Image Restoration
Image degradation model

Degradation

flx.y) function

H

Restoration
filter(s)

f(x.)

Noise
n(x, v)
DEGRADATION RESTORATION

FIGURE 5.1 A
model of the g(x,y)=h(x,y)* f(x,y)+n(x,y)
image
degradation/ G(u,v)=H(u,v)F(u,v)+N(u,v)
restoration
Process. Note: even small amounts of noise can lead

to large errors in restoration - dip08_0.m

Copyright notice: Most images in these slides are
© Gonzalez and Woods, Digital Image Processing, Prentice-Hall
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Image Restoration
Noise models

Typical pdf’s of i.i.d. noise

Note 1: In the additive model,
zero-mean Gaussian and
Uniform noises are typically used

Note 2: In real cases, noise is
often signal-dependent, e.q.
multiplicative (with mean=1) >
does not comply with our model
piz)
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Name PDF Mean and Variance CDF
1 0 z<a
fa=z=>D +b b — a)? _

Uniform pz) =yb—a ne=s m=a2 ; Uz:% F(z) = Z_a a=z=b

0 otherwise a

1 z>bh
Gaussian  [p.(z) = ! e~ (z=a)’2b ;
‘ \/27h m=a, o= F(z) = [Zop.(v) dv
—00 <z <O

P, forz=a 0 forz < a
Salt & Pepper |p,(z) = b, forz =10 m = aby + bb F(z) =P fora=z<b

0 otherwise o’ = (a — m)zpa + (b — m)zPh ‘ '

b>a P,+ P, forb =z
Lognormal |p.(z) = ! g In()=al’/ 267 2 2 2 z
z ﬁ211'bz m = e“+(b /2)’ ol = [eb 1]82a+b FZ(Z) — fo-pz(,v) dv
z>0

%(z — a)e—(z—a)sz z=a b(4 — ) 1 = g~ z-a?b =
Rayleigh |p.(z) = (b m=a+ Vwb/4, o® = — F.(z) = 0 .-

0 z<a
Exponential _ Jae™ =0 m = 1 ol = 1 l—e™ z=0

p:(2) = 0 7z <0 a’ a’ F.(z) = 0 7 <0
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Image Restoration
Noise models

Gaussian noise is typical in sensors, especially in low light conditions
Impulse (salt-and-pepper) noise comes from disturbed switching devices
Silver halide grains in photographic films yield lognormal distributions
Rayleigh noise (multipl.) arises in range images (n-look SAR images)

Exponential noise (multipl.) is present in laser imaging (1-look SAR)

For simulation purposes, a noise having a specified cdf Fz can be
generated starting from a uniform random field w by the inverse function

mapping: z=F "(w)
(like in the case of histogram specification)

(Matlab: use rand and randn, or imnoise > [NoiseGeneration.m])
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Image Restoration
Noise models

FIGURE 5.3 'lest
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig. 5.2

black, grayl, gray2

In general, the noise distribution is not easily recognizable
by image inspection.
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Image Restoration
Noise models

Note:

noise with
mean>0
was used
in these
images

(raussian Ravleigh Gamma



Image Restoration
Noise models

- black+
pepper

- gray 1

- gray 2

~ salt

Exponential Uniform Salt & Pepper
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Image Restoration
Noise models

FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
One sine wave ).
(Original image
courtesy of
NASA.)
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Image Restoration
Noise models

Noise estimation from a locally uniform area of the image

SiE i

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh,
and (c) the uniform noisy images in Fig. 5.4
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Nonlinear mean filters
g(x,y)=f(x,y)+n(x,y); G(u,v)=F(u,v)+ N(u,v)

We are looking for the best compromise between noise attenuation and
detail preservation.

Let Sy, be an mxn neighborhood of (x,y); define various mean filters:

Arithmetic mean f(x,y)= 1 > g(s.t)

n (s,t)eSxy

Geometric mean A Fion
always smaller than the f(x,y) =( Hg(s,t))

arithm. mean (s,t)eSxy

Contraharmonic means f,y)= > g(s

Q=0 - arithmetic mean; (s.t)eSxy

Q>0 - larger tha ithm. mean (good for dark impulse noise )

smaller than the arithm. mean (good for bright impulse noise)
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Order statistics filters
Median filter
ab
cd
FIGURE 5.10
(a) Image

corrupted by salt-
and-pepper noise
with probabilities
P,= B, = 0.1
(b) Result of one
pass with a
median filter of
size 3 X 3.

(¢) Result of
processing (b)
with this filter.
(d) Result of
processing (¢)
with the same
filter.
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Order statistics filters

Weighted Median (WM) filters: output depends also on the position
of the gray levels within the window

WM filter of span N associated with integer weights w= [wq,w>,...,WN]:
f (x) = median{g, ()}
S e oX

where g, is obtained from g by replication of its elements: y

0 (8) =[W0g (1), W,09(2), ..., W, 0g(N)], and k0g=g,g,....g

J

I.e.: replicate each sample g(i) for w; times, and choose the median
value from the new sequence.

Example: length-5 WM filter with weights [1, 2, 3, 2, 1]. Input
sequence g=[...,, -1, 5, 8, 11, -2, ...], window centered at sample value
8. After sorting and duplication: gy=[11, 11, 8, 8, 8, 5, 5, -1, -2].
Output is 8, whereas the 5-point median would output 5.

Note: Central WM (CWM) filters are particularly important in this class
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Order statistics filters

Alpha-trimmed mean filter:

Sort the pixels in Sy, and delete the first d/2 and the last d/2; let S’
be the set of the remaining pixels. The output is:

fxy)=—— Sastb)

mn— d (s,t)eS'xy

Defaults to the arithmetic mean filter when d=0 and to the median
filter when d=mn-1.

Good for mixed short- and long-tailed noise
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Order statistics filters

1] RREAS

FIGURE 5.12 (a) Image corrupted by additive uniform noise. (b) Image additionally cor-
 rupted by additive salt-and-pepper noise. Image in (b) filtered with a 5 X 5:(c) arithmetic
< mean filter; (d) geometric mean filter; (e) median filter; and (f) alpha-trimmed mean fil-
¢ terwithd = 5.
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Order statistics filters

- NonlinearFilters.m

FIGURE 5.12 (a) Image corrupted by additive uniform noise. (b) Image additionally cor-
 rupted by additive salt-and-pepper noise. Image in (b) filtered with a 5 X 5:(c) arithmetic
< mean filter; (d) geometric mean filter; (e) median filter; and (f) alpha-trimmed mean fil-
¢ terwithd = 5.
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Cmyk

Adaptive linear filters

The response of the filter changes according to the local properties of
the image. Used features:

2 - - -
M , 0, local average, local variance of the pixels in Sxy

2

o variance of the noise corrupting f(x,y) (to be estimated!)

The output is (Wiener filter-like approach, see [Lim p.538]):

f(x,y)=g(x, y)—%[g(x, y)-m,]

Notel: it is reasonable to suppose that af > aﬁ everywhere

but for safety truncate 6° /o7 >1 — =1

Note2: good noise estimate: Gﬁ = mean(af) (Matlab’s wiener?2)
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Adaptive median filters

Define:

mi= min {g(s,t)}; ma= max{g(s,t)}; md=median{g(s,t)};

(s,t)eSxy (s,t)eSxy (s,t)eSxy

Algorithm:
window size = minsize:
while (window size < maxsize) do
if (md=mi or md=ma) increase window size;
end do;

if (mi<g(x,y)<ma) output g(x,y), else output md,;

Useful for images corrupted by heavy impulse noise.
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o

Adaptive median filters

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities B, = P, = 0.25. (b) Result of fil-
tering with a7 X 7 median filter. (¢) Result of adaptive median filtering with Sy, = 7.
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Rational filter

A linear lowpass filter can be combined with an edge

sensor to achieve edge-preserving noise smoothing g
albi|c
, a+c—2b d+e—-2b e
b'=b+ > + >
k(a—c)*+5+W k(d—-e)*+5+W
k: edge protection factor
W: lowpass filter control factor |
: ,W=0: b= (atb+tctd+e)/5 oat

, W>0: b= [(a+c+d+e-4b)+(5+W)b] / (5+W) [ |
= [(a+c+td+e)+(1+W)b] / (5+W) otz 3
> 0: smoothing only along edges 08

0.6
0.4
0.2

Note 1: filter is meant to operate iteratively o 1 2 3
Note 2: this is a sort of Anisotropic Diffusion
Note 3: asymptotic output is a uniform image
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Rational filter
for speckle noise

On a 3x3 support:

8
/ Ly — &
Ty =xo+ r ; : (2)
1(2(3 0 ; bz, — f?f?u:'z/(ﬂ?i + z0 + 1}3 1+ A
8,04
7|65 This filter performs a smoothing action that 1s more delicate in

low luminance areas (where (x; + xo + l):2 is small), and be-
comes stronger in bright image zones. In this way, it complies
with the nature of speckle noise, which 1s multiplicative and,
hence, has amplitude proportional to the local mean value of
the signal.

k: edge protection factor, range [700, 1100]
A: lowpass filter control factor, range [4.0, 5.0]
no. of passes: [6, 10]

« note k=0; A=9 > 3x3 average filter
« if k>0 the denominator is "locally larger" than A
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Bilateral filter

Combined domain and range filtering:

) [ et msire), fix) de

with the normalization

:/Z /Z (€, %)s(£(€), f(x)) de .

_ 1 ( d(£,x) ) 2

The closeness function c({, X) =€ *\ “d and
_1 ( 6(f(£),f(x))) 2

the similarity function S(f, X) =€ “ or

are Gaussian functions of
- the Euclidean distance d
- the absolute difference o between their arguments.

- 0,,0, are the geometric (domain) spread and
the photometric (range) spread parameters

« Fast realization techniques exist zz08_FastBilateral
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BM3D filter - Noise modelling

Foi07 and later - https://webpages.tuni.fi/foi/GCF-BM3D/
Matlab sw updated continuously as of 2021

Image Denoising by Sparse 3-D Transform-Domain
Collaborative Filtering

Kostadin Dabov, Student Member, IEEE, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian, Senior Member, IEEE

Rakhshanfarl6 - https://users.encs.concordia.ca/~amer/

Estimation of Gaussian, Poissonian—Gaussian, and
Processed Visual Noise and Its Level Function

Meisam Rakhshanfar, Student Member, IEEE, and Maria A. Amer, Senior Member, IEEE


https://webpages.tuni.fi/foi/GCF-BM3D/
https://users.encs.concordia.ca/~amer/
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Noise smoothing

ISO/ASA is a sensitivity measure for photographic film, i.e. for
signal amplification in a digital camera
High ASA setting - small signal = large amplification - large noise

 Noise smoothing in a consumer camera:

100 ASA, 1.3 s 1600 ASA, 0.1 s
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Frequency-selective filters

Let D(u,v) be the distance from the origin of a given frequency.

Band-reject filters (reject center frequency D, reject bandwidth W):

-

ldeal 1 If D(u,v)< D, -W /2
H(u,v)=+<0 if D,-W/2<D(u,v)<D,+W /2
1 If D(u,v)> D, +W /2

r|I'I'-'"'“ ||II|||-|'|

L —— b

T

i
A
i

A I,
1o
Wl

At

SR

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.



Frequency-selective filters

Butterworth

and Gaussian

band-reject filters:

'||'|IIII 1 1”“.'

abc

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject

filters.

H(u,v)=1/ |1+

H(u,v) =1—exp

D(u,v)W

1
2

(Dz(u,v)—Dé

Tn

D?(u,v) - D¢
D(u,v)W

T—
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Frequency-selective filters

a b
el

FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(¢) Butterworth
bandreject filter
(white represents
1. (d) Result of
filtering. (Original
image courtesy of
NASA.)
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Frequency-selective filters

Band-pass filter: H_, (u,v)=1-Hg;(u,v)

FIGURE 5.17
Noise pattern of
the image in
Fig.5.16(a)
obtained by
bandpass filtering.
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Frequency-selective filters

Notch filters
Let Dl(u,V)=\/(U—|V|/2—U0)2+(V_N/2_VO)2
D,(U,V) =/(U=M /2+U,)% + (V=N /2+V,)?

distances of center-shifted freq. (u,v) from fregs. (uy,vy) and (-ug,-vy)

0 If D.,(uv)<D, or D,(uv)<D
Ideal H(U,V) _ - l( ) 0 2( ) 0
1 otherwise
i D, " Note: for th
ote: for the
Butterworth H(u,v)=1/ |1+ .
utterwor ( ) (D (U V)D (U V)j filter coeff.
B to be real,
- — notch areas
. 1 D,(u,v)D V t al
Gaussian H(u,v) =1-—exp _2£ (U, 3)22(u’ )j quucs:leﬁnvéilyii
i 0 il symmetric

pairs



Frequency-selective filters

St o
WAL L

b ¢

FIGURE 5.18 Perspective plots of (a) ideal. (b) Butterworth (of order 2), and (c) Gaussian
notch (reject) filters.
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Frequency-selective filters

“Notch-pass” filter:
Hnp(u,v)=1-Hnr(u,v)

FIGURE 5.19 (a) Satellite image of Florida and the Gulf of Mexico (note horizontal sen-
sor scan lines). (b) Spectrum of (a). (c) Notch pass filter shown superimposed on (b).
(d) Inverse Fourier transform of filtered image, showing noise patternin the spatial do-
main. (¢) Result of notch reject filtering. (Original image courtesy of NOAA.)

Note: The notch-pass filter here is simply a vertical highpass filter
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Image Restoration
Image degradation model

Degradation

flx.y) I::) function

H

FIGURE 5.1 A

model of the
image

Noise degradation/
‘ gl x, v)

Linear, space-invariant degradation model with impulse response
h (point-spread function, psf) (note acronyms «psf» or «PSF» are
often used interchangeably in the space and the Fourier domains):

g(x,y) =h(x,y)* T (x,y)+n(xy)
G(u,v)=H(u,v)F(u,v)+N(u,v)

Note that space invariance is an often unrealistic constraint (think of
haze in outdoor scenes, motion of different objects, distance from
moving objects...)
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Estimating the PSF

By image observation:

Look at a detail of the degraded image, in a high SNR area, and
construct its estimated version f_, .Then, H(u,v) = G(u,v)/ F. (U,v)

By experimentation:

If equipment similar to the one used for acquisition is available, an
accurate estimation of the degradation is obtained by imaging an
impulse of amplitude A using the same system settings. Then,

H(u,v) =G(u,v)/A

impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.




Estimating the PSF

By mathematical modelling:

NOTE:

Defocus normally
is shift-variant

1. lens defocus

The distance D to an imaged point is related to the pa-
rameters of the lens system and the amount of defocus by

Fuv, Thin-lens eq. for
D = 1 .
vy — F — Uf ( ) defocused object
where v 1s the distance between the lens and the image fl# =F/A
plane (e.g., the film location in a camera), f the f-number f-number =

of the lens system, F the focal length of the lens system, focal length / aperture

(= s )

and o the spatial constant of the point spread function g.e., cdlameter

the radius of the imaged point’s “‘blur circle’’) which de-

scribes how an image point is blurred by the imaging op-

tics. The point spread function may be usefully approxi- Useful also for
mated by a two-dimensional Gaussian G(r, o) with a depth-from-focus

spatial constant o and radial distance r. The validity of algorithms




Estimating the PSF

2. atmospheric turbulence:

(similar to a Gaussian)

(a) Negligible
turbulence.
Fig.5.25 (b) Severe
turbulence,
k = 0.0025.
(c) Mild
turbulence,
k = 0.001.
(d) Low
turbulence,
k = 0.00025.

Note: H should be space-
variant to take into
account the different
distances of the objects

H (u,v) =exp[-k(u® +v?)

5/6]

A
Sy
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Estimating the PSF

3. linear planar motion, described by the components x(t) and y(t),
in the acquisition interval [0, T]:

9 ¥) = % —x(), v, - y(®)] dt

G(u,v) = F(u,v)[ exp[~ j2z[ux(t) + vyl dt = F (u,v)H (u,V)

e.g. uniform horizontal motion:

x(t)=at/T; y()=0

H(uv) = [ expl-j2ruayT]dt - %sin(nua) expl— jrual



)
<
3,

/ DITRIESTE

1:b

FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (3.6-11)
witha=b=01landT = 1.



Inverse filter

Let G(u,v)=H(u,v)F(u,v)+ N(u,v)

Suppose we know H. The most obvious restoration operator is

G(u,v) F(uv)+ N (u, V)

N F(u,v) = . =
(u,v) H(u,v)

Note: if H has zeros on the unit circle or is nonminimum-phase,
one can try to cap the amplitude of 1/H

Note: where the degradation is small, noise can dominate. If H
has zeros close to the unitary circle, 1/H has large peaks. This
often happens at high frequencies - set 1/H = 1 above a given
distance from the origin

E.g., starting from Fig.5.25b above (image size 480x480,
Butterworth response used to cap 1/H at various frequencies):
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Inverse filter

ab
cd

FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq. (5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40 (¢) outside a
radius of 70; and
(d) outside a
radius of 85.
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Wiener filter
Wiener filter: 1-D derivation [Jain]

Given two zero-mean, stationary random sequences f(x) and g(x),
having nonzero cross-correlation, it is desired to obtain from g(x) a
linear estimate of f(x) that minimizes the MSE:

f)= S hy(-9)9(s), ¢ = E{[f ()~ f (OF}=mir

$=—00

It can be proved (orthogonality principle) that the best estimate is
obtained from a filter h,(k) such that:

vxy  0=E{[f(x)-f()]g(y)}=E{[f(X)- im(X—S)g(S)]g(Y)}

Using the definition of cross-correlation between two real-valued
stationary sequences a(x), b(y): r (x—Yy) = E{a(x)b(y)}

and substituting from above, the orthogonality condition becomes the
Wiener filter equation: -

Zh\N(X_S) r-gg(S_ y) = I"fg(x_ y)

S=—00



% UNIVERSITA

- | &%
(3 (B DEGLI STUDI
‘g’ DITRIESTE

Wiener filter

Taking the Fourier transform we get the [cross] power spectral
densities and we can solve for H,:

Hy (U)Sgg(u) =S () -  Hy(u)=S(u)Sy(u)

Now, if the usual model is taken for the corruption mechanism:
g(x)=h(x)*f(xX)+n(x) < GUu)=H(U)F(u)+ N(u)
the needed power spectra are obtained from:

See (W) =[HW S (W +S,U) 5 Sy u)=H"(U)S, (u)

B H™(u) S (u)
[H (U)]" S (U) + S, (W)

And the Wiener filter is expressed as: H,, (U)
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Wiener filter

For nonzero-mean sequences and zero-mean noise: subtract the
average from the available data, perform the filtering, and then add
the average back.

2-D Wiener filter

H™(u,v)S, (u,v) 1 H(u,v)|

H V) =
O S, 0045, 00) A [H 45,0, )

Note: if noise is neglectable at all frequencies, this becomes an
inverse filter

Otherwise, since Sm(u,v)/Sﬁ(u,v) = 1/ SNR(u,v) , The Wiener filter
« behaves like an inverse filter at frequencies in which the SNR is high

« tendentially blocks all frequency components at which the SNR is
low (whatever the inverse filter)



2-D Wiener filter

E.g.: if white noise and blur are present, the Wiener filter seeks a
frequency-by-frequency compromise between

« deblurring = highpass filter and

« attenuation of frequencies at which the SNR is low (typically, high
frequencies) - lowpass filter

The result in this case is a bandpass filter.

Note: if the spectrum of the original image cannot be effectively
estimated, we can use K = 1/SNR: 5
1 |Huv)

R TTRO TR
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2-D Wiener filter

aueblie

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (¢) Wiener filter result.
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2-D Wiener filter

abhc
def
8 h i

FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Result of inverse filtering, (c) Result
of Wicner filtering. (d (1) Same sequence, but with noise variance one order of magnitude less (g)-{i) Sama
sgfuence, bul noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred
image is quite visible through a “curtain™ of noise.
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2-D Wiener filter

abhc
def
Ehi

FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Result of inverse filtering, (c) Result
of Wicner filtering. (d (1) Same sequence, but with noise variance one order of magnitude less (g)-{i) Sama
sgfuence, bul noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred
image is quite visible through a “curtain™ of noise.
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2-D Wiener filter

FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Result of inverse filtering, (c) Result
of Wicner filtering. (d (1) Same sequence, but with noise variance one order of magnitude less (g)-{i) Sama

sgfuence, bul noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred
image is quite visible through a “curtain™ of noise.



Constrained Least Squares filter

An extension to the simplified Wiener filter seen last. Suppose we know
the noise mean and variance.

Approach: (~Jain) minimize a cost function J =|| p(x,y)* f(X, ) ||2

subject to the constraint || g(X,y)—h(X,y) * fA(X, VIF=ln(x y) ||

Normally, p is an operator that measures the “roughness” of the
estimated image, e.q. its Laplacian:

0 -1 0]
p(x,y)=|-1 4 -1
0 -1 0

I.e.: we want the output image to be as smooth as possible, but not
too different from an estimate of the original
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Constrained Least Squares filter

In the Fourier domain: minimize J =| P(u,v)lf(u,v) 1
subject to || G(u,v) — H (u,V)F (u,v) |I>=]| N(u,v) ||

A solution can be obtained via 1 ‘H (u V)‘Z
the Lagrange multiplier method: H ((u,v) = !

H (u,v) |H (u,v)\2 +7|P(u,v)

Gamma can be set iteratively: compute D =| G(u,v)—H (U,V)|£(U,V) | ’

then increase gamma if D <||N(u,Vv)|° , decrease itif D >| N(u,V)|’

Notes:
| N(u,V)||* is the noise power (the variance if the noise is zero-mean)

« The LS filter is equivalent to the Wiener filter if we specify:
Spn(U,V)=y and Sg(u,v) =1/ |P(u,v) [’
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a’b e

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b).and (c¢) with the Wiener filtering
results in Figs. 5.29(c¢). (f), and (1), respectively.

* v values set manually

« LS is better than Wiener when the noise is high or medium
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FIGURE 5.31

(a) Iteratively
determined
constrained least
squares
restoration of
Fig 5.25-b 1sing
correct noise
parameters.

(b) Result
obtained with
WTIOng noise
parameters.

Similar to Fig.5.28(c)
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Sx.y) = lX.¥) - c(x,y) - S(X. ¥) = (

[ 20009+ C2 _(crly+(?3) @)
0% + 05 + C2 oxay +C3 /"

where je and 1y are (respectively) the local sample means of x

and y, o and oy are (respectively) the local sample standard

deviations of x and y, and oy is the sample cross correlation of x
and y after removing their means. The items Cy, C2, and C3 are

2pppy + G
ui+ug+C

- = ‘:.‘.: ‘ Mean Squared
== Error: Love It
== or Leave It?

Or, using some measurable HVS properties:

From Just Noticeable Differences
to Image Quality

emiall nneitive ronetante that etahilive earh term en that near.

Elements of visual perception

The normalized contrast threshold nct is then

nct(L,S) = 1/ ncr = (L+S5)"2 / (L*S)

1 ctvs. uminance for $=10,50,100
Taking as a reference the 10 T ———r -
perfect adaptation case:

nct(L=S) = (25)72 /5”2 = 4

we get the denormalized
contrast threshold ct:

ct(L,S,cto) = (cto/4) * nct =
= (cto/4) * (L+5)"~2 / (L*S)

where cto is the optimal contrast
threshold 10"
Barten: cto = 0.01 — 0 2
(Ferwerda: cto = 0.1) 10 10 10 10
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