
• Spatial geometric transformations

In case of geometric distortions: an inverse transformation can bring each
pixel to its correct position (generally not on the original sampling grid).

Two steps: 1. spatial transformation 2. interpolation

E.g.: correct lens distortions; remove perspective effects for image
matching and retrieval; ... or warp an image or morph a face

• Image scaling

Matches image size to the one of the display (or a portion thereof)

E.g.: YouTube (640x480, 360p, ...) or SDTV (576) to HD
(1920x1080p); photocamera e.g. 4000x3000 to HD

Interpolation changes the sampling rate (better, the sampling grid) of
the image, and is needed in both cases

Geometric transformations and
Interpolation of images

A geometric distortion may be represented by a coordinate mapping:

x’=r(x,y), y’=s(x,y).

If r and s are analytically available (e.g. known 3-D scene structure,

known lens distortion), we can obtain an estimate f
^
(x,y) of the ideal

image f(x,y) from the distorted image g(x’,y’).

A single description for the whole image plane is generally not suitable.

→ Finite elements approach

Geometric transformations

1. A set of reference pixels

(tiepoints) whose correct location

can be determined is looked for

2. image is segmented into polygons

3. all pixels in each polygon are

moved accordingly.

A typical model used to describe geometric distortions is the bilinear one

x’ = r(x,y) = ar x + br y + cr xy + dr

y’ = s(x,y) = as x + bs y + cs xy + ds

The system has eight d.o.f.. If four pairs of tiepoints are known, it can be
solved. Then, all the pixels in the enclosed quadrilateral region are
transformed.

1: determine the distorted position (x’,y’) of each point (x,y) in the ideal
image f via the eqs. above

2: set f
^
(x,y)=g(x’,y’).

The point
(x’,y’) in
general will
not be located
on the
sampling grid.
We need an
interpolator

Geometric transformations

Note: bilinear here has a different meaning !!!

Geometric transformations and
Interpolation of images

Perspective correction

Notes:

1. features that do not
lie on the tilted planar
surface are distorted
(the light pole appears
to be at an angle to the
building when in fact it
is perpendicular).

2. the right portion of
the building is blurred
due to enlargement and
interpolation

[Russ]

Geometric transformations and
Interpolation of images

Jiang20_Accurate Sports Field Registration

Geometric transformations and
Interpolation of images

Perspective correction

A more complex
problem: determine a
homography for
sports video analysis

A simpler tool: the affine transformation (six params.)

x’ = r(x,y) = a11 x + a12 y + b1

y’ = s(x,y) = a21 x + a22 y + b2

has the collinearity constraint: points on a line stay on a line, parallel
lines remain parallel. Can be used to perform

translation -----------------------------→

rotation (counter-clockwise) ---------→

scaling (possibly anisotropic) --------→

shearing (e.g., parallel to y) ---------→

[columns (x) shift proportionally to rows (y)]

B
y

x
A

y

x
+

=

'

'

=

=

 −
=

=

=

10

1

0

0

)cos()sin(

)sin()cos(

;
10

01

kr
A

kr

kc
A

A

kr

kc
BA

Geometric transformations and
Interpolation of images

Homogeneous notation:

• To perform the transformation, for each position Pfin in output image

find position Pini in input image: , and read gray level

there. Note ‘round’ → nearest neighbour interpolation

• To find A from tiepoints: 6 d.o.f. → 3 pairs of eqs. like the one above:

If no. of tiepoints >3, use the pseudoinverse to find the MMSE solution

[matlab]

inifin PAPy

x

baa

baa

y

x

B
y

x
A

y

x
=

=

+

=

1100

22221

11211

1

'

'

'

'

)(1

finini PAroundP −=

1

111

321

321

100

22221

11211

111

'3'2'1

'3'2'1
−==

=

inifininifin PPAPAPyyy

xxx

baa

baa

yyy

xxx

Geometric transformations and
Interpolation of images

Affine transformation: an application

Image morphing
using Delaunay triangulation

https://hypjudy.github.io/2017/04/25/image-morphing/

https://hypjudy.github.io/2017/04/25/image-morphing/

• DeepFace (Facebook-Meta) (2014) frontalizes the face to a 3D model
to make the image appear as looking directly towards the camera.

• FaceNet (Google) → OpenFace (CMU 2016, open source) uses a
simpler 2D affine transformation (→ OpenFace 2.2 for further tasks)

68 landmarks are detected with dlib’s face landmark detector. The affine
transformation also resizes and crops the image to the edges of the
landmarks so the input image to the neural network is 96 × 96 pixels.

Affine transformation: an application

Preprocessing for DL-based face
recognition

Face detection returns a list of bounding
boxes around the faces in an image.

- Faces could be looking in different
directions or under different illumination.

- To reduce the size of the input space,
normalize the faces: eyes, nose, and
mouth should appear at similar locations
in each image.

https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
http://dlib.net/

Image upscaling: an apparently simple case of geom. transformation

In principle, image acquisition violates the sampling theorem: the real
world has “infinite” spatial-frequency contents

→ Ideal sinc-based interpolation is not the theoretically right choice,

apart from not being realizable

The visual system is the final reference, and has very high resolution
(someone says several hundred Mpixel if we account for saccadic
movements too) (http://clarkvision.com/imagedetail/eye-resolution.html)

We wish we could (re-)introduce the correct higher frequency contents

Interpolation of images

Shannon interpolation for Nyquist-frequency sampled 1-D data

The ideal LP filter has rectangular mask with cutoff freq. at WT/2

→ impulse response is j(x) = sinc(x/T). Interpolation is obtained

by the convolution between the sampled data and j(x)

Interpolation of images

Simplest solution: local n-th order interpolators approximate the sinc.

Infinite convolution becomes linear combination of a few adjacent
samples. Weights are a function of sample distance x. They can be
derived by repeated convolutions of the hold function R0(x) with itself:

spline)B(cubic

2||1

1||0

|)|2(

||
)(

...

10

01

1

1
)(

elsewhere

2/12/1

0

1
)(

3

6
1

23

2
1

3
2

3

1

0

−

−

−+
=

−

−

+
=

−

=

x

x

x

xx
xR

x

x

x

x
xR

x
xR

[Pratt 113][dip07_2.m]

Interpolation of images

Note: some of these are function approximators rather than
interpolators: the reconstructed function is not constrained to pass
exactly on the original points. Better use the:

Keys interpolator

An often used 3rd-order interpolator based on the general expression:

with constraints: R=1 at 0, R=0 at -2,-1,1,2 (like a sinc), and null first
derivative at -2,2 → 7 constraints, 8 unknowns → 1 d.o.f.:

If A=-1/2 is selected, the solution achieved is the one with mmse for a
power series expansion.

2||1

1||0

||||

||||
)(

23

23

+++

+++
=

x

x

HxGFxxE

DxCBxxA
xRC

2||1

1||0

4||85||

1)3(||)2(
)(

23

23

−+−

++−+
=

x

x

AxAAxxA

xAxA
xRC

Interpolation of images

A generalization of the Keys interpolator:

Lanczos interpolator

Coefficients are the values of a sinc
windowed with the main lobe of another
wider sinc

sinc(x/a) for −a ≤ x ≤ a (a=1,2,3)

Interpolation of images

https://commons.wikimedia.or
g/w/index.php?curid=6897796

In the discrete-time domain we do not need continuous interpolated
functions → perform upsampling + linear anti-imaging filtering H(z)

H(z) may have same impulse response as R0, R1, R3, RC filters above.

For an integer factor L:

For a rational factor L/M, antialias filtering + downsampling is
further needed:

Note: efficient polyphase realizations exist for interpolation.

Interpolation of images

E.g., if L=2: note asymmetric spectrum: signal is complex

For any L, an anti-imaging filter is needed with stopband edge at ws= p/L

and passband edge at wp as close as possible to ws to avoid damaging the

spectrum of the input signal.

2-D case: (separable) linear interpolators are derived:
• R0 → nearest-neighbor
• R1 → bilinear
• Keys → bicubic
• → Upsampling and 2-D anti-imaging filter

[matlab]

Interpolation of images

Many Nonlinear Edge-Directed interpolation algorithms exist.

→ iteratively duplicate the image size by copying original pixels into an

enlarged grid, then fill the gaps with weighted averages of neighbors,
using weights derived by a local edge analysis.

a b

x a

c d c x b

d

Simple solution: x =(a+d)/2 if (|a-d|<|b-c|)

x =(b+c)/2 otherwise

Interpolation of images

More sophisticated:

At each step, the algorithm fills the central pixel (black) with the
average of the two neighbors in the direction of lowest second order
derivative, I11 or I22. I11 (and I22) are estimated as:

An iterative refinement is then performed

Interpolation of images

Li Orchard 2001
Giachetti 2011

→ z07_Superresolution_Image_Reconstruction

Interpolation of images

Interpolation of
images

A case of domain-specific
superresolution:

Kriging: used in topography

to estimate 3D surfaces from
irregularly sampled terrain

It is quite apparent that sinc
interpolation does not provide
in general a realistic
representation of terrain from
sparse data

https://desktop.arcgis.com/en/arcmap/latest/tools/3d-
analyst-toolbox/how-kriging-works.htm

For generic images: → z07_interp_kriging

https://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/how-kriging-works.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/how-kriging-works.htm

Interpolation of
images

A case of domain-specific
superresolution:

Bayer filter demosaicking

→ z07_Demosaicking_Color_image_demosaicking_An_overview

→ z07_Demosaicking_04 Sensors + demosaicing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

