 2D, its response should be independent of the direction of the

edge → circularly symmetric lowpass Gaussian filter, followed

by computation of the gradient

• |G(x,y)| shows thick patterns → non-maxima suppression:

1. determine the quantized direction dk of the gradient

2. if |G(x,y)| < at least one of its neighbours along dk

then set it to zero

• Perform hysteresis thresholding to reduce false alarms

)2exp()(22

2



x

x
xG −







 −
=

Image segmentation: discontinuities

Canny operator

Non-maxima suppression: gradient directions

Image segmentation: discontinuities

Canny operator:

Hysteresis thresholding

reduces both false alarms and missed detections

1. Set two thresholds: TL and TH , with TH ≅ 3 TL

2. Generate two binary images:

GH = {|G(x,y)| > TH} (strong edges)

GL = {|G(x,y)| > TL} (strong and weak edges)

3. Eliminate from GL all strong edge pixels (pixels that are nonzero in

GH): GL = GL - GH

4. Label all pixels in GH as edge

5. Fill edge gaps:

a. Visit each nonzero pixel p in GH and mark as edge all pixels

in GL that are 8-connected to p

b. Reset all unmarked pixels in GL

c. Final edge image = GH + GL

Image segmentation: discontinuities

TL = 0.04, TH = 0.10 (normalized pixel values)

 = 4, mask size =25x25

Image segmentation: discontinuities

TL = 0.05,
TH = 0.15

 = 2,

mask size
=13x13

Image segmentation: discontinuities

Image segmentation: edge linking

We need closed boundaries for objects in image

- Local processing: image points with similar gradient

Join the detected edge pixels according to their similarity (e.g., similar

amplitude and direction of the gradient), and form a boundary

E.g.: looking for rectangles

• calculate image gradient G(x,y)

• scan G(x,y) along rows and build binary edge image, setting pixels

where |G|> K% |G|max and Gangle = ±90±d deg.

• re-scan by rows and fill gaps shorter than L

• do the same by columns, Gangle = 0±d , or 180±d deg.

• add the two resulting images

Image segmentation: edge linking

K = 30

d = 45 deg.

L = 25 px.

→ Note

detected
license plate

Image segmentation: edge linking

- Global processing: the Hough transform

• A more efficient method to detect straight lines

• Can be generalized to curves

Principle: transform (edge) points into lines

1. Generic line through a point in the image

2. In the parameters space (a,b), define a line

3. Take a second point in the image along the same generic line; its

representation in the parameters space is:

iiii

iiii

yaxbyx

baxyyx

+−=

+=

),(

:),(

jjjjjj yaxbbaxyyx +−=+=:),(

4. Note that the two lines in the parameters space are no longer the

same line (their slope and intercept x, y are different)

5. Let (a’,b’) be the coordinates at which the two lines intercept in the

parameters space

6. a’ and b’ are the slope and intercept of the specific line through

),(,),(jjii yxyx

Image segmentation: edge linking

- Global processing: the Hough transform

image space parameter space

7. All points located on such a line in the image plane map to lines in

the parameters space which intersect at (a’,b’) [indeed, the line in

the image plane sets a well-defined pair of (slope,intersect) values]

Image segmentation: edge linking

- Global processing: the Hough transform

Subdivide the parameters space into a
matrix A(a,b) of cells and reset it

For each edge point in the image

For each value of a

solve

increment A(a,b)
ii yaxb +−=

),(ii yx

The value Q in A(a,b) indicates that Q edge points in the image lie on a
line of slope a and intersect b
→ Bright points in A show the parameters of the main edges in the image.

Problem: vertical edges are difficult to represent since a tends to infinity
Solution: use the normal form (trigonometric form) of a line:

Each run of the
inner loop plots
a line in A that
corresponds to
an edge point

Suppose the image contains discontinuous
straight edges that we want to connect

Image segmentation: edge linking

- Global processing: the Hough transform

Points in the image space now define a sinusoid in the parameters space

Let define two sinusoids that intersect in (r',q ') → these

are the parameters of a line through in the image

Define a matrix A(r,q) and reset it.
For each edge point in the image

For each value of q ; find r ; increment A(r,q)

→ Bright points in A show the parameters of the main edges in the image

r =+ sincos yx

),(,),(jjii yxyx
),(,),(jjii yxyx

Points 1,…5 in (x,y) are
mapped to sinusoids

with amplitude r

1,3,5 are aligned;
sinusoids intersect at
(0,45) (A)

2,3,4 are aligned;
sinusoids intersect at
(70.7, -45) (B)

r reflects specularly at

q =90, q =-90 (Q,R,S):

edges are both vertical

Sinusoids in the Hough domain:

pt.1 → r = 0 for any value of q
pt.2 → 0 + 100 sinq = r

pt.4 → 100 cosq + 0 = r
pt.3 → 50 cosq + 50 sinq = r
pt.5 → 100 cosq + 100 sinq = r

r =+ sincos yx

Image of size
101x101;
origin in pt.1

Image segmentation

E.g.: The Hough transform can be used to find reference lines in
sports-field homographies (see slide in GeometricTransf)

Image segmentation: edge linking

• Note 1:

Length of a segment is determined looking back at the positions of the
edge points (first, last, aligned clusters) that contribute to A(r,q)

• Note 2:

The HT can be used in principle for any edge shape, represented by a
function of the type g(v,coef)=0, where v is a vector of coordinates and
coef is a vector of coefficients.

→ E.g.: looking for circular obiects: (x-a)^2 + (y-b)^2 = c^2

Three parameters (a,b,c), 3-D parameter space, cube-like cells,
accumulator takes the form A(i,j,k).

Procedure:
1. Increment a and b
2. Solve for c
3. Update the accumulator associated with (a,b,c)

__
it.mathworks.com/help/images/hough-transform.html

- Global processing: the Hough transform

Image segmentation: similarities

Thresholding








=

Tyxf

Tyxf
yxg

),(if

),(if

0

1
),(

Thresholding (global) for noisy or textured objects

(Edge-preserving noise smoothing preprocessing useful)

Image segmentation: similarities

Thresholding (global) illumination x reflectance model

(Retinex preprocessing useful)

Image segmentation: similarities

Thresholding (global)

A simple algorithm: Select a first value for T=T(0); threshold the
image; evaluate the average gray-levels Ga, Gb of the two groups; set

T(1)=(Ga+Gb)/2; repeat until |T(k)-T(k-1)| < e

Optimal for split histograms, suboptimal for generic bimodal histograms
(see later), unusable for single mode or multimodal histograms

Image segmentation: similarities

(Morphological postprocessing useful)

Thresholding (global, optimal)

More formally: A bimodal histogram can indicate the presence of two
objects in the image, i.e. it can be the weighted sum of two unimodal
densities (one for light, one for dark areas): p(z) = P1 p1(z) + P1 p2(z)

The parameters (probabilities P1 and P2 , with P1 + P2 =1) are proportional
to the areas of the picture of each brightness.

If a mathematical expression for the densities p1(z), p2(z) is known or
assumed, determining an optimal (e.g. MMSE) threshold is possible.

Image segmentation: similarities

Consider a simple case (Ming Jiang 5.1.2)

Thresholding (global, optimal)

Image segmentation: similarities

Above threshold TP: # true positive
FP: # false positive

Below threshold TN: # true negative
FN: # false negative

Thresholding (global, optimal) using a confusion matrix

Image segmentation: similarities

to
t

N

’

P
’

Assume the image consists of object(s) and background, where the
object occupy P1 of the pixels (P1 + P2 =1). Assume both object and
background are subject to a Normal distribution; by the total probability
rule, the image has the following density function:

Let T be the threshold. A mis-segmentation takes place in two cases:

* Background pixels mis-classified into object pixels (FP): the error
probability (or the number of errors) is E1

* Object pixels mis-classified into background pixels (FN): the error
probability (or the number of errors) is E2

The total segmentation error is E(T) = P1 E1(T) + P2 E2(T)

)
2

)(
exp(

2
)

2

)(
exp(

2
)(

2

2

2

2

2

2

2

1

2

1

1

1











−
−+

−
−=

zPzP
zp

Thresholding (global, optimal)

Image segmentation: similarities

𝐸1 𝑇 = න
𝑇

∞

𝑝1 𝑧 𝑑𝑧 ; 𝐸2 𝑇 = න
−∞

𝑇

𝑝2 𝑧 𝑑𝑧

The total mis-segmentation error is E(T) = P1 E1(T) + P2 E2(T)

The optimal threshold is T* = arg min{E(T)}. Differentiating E(T):

P1 E1’(T) + P2 E2’(T) = 0

Substituting the formula for the Gaussian into the above equation:

Two specific examples:

• If the s.d. are the same:

• If the s.d. are the same and P1=P2=1/2:

12

21

2

2

2

2

2

1

2

1

2

2

2

2

2

2

2

1

2

1

1

1

log
2

)(

2

)(

)
2

)(
exp(

2
)

2

)(
exp(

2























P

PTT

TPTP

=
−

−
−

−
−−=

−
−

2
*

2
log*

21

21

2

1

21

2









+
=

+
+

−
=

T

P

P
T

Thresholding (global, optimal)

Image segmentation: similarities

For any interval of gray levels [K1, K2], define CDF, mean, variance:

All are functions of (K1,K2), omitted

• Let class 1 be formed by all pixels whose gray level is ≤ a threshold T;
class 2 by pixels > T;

• Define the between-class variance  2B as the squared distance of the

mean intensity value of each class 1, 2 from the global mean G ,

weighted by the relative fraction of pixels in the class P1, P2 :

G = P1 1 + P2 2

 2
B = P1 (1 – G)2 + P2 (2 – G)2 = P1 P2 (1 – 2)

2

  === =
−====

2

1

222

1

2

1

2

1
;)(;;/)(

K

Ki i

K

Ki i

K

Ki

K

Ki ii PiPiNnP 

Thresholding (Otsu) no hypotheses on the distribution;

method based just on image histogram

Image segmentation: similarities

pipi piP

Otsu: All possible thresholds are evaluated, and the one (T*) that
maximizes the between-class variance is chosen.

• BTW, this is equivalent to finding the minimum intra-class variance

•  2B is a measure of separation between the classes

• Quality of result is given by the normalized between-class variance,
called separability, measured at T*

• Otsu’s method can be extended to multiple thresholds

Thresholding (Otsu)

1)(0/)()(22 = TTT GB 

Image segmentation: similarities

Thresholding (Otsu)

T = 169 T* = 181

 = 0.467

Image segmentation: similarities

A defective weld

1. Select seed regions (e.g.
values in the upmost 1% of
the distribution)

Image segmentation: similarities

Region growing

Image segmentation: similarities

Region growing

2. Detect all connected components, then erode them to one pixel
3. Define a predicate for the pixels of the image. E.g.:

«the luminance difference wrt the average of the original
seed area is below a threshold; and the pixel is 8-
connected to at least one pixel in the region»

4. Sequentially append to the eroded seeds all the pixels that
satisfy the predicate

Define a predicate P [e.g.: «the variance is below a threshold»], and

subdivide the image in regions for which P is satisfied. More precisely:

1. Split into four quadrants any region Ri for which P(Ri)=false. Stop

when a given min. size is reached (e.g. 1x1) → a quadtree is created

2. Merge any adjacent regions Ri, Rj for which P(Ri U Rj)=true. Stop

when no further merging is possible

Image segmentation: similarities

Region splitting and merging

• The image is treated as
a topographic map: gray
level = height

• Watershed lines divide
catchment basins

• Flooding is applied (a
hole is punched in each
local minimum, and
water enters from
below)

• Dams are built to
prevent merging
between basins

Image segmentation: similarities

Watersheds

• The final
dams are the
desired
segmentation
result (fig. h)

• Watershed
lines form a
connected
path →

continuous
boundaries

Watershed
segmentation is
often applied to
the gradient of
the image

Image segmentation: similarities

Watersheds

Image segmentation: similarities

Watersheds

Example

Image segmentation: similarities

Fast Marching

• Refers to both (spatial) frame segm. and (temporal) shot segm.
• We study frame segmentation here

MOTION is a useful cue for segmentation, even for humans.

- The trivial way: compare two successive frames, pixel by pixel, and

search pixels for significant changes; Difference Image takes value 1 in

positions where | framen(x,y) – framen-k(x,y) | > T (k>=1)

This is sensitive to noise, spatial misregistration (camera motion or
shake), variations of illumination

- Accumulative Difference Image (ADI): each pixel is a counter,
incremented every time a significant difference is found between that
location in a frame of the sequence and the same location in a reference
frame. The reference frame can be the first one of the sequence.

E.g. Absolute ADI (A-ADI):

increment if | ref(x,y) – framen(x,y) | > T

Video segmentation

Determination of the reference image is not trivial

Example: build a static reference image using ADIs
• when the white car has moved completely out of its position in the ref.

frame, copy the corresponding background in the present frame into
the ref. frame.

• repeat for all moving objects.

Video frame segmentation

Example: intrusion detection

Acquire a frame once per second and compare to the previous one:

• divide each frame into 8x8 blocks

• compute the SAD (sum of absolute differences) for each block in the

same position in the two frames

• group 16 adjacent blocks to form 32x32 macroblocks (MBs)

• for each MB, calculate N1 = number of blocks with SAD > T1

• calculate N2 = number of MBs with N1 > T2

• if N2 > T3 → alarm

Video frame segmentation

T1 = 10

MBs with at least 6 blocks
“with movement” (T2 = 6)

T1 = 20

Video frame segmentation

Further reading (e.g.)

Video frame segmentation

Mark S. Nixon and Alberto S. Aguado, "Feature Extraction and Image Processing for Computer Vision",
Academic Press, Fourth Edition, 2020 (Ch.9)

	Slide 1: Image segmentation
	Slide 2: Toy problem & kids’ problem
	Slide 3: Image segmentation: discontinuities
	Slide 4: Image segmentation: discontinuities
	Slide 5: Image segmentation: discontinuities
	Slide 6: Image segmentation: discontinuities
	Slide 7: Image segmentation: discontinuities
	Slide 8: Image segmentation: discontinuities
	Slide 9: Image segmentation: discontinuities
	Slide 10: Image segmentation: discontinuities
	Slide 11: Image segmentation: discontinuities
	Slide 12: Image segmentation: discontinuities
	Slide 13: Image segmentation: discontinuities
	Slide 14: Image segmentation: discontinuities
	Slide 15: Image segmentation: discontinuities
	Slide 16: Image segmentation: discontinuities
	Slide 17: Image segmentation: discontinuities
	Slide 18: Image segmentation: discontinuities
	Slide 19: Image segmentation: discontinuities
	Slide 20: Image segmentation: discontinuities
	Slide 21: Image segmentation: edge linking
	Slide 22: Image segmentation: edge linking
	Slide 23: Image segmentation: edge linking
	Slide 24: Image segmentation: edge linking
	Slide 25: Image segmentation: edge linking
	Slide 26: Image segmentation: edge linking
	Slide 27
	Slide 28: Image segmentation
	Slide 29: Image segmentation: edge linking
	Slide 30: Image segmentation: similarities
	Slide 31: Image segmentation: similarities
	Slide 32: Image segmentation: similarities
	Slide 33: Image segmentation: similarities
	Slide 34: Image segmentation: similarities
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Image segmentation: similarities
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

