
• Spatial geometric transformations

In case of geometric distortions: an inverse transformation can bring each 
pixel to its correct position (generally not on the original sampling grid). 

Two steps:  1. spatial transformation 2. interpolation

E.g.: correct lens distortions; remove perspective effects for image 
matching and retrieval;  ... or warp an image or morph a face

• Image scaling

Matches image size to the one of the display (or a portion thereof) 

E.g.: YouTube (640x480, 360p, ...) or SDTV (576) to HD 
(1920x1080p); photocamera e.g. 4000x3000 to HD

Interpolation changes the sampling rate (better, the sampling grid) of 
the image, and is needed in both cases

Geometric transformations and
Interpolation of images



A geometric distortion may be represented by a coordinate mapping:

x’=r(x,y), y’=s(x,y). 

If r and s are analytically available (e.g. known 3-D scene structure, 

known lens distortion), we can obtain an estimate f
^
(x,y) of the ideal

image f(x,y) from the distorted image g(x’,y’).

A single description for the whole image plane is generally not suitable. 

→ Finite elements approach

Geometric transformations

1. A set of reference pixels

(tiepoints) whose correct location 

can be determined is looked for 

2. image is segmented into polygons

3. all pixels in each polygon are 

moved accordingly.



A typical model used to describe geometric distortions is the bilinear one

x’ = r(x,y) = ar x + br y + cr xy + dr

y’ = s(x,y) = as x + bs y + cs xy + ds

The system has eight d.o.f.. If four pairs of tiepoints are known, it can be 
solved. Then, all the pixels in the enclosed quadrilateral region are 
transformed. 

1: determine the distorted position (x’,y’) of each point (x,y) in the ideal 
image f via the eqs. above

2: set f
^
(x,y)=g(x’,y’).

The point 
(x’,y’) in 
general will 
not be located 
on the 
sampling grid. 
We need an 
interpolator

Geometric transformations



Note: bilinear here has a different meaning !!!

Geometric transformations and
Interpolation of images



Perspective correction

Notes:

1. features that do not 
lie on the tilted planar 
surface are distorted 
(the light pole appears 
to be at an angle to the 
building when in fact it 
is perpendicular).  

2. the right portion of 
the building is blurred 
due to enlargement and 
interpolation

[Russ]

Geometric transformations and
Interpolation of images



Jiang20_Accurate Sports Field Registration

Geometric transformations and
Interpolation of images

Perspective correction

A more complex 
problem: determine a 
homography for 
sports video analysis



A simpler tool: the affine transformation (six params.)

x’ = r(x,y) = a11 x + a12 y + b1

y’ = s(x,y) = a21 x + a22 y + b2

has the collinearity constraint: points on a line stay on a line, parallel 
lines remain parallel. Can be used to perform

translation -----------------------------→

rotation (counter-clockwise) ---------→

scaling (possibly anisotropic) --------→

shearing (e.g., parallel to y) ---------→
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Homogeneous notation:

• To perform the transformation, for each position Pfin in output image 

find position Pini in input image:                              , and read gray level 

there.   Note ‘round’ → nearest neighbour interpolation

• To find A from tiepoints: 6 d.o.f. → 3 pairs of eqs. like the one above:

If  no. of tiepoints >3, use the pseudoinverse to find the MMSE solution

[matlab]
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Affine transformation: an application

Image morphing
using Delaunay triangulation

https://hypjudy.github.io/2017/04/25/image-morphing/

https://hypjudy.github.io/2017/04/25/image-morphing/


• DeepFace (Facebook-Meta) (2014) frontalizes the face to a 3D model 
to make the image appear as looking directly towards the camera. 

• FaceNet (Google) → OpenFace (CMU 2016, open source) uses a 
simpler 2D affine transformation   ( → OpenFace 2.2 for further tasks )

68 landmarks are detected with dlib’s face landmark detector. The affine 
transformation also resizes and crops the image to the edges of the 
landmarks so the input image to the neural network is 96 × 96 pixels.

Affine transformation: an application

Preprocessing for DL-based face 
recognition

Face detection returns a list of bounding 
boxes around the faces in an image.

- Faces could be looking in different 
directions or under different illumination.

- To reduce the size of the input space, 
normalize the faces: eyes, nose, and 
mouth should appear at similar locations 
in each image. 

https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
http://dlib.net/


Image upscaling: an apparently simple case of geom. transformation

In principle, image acquisition violates the sampling theorem: the real
world has “infinite” spatial-frequency contents

→ Ideal sinc-based interpolation is not the theoretically right choice, 

apart from not being realizable

The visual system is the final reference, and has very high resolution 
(someone says several hundred Mpixel if we account for saccadic 
movements too) (http://clarkvision.com/imagedetail/eye-resolution.html)

We wish we could (re-)introduce the correct higher frequency contents

Interpolation of images



Shannon interpolation for Nyquist-frequency sampled 1-D data

The ideal LP filter has rectangular mask with cutoff freq. at WT/2 

→ impulse response is j(x) = sinc(x/T). Interpolation is obtained

by the convolution between the sampled data and j(x)

Interpolation of images



Simplest solution: local n-th order interpolators approximate the sinc. 

Infinite convolution becomes linear combination of a few adjacent
samples. Weights are a function of sample distance x. They can be 
derived by repeated convolutions of the hold function R0(x) with itself:
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Interpolation of images



Note: some of these are function approximators rather than
interpolators: the reconstructed function is not constrained to pass 
exactly on the original points. Better use the:

Keys interpolator

An often used 3rd-order interpolator based on the general expression:

with constraints: R=1 at 0, R=0 at -2,-1,1,2 (like a sinc), and null first 
derivative at -2,2  → 7 constraints, 8 unknowns  → 1 d.o.f.:

If A=-1/2 is selected, the solution achieved is the one with mmse for a 
power series expansion.
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Interpolation of images



A generalization of the Keys interpolator:

Lanczos interpolator

Coefficients are the values of a sinc
windowed with the main lobe of another
wider sinc

sinc(x/a) for −a ≤ x ≤ a (a=1,2,3)

Interpolation of images

https://commons.wikimedia.or
g/w/index.php?curid=6897796



In the discrete-time domain we do not need continuous interpolated
functions → perform upsampling + linear anti-imaging filtering H(z)

H(z) may have same impulse response as R0, R1, R3, RC filters above.

For an integer factor L:

For a rational factor L/M, antialias filtering + downsampling is
further needed: 

Note: efficient polyphase realizations exist for interpolation.

Interpolation of images



E.g., if L=2: note asymmetric spectrum: signal is complex

For any L, an anti-imaging filter is needed with stopband edge at ws= p/L 

and passband edge at wp as close as possible to ws to avoid damaging the 

spectrum of the input signal.

2-D case:   (separable) linear interpolators are derived:
• R0 → nearest-neighbor
• R1 → bilinear
• Keys → bicubic
• → Upsampling and 2-D anti-imaging filter

[matlab]

Interpolation of images



Many Nonlinear Edge-Directed interpolation algorithms exist.

→ iteratively duplicate the image size by copying original pixels into an 

enlarged grid, then fill the gaps with weighted averages of neighbors, 
using weights derived by a local edge analysis.

a        b

x                                                a

c       d                                         c       x    b

d

Simple solution: x =(a+d)/2 if (|a-d|<|b-c|)

x =(b+c)/2 otherwise

Interpolation of images



More sophisticated:

At each step, the algorithm fills the central pixel (black) with the 
average of the two neighbors in the direction of lowest second order 
derivative, I11 or I22.  I11 (and I22) are estimated as:

An iterative refinement is then performed

Interpolation of images

Li Orchard 2001
Giachetti 2011



→ z07_Superresolution_Image_Reconstruction

Interpolation of images



Interpolation of 
images

A case of domain-specific
superresolution:

Kriging: used in topography

to estimate 3D surfaces from
irregularly sampled terrain

It is quite apparent that sinc
interpolation does not provide
in general a realistic 
representation of terrain from
sparse data

https://desktop.arcgis.com/en/arcmap/latest/tools/3d-
analyst-toolbox/how-kriging-works.htm

For generic images: → z07_interp_kriging

https://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/how-kriging-works.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/how-kriging-works.htm


Interpolation of 
images

A case of domain-specific
superresolution:

Bayer filter demosaicking

→ z07_Demosaicking_Color_image_demosaicking_An_overview

→ z07_Demosaicking_04 Sensors + demosaicing
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