
Image Restoration
Image degradation model
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Note: even small amounts of noise can lead
to large errors in restoration → dip08_0.m

Copyright notice:  Most images in these slides are
© Gonzalez and Woods, Digital Image Processing, Prentice-Hall



Typical pdf’s of i.i.d. noise

Note 1: In the additive model, 
zero-mean Gaussian and 
Uniform noises are typically used

Note 2: In real cases, noise is 
often signal-dependent, e.g. 
multiplicative (with mean=1) →

does not comply with our model
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Gaussian noise is typical in sensors, especially in low light conditions

Impulse (salt-and-pepper) noise comes from disturbed switching devices

Silver halide grains in photographic films yield lognormal distributions

Rayleigh noise (multipl.) arises in range images (n-look SAR images)

Exponential noise (multipl.) is present in laser imaging (1-look SAR)

For simulation purposes, a noise having a specified cdf Fz can be 

generated starting from a uniform random field w by the inverse function

mapping:

(like in the case of histogram specification)

(Matlab: use rand and randn, or imnoise → [NoiseGeneration.m])
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black, gray1, gray2

In general, the noise distribution is not easily recognizable
by image inspection.

Image Restoration
Noise models



Note:

noise with 
mean>0 
was used
in these
images
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- black+
pepper

- gray 1

- gray 2

- salt
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Noise estimation from a locally uniform area of the image
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We are looking for the best compromise between noise attenuation and 
detail preservation.

Let Sxy be an mxn neighborhood of (x,y); define various mean filters:
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Geometric mean
always smaller than the
arithm. mean

Contraharmonic means

Q=0 → arithmetic mean;

Q>0 → larger than the arithm. mean (good for dark impulse noise )

Q<0 → smaller than the arithm. mean (good for bright impulse noise)

Nonlinear mean filters



Order statistics filters

Median filter



Order statistics filters

Max filter Min filter



Weighted Median (WM) filters:  output depends also on the position
of the gray levels within the window

WM filter of span N associated with integer weights w= [w1,w2,...,wN]:

where gW is obtained from g by replication of its elements:

I.e.: replicate each sample g(i) for wi times, and choose the median
value from the new sequence.

Example: length-5 WM filter with weights [1, 2, 3, 2, 1]. Input 
sequence g= […, -1, 5, 8, 11, -2, …], window centered at sample value
8. After sorting and duplication: gW=[11, 11, 8, 8, 8, 5, 5, -1, -2]. 
Output is 8, whereas the 5-point median would output 5.

Note:  Central WM (CWM) filters are particularly important in this class
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Alpha-trimmed mean filter:

Sort the pixels in Sxy and delete the first d/2 and the last d/2; let S’xy

be the set of the remaining pixels. The output is:

Defaults to the arithmetic mean filter when d=0 and to the median
filter when d=mn-1.

Good for mixed short- and long-tailed noise
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Order statistics filters

→ NonlinearFilters.m



The response of the filter changes according to the local properties of 
the image. Used features: 

local average, local variance of the pixels in Sxy

variance of the noise corrupting f(x,y) (to be estimated!)

The output is (Wiener filter-like approach, see [Lim p.538]):

Note1: it is reasonable to suppose that everywhere

but for safety truncate

Note2: good noise estimate:                          (Matlab’s wiener2)
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Define:

Algorithm:

window size = minsize:

while (window size < maxsize) do

if (md=mi or md=ma) increase window size;

end do;

if (mi<g(x,y)<ma) output g(x,y), else output md;

Useful for images corrupted by heavy impulse noise.
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A linear lowpass filter can be combined with an edge 
sensor to achieve edge-preserving noise smoothing
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k: edge protection factor
W: lowpass filter control factor

• k = 0, W = 0:   b’ = (a+b+c+d+e) / 5
• k = 0, W > 0:   b’ = [(a+c+d+e-4b)+(5+W)b] / (5+W)

= [(a+c+d+e)+(1+W)b] / (5+W)
• k > 0: smoothing only along edges

Note 1: filter is meant to operate iteratively
Note 2: this is a sort of Anisotropic Diffusion
Note 3: asymptotic output is a uniform image
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Rational filter



On a 3x3 support:

k: edge protection factor, range [700, 1100]
A: lowpass filter control factor, range [4.0, 5.0]
no. of passes: [6, 10]

• note k=0; A=9 → 3x3 average filter

• if k>0 the denominator is "locally larger" than A

Rational filter 
for speckle noise
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Combined domain and range filtering:

The closeness function and

the similarity function

are Gaussian functions of 
- the Euclidean distance d

- the absolute difference d between their arguments.

• are the geometric (domain) spread and 
the photometric (range) spread parameters

• Fast realization techniques exist zz08_FastBilateral

Bilateral filter

rd  ,



Foi07 and later – https://webpages.tuni.fi/foi/GCF-BM3D/

Matlab sw updated continuously as of 2021

BM3D filter – Noise modelling

Rakhshanfar16 - https://users.encs.concordia.ca/~amer/

https://webpages.tuni.fi/foi/GCF-BM3D/
https://users.encs.concordia.ca/~amer/


ISO/ASA is a sensitivity measure for photographic film, i.e. for 
signal amplification in a digital camera
High ASA setting → small signal → large amplification → large noise

• Noise smoothing in a consumer camera:

100 ASA, 1.3 s 1600 ASA, 0.1 s

Noise smoothing



Noise smoothing in a professional camera (JPEG output)

100 ASA, 6 s

3200 ASA,  1/8 s

Noise smoothing



Let D(u,v) be the distance from the origin of a given frequency.

Band-reject filters (reject center frequency D0, reject bandwidth W):

Ideal
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Frequency-selective filters



Butterworth 

and Gaussian 

band-reject filters:
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Band-pass filter: ),(1),( vuHvuH BRBP −=

Frequency-selective filters



Notch filters

Let

distances of center-shifted freq. (u,v) from freqs. (u0 ,v0) and (-u0 ,-v0)

Ideal

Butterworth

Gaussian
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to be real, 
notch areas 
must always 
be defined in 
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Frequency-selective filters



“Notch-pass” filter:

Hnp(u,v)=1-Hnr(u,v)

Frequency-selective filters

Note: The notch-pass filter here is simply a vertical highpass filter



Linear, space-invariant degradation model with impulse response 
h (point-spread function, psf) (note acronyms «psf» or «PSF» are 
often used interchangeably in the space and the Fourier domains):

Note that space invariance is an often unrealistic constraint (think of 
haze in outdoor scenes, motion of different objects, distance from 
moving objects...)
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By image observation:

Look at a detail of the degraded image, in a high SNR area, and 
construct its estimated version      .Then,

By experimentation:

If equipment similar to the one used for acquisition is available, an 
accurate estimation of the degradation is obtained by imaging an 
impulse of amplitude A using the same system settings. Then,
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Estimating the PSF



By mathematical modelling:

1. lens defocus

Estimating the PSF

NOTE:

Defocus normally

is shift-variant

Thin-lens eq. for 

defocused object

f/# = F / A

f-number =

focal length / aperture 

diameter

Useful also for 

depth-from-focus

algorithms



2. atmospheric turbulence:

(similar to a Gaussian)

Fig.5.25
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Note: H should be space-
variant to take into 
account the different 
distances of the objects

Estimating the PSF



3. linear planar motion, described by the components x(t) and y(t), 
in the acquisition interval [0,T]:
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Estimating the PSF



Let

Suppose we know H. The most obvious restoration operator is

Note: if H has zeros on the unit circle or is nonminimum-phase, 
one can try to cap the amplitude of 1/H

Note: where the degradation is small, noise can dominate. If H
has zeros close to the unitary circle, 1/H has large peaks. This 
often  happens at high frequencies → set 1/H = 1 above a given 

distance from the origin

E.g., starting from Fig.5.25b above (image size 480x480, 
Butterworth response used to cap 1/H at various frequencies):
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Inverse filter



Wiener filter: 1-D derivation [Jain]

Given two zero-mean, stationary random sequences f(x) and g(x), 

having nonzero cross-correlation, it is desired to obtain from g(x) a 

linear estimate of f(x) that minimizes the MSE:

It can be proved (orthogonality principle) that the best estimate is

obtained from a filter hw(k) such that:
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Using the definition of cross-correlation between two real-valued

stationary sequences a(x), b(y):

and substituting from above, the orthogonality condition becomes the 

Wiener filter equation:
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Taking the Fourier transform we get the [cross] power spectral 
densities and we can solve for Hw:

Now, if the usual model is taken for the corruption mechanism:

the needed power spectra are obtained from:

And the Wiener filter is expressed as:
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Wiener filter



For nonzero-mean sequences and zero-mean noise:  subtract the 

average from the available data, perform the filtering, and then add

the average back.

Note: if noise is neglectable at all frequencies, this becomes an 

inverse filter

Otherwise, since = 1 / SNR(u,v) , The Wiener filter

• behaves like an inverse filter at frequencies in which the SNR is high

• tendentially blocks all frequency components at which the SNR is

low (whatever the inverse filter)
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2-D Wiener filter



E.g.: if white noise and blur are present, the Wiener filter seeks a 

frequency-by-frequency compromise between

• deblurring → highpass filter and 

• attenuation of frequencies at which the SNR is low (typically, high 

frequencies) → lowpass filter

The result in this case is a bandpass filter.

Note: if the spectrum of the original image cannot be effectively

estimated, we can use K = 1/SNR:
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2-D Wiener filter



2-D Wiener filter



2-D Wiener filter



2-D Wiener filter



An extension to the simplified Wiener filter seen last. Suppose we know

the noise mean and variance.

Approach: (~Jain) minimize a cost function

subject to the constraint

Normally, p is an operator that measures the “roughness” of the 

estimated image, e.g. its Laplacian:

I.e.: we want the output image to be as smooth as possible, but not

too different from an estimate of the original
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Gamma can be set iteratively: compute 

then increase gamma if , decrease it if

Notes:

• is the noise power (the variance if the noise is zero-mean)

• The LS filter is equivalent to the Wiener filter if we specify:
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In the Fourier domain: minimize

subject to 

A solution can be obtained via 

the Lagrange multiplier method:  
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Constrained Least Squares filter



• values set manually

• LS is better than Wiener when the noise is high or medium 



Constrained Least Squares filter



Similar to Fig.5.28(c)

5.25-b

Constrained Least Squares filter



Measuring perceived image quality

Or, using some measurable HVS properties:
From Just Noticeable Differences 
to Image Quality

SSIM index: Structural SIMilarity
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