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Data-domain image processing
Digital image sampling & re-sampling

The type of 2-D signal f(x,y) we deal with is represented by a real
function of two integer variables

f(xy)=T(XT,, ¥yT,) =T (X, Y )| Xa =XT,, y, = yT,

_l Ty ll/Ty
& & @ @ ;- & L @ & -

Tx 1/Tx M
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9 ® ® ® ® L @ ® ® ®
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\ B \ A

Data domain Frequency domain

Copyright notice: Most images in this package are
© Gonzalez and Woods, Digital Image Processing, Prentice-Hall



Digital image sampling & re-sampling

« A 2-D function is causal if f(x,y)=0 for (x<0 and y<0) y

It is semicausal if f(x,y)=0 for x<0, (x=0 and y<0) J'x

« A 2-D processing system is

] X
causal or semicausal

.' |
: > >
: - ’ > ’
: - -
: > : .

- —_— - —_—

¥= | B

if the "previous" input data are located left/above the dashed lines
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Digital image sampling & re-sampling

1024

FIGURE 2.19 A 1024 x 1024, 5-bit image subsampled down to size 32 X 32 pixels. The number of allowable
aray levels was kept at 256,
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Digital image sampling & re-sampling

FIGURE 2.20 (a) 1024 x 1024, 8-bitimage. (b) 512 x 512 image resampled into 1024 X 1024 pixels by row and
column duplication. (¢) through (f) 256 X 256, 128 x 128, 64 % 64. and 32 x 32 images resampled into
1024 x 1024 pixels.
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Digital image sampling & re-sampling

< 32 pixels to 1024 x 1024 pixels,
but using bilinear interpolation.
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ation of the Moiré pattern effec

The Moiré pattern is an
aliasing effect, often
visible on finely textured
regions.

In this case it takes the
form of a low-frequency
vertically running sinusoid
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Digital image
quantization
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FIGURE 2.21
(Continued)
(e)—(h) Image
displaved in 16, 5.
4. and 2 gray
levels. (Original




Digital image quantization: dithering

Adding noise before quantization can improve the
appearance of coarsely quantized images.

« The existence of pixels having amplitude close to the
threshold(s) is made apparent.

See Matlab

A randomized version of halftone printing.
« More visually effective algorithms exist
(Floyd-Steinberg: error diffusion)
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Image Enhancement in the Spatial Domain:
Bit-plane slicing
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One S-bit byte

- Bit-plane 7

(most significant)

Bit-plane 0
(least significant)

\\\\\\\&K

FIGURE 3.12 e.g.:

Bit-plane f(m,n) = 8710
representation of 010101112
an 3-bit image.
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Image Enhancement in the Spatial Domain: "

Bit-plane slicing
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
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Image Enhancement in the Spatial Domain:
Bit-plane slicing
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FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8,7, and 6; and (c) bit planes 8,
7,6,and 5. Compare (c) with Fig.3.14(a). 4, 8, 16 gray levels respectively

Reconstruction: Sum_n [ bit-plane_n * 2~(n-1) ]

Can be used for
« data compression
« implementation of order-statistics filters (see later)

« LSB steganography: hides information modifying the
least significant bit of every pixel

- Matlab dip05_0
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Image Enhancement in the Spatial Domain:
Gray-level transforms (Tone mapping)

Generic, possibly nonlinear, pointwise operator:

Light

Dark

Dark

m m
Dark =+——— Light Dark «=—— Light
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Image Enhancement in the Spatial Domain:
Gray-level transforms

I
Negative
nth root
Log
nth power
Identity Inverse log
/ l
L'Ifq- L .'"? 3L .a'r4

Input gray level. r

Basic gray-level
transformations:
Negative: s=L-1-r

Generic log: s=clIn(l+r)

Power law: s=cr”’



(T
Image Enhancement in the Spatial Domain:
Gray-level transforms
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ab

FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)
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Image Enhancement in the Spatial Domain:
Gray-level transforms

a b

FIGURE 3.5

(a) Fourier
spectrum,.

(b) Result of
applving the log
transformation
given in

Eq. (3.2-2) verthe

(o]
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Image Enhancement in the Spatial Domain:
Gamma correction

1 FIGURE 3.6 Plots
y = 0.04 of the equation
Y = 0.10 s = cr' for
various values of
3L/ v =020 : .
Y (———ttint
v = 040 e

Llf'rq'_ / }f' = 5.':' 7]
0

0 L/4 L/2 3L/4 L -1
[nput gray level. r

Output gray level. s
Uy
3
\T
- I
I
o
I
[
L
K I
S
I =
]
L
= |
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Image Enhancement in the Spatial Domain:
Gamma correction

FIGURE 3.7

(a) Linear-wedge
grav-scale image.
(b) Response of
monitor to linear
wedge.

(c) Gamma-
corrected wedge.
(d) Output of
monitor.

1) Monitor response can
"compensate" for Weber-law
sensitivity of HVS:

dp = kdL/L > p = klog(L)
higher sensit. in dark areas
- dark transitions can be
compressed with power law
L = x~gamma (e.g. 2.4)
1a) ...provided quantization
errors are not incurred

2) Beware of nonlinearities
that are already included in
image data (e.g., JPEG)

displayed!

Image as viewed on monitor

o displayed!

Image as viewed on monitor
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Image Enhancement in the Spatial Domain:
Gamma correction

"The fact that a CRT's
transfer function is very
nearly the inverse of the
lightness sensitivity of
vision is an amazing, and

fortunate, coincidence!"
(Charles Poynton)

Modern displays replicate
the CRT's luminance
response.

Rec. ITU-R BT.1886 (2011)
states that 2.4-power EOTF
shall be standard for

HD content creation.
Consumer displays are
expected to conform.

1.0+
Power function segment,
exponent 0.45
0.8 4
Linear segment,
slope 4.5
ERR
L
L
E OETF:
S 047 Rec. BT.709
(production of
0] HD video)
transfer function
0.081 —
o+H4H—r—— 77
o 0.2 0.4 0.6 0.8 1.0
0.018 Tristimulus value, relative

CIE primaries: X,Y,Z

the slope of the function is limited near zero
(linear portion) in order to minimize quantization
noise in the dark regions of the picture.


z05_ITU-R_BT.1886.pdf
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Image Enhancement in the Spatial Domain:
Gray-level transforms

a b

¢ d

FIGURE 3.8

(a) Magnetic
resonance (MR)
image of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with
et

v = 0.6,0.4, and
(.3, respectively.
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Image Enhancement in the Spatial Domain:
Gray-level transforms

g

ab
cd

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

|

vy = 3.0,4.0, and
3.0, respectivelv.
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Image Enhancement in the Spatial Domain:
Piece-wise linear mapping

L -1 I I
(ra2.52)
- 3L/41- -
T
5
g Lol T(r) |
=
(=W
=
o LAl _
(r.s1)
0 l | l
0 L/4 L2 34 L-1

Input gray level.r

FIGURE 3.10
Contrast
stretching,

(a) Form of
transformation
function. (b} A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.

Note: stretching is
useless if the image
has to be thresholded
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Image Enhancement in the Spatial Domain:

Gray-level slicing

R VL -1
s -—T{r] i
A
i Ll .
0 A B L -1

FIGURE 3.11

(a) This
transformation
highlights range
| A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
| A, B] but
preserves all
other levels,

(c) An image.
(d)y Result of
using the
transformation
1 {(a).

- GraylevelMapping.m
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Image Enhancement in the Spatial Domain:
Histogram-based processing

Histogram: normalized frequency (y) of gray level values (x).

UNIVERSITA
DEGLI STUDI

Dark image Low-contrast image

|.||||.|J|..... o

Bright image High-contrast image

FIGURE 3.15 Lour basic image types: dark, lighl., low con trast, high contrast., and their cor-
responding histograms. (Original image courtesy of Dr. Roger Heady, Research School
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Image Enhancement in the Spatial Domain:

s = T(ry)

ol

Histogram-based processing

FIGURE 3.16 A
oray-level
transformation
function that is

both single valued
and

monotonically
INCreasing.

(can be inverted and

preserves gray-level
ordering)



Image Enhancement in the Spatial Domain:
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Histogram equalization

Suppose the gray levels in an image are realizations of a random variable
r in the range (0,1), with a probability density function (pdf): p, ()
Let s=T(r) be a monotonic, invertible transformation on r

§5=Tir)

.r/ . -
pir)

dlr

ds

All the pixels below the curve P, (F) in
the interval (I, r+dr) are mapped to
pixels below P,(S) in (s, s+dS)

i.e., the two areas are equal:

p, (s) ds = p, (r) dr

Now, let the transformation be the
cumulative distribution function (cdf) of r

s=T ()= p.(w)dw

It is monotonic and invertible (if the pdf
is nonzero for all r)
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Image Enhancement in the Spatial Domain:
Histogram equalization

The derivative of this function is of course ds/dr = p,(r)
Substituting in p,(s)ds=p,(r)dr — p.(s)=1
i.e. the transformed variable has an exactly uniform pdf.

K K
In a practical discrete case: S, =T (I, ) = Z p,(r;)= an /n
j=0 j=0

i.e., mapping each gray level I, into the S, value given above yields a
uniform pdf for the output image.

Note: in general, only an approximately uniform distribution will be
obtained in the discrete case.

Note: no parameters are needed; the processing is automatic and
straightforward.



\ DEGLI STUDI
e/ DITRIESTE

Image Enhancement in the Spatial Domain:
Histogram equalization

Example (continuous case): 18} o)

p,(r)=-2r+2 0<r<1

Equalization is obtained via the Bl
transformation: 08} oo
r

s=T(r)=[(-2w+2)dw=-r*+2r = -

1 1 1 1
0 0.2 04 06 0.8 1

The transformed variable has a
uniform pdf. Indeed:

C244-4s | —
rETy TR p(r)==2(1-1-s)+2, p(r)=21-s

r=1—1-s, 2m ps(s):pr(r)%, p,(s)=1 (Uniform pdf)

ds

S. Das, IIT Madras, Course on Computer Vision




Histogram equalization

Example (discrete case):

e
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Image Enhancement in the Spatial Domain:

N
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(d) Cdf=s,

@r,|(b)n,|(c)pry) (e) Quant. Values
0 790 0.19 0.19 1/7
1/7 1023 0.25 0.44 3/7
2/7 850 0.21 0.65 S/7
3/7 656 0.16 0.81 6/7
4/7 329 0.08 0.89 6/7
5/7 245 0.06 0.95 1
6/7 122 0.03 0.98 1
1 81 0.02 1.00 1
total | 4096 1.00

(a) Quantized Gray levels; (b) a sample histogram; (c) its pdf;

(d) Computed CDF and (e) approximated to the nearest gray level.

S. Das, IIT Madras, Course on Computer Vision



Image Enhancement in the Spatial Domain:
Histogram equalization

re | S=T@ | S« | n PS5y
0 1/7 0 0 0
1/7 3/7 1/7 790 0.19
2/7 57 2/7 0 0
3/7 6/7 3/7 1023 | 0.25
4/7 6/7 4/7 0 0
5/7 717 S/7 850 0.21
6/7 7/7 6/7 9835 0.24

1 7/7 7/7=1 448 0.11

Transformation The new histogram

function

S. Das, IIT Madras, Course on Computer Vision

o =l
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Image Enhancement in the Spatial Domain:
Histogram equalization

EbE

FIGURE 3.17 {a) Images Irom Fig. 3.15. {b) Results of histogram equalization. {c) Cor-
responding histograms
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Image Enhancement in the Spatial Domain:
Histogram equalization

EbE

FIGURE 3.17 {a) Images Irom Fig. 3.15. {b) Results of histogram equalization. {c) Cor-
responding histograms
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Image Enhancement in the Spatial Domain:
Histogram specification

Remember that the mapping . )
S =T(r)= Z p.(r;) = Zni /n
j=0 J=0

yields a (approx.) uniformly distributed output. Another variable z,
with a different, known and desired pdf p,, will satisfy the same

equation: K
G(z,)= Z p,(z;) =S5,
j=0

substituting: 2. =G s, ) =G(T(I))
k = k/ = ‘

i.e., mapping each gray level r into the z, value given above yields
the desired histogram (pdf) for the output image.
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Image Enhancement in the Spatial Domain: |
Histogram specification

1 Sk uniformly
distributed image

G: determined as cdf of
the desired pdf p,

Z,: image with desired
histogram

FIGURE 3.19

(a) Graphical
interpretation of
mapping from r,
to s, via T'(r).
(c) Inverse
mapping from sy
Lo its
corresponding
value of z,.
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Image Enhancement in the Spatial Domain:
Histogram specification

gkt

Example:

» Two histograms are given to us

Ik Ny Pk Zy P (z)

0/7 790 0.19 0/7 0

17 1023 0.25 17 0

27 850 0.21 2/7 D

37 656 0.16 317 0.15

ar7 329 0.08 a7 0.2

57 245 0.06 57 0.3

6/7 122 0.03 6/7 0.2

717 81 0.02 AT =015 ] Then determine
Input histogram Target histogram z-c(g?”: r(\)cg ti(eZ)

histograms):

S. Das, IIT Madras, Course on Computer Vision



Image Enhancement in the Spatial Domain:
Histogram specification

Ik P cdf(p,) | Gray
levels
0/7 0.19 0.19 117
17 0.25 0.44 317
217 0.21 0.65 517
317 0.16 0.81 6/7
4/7 0.08 0.89 6/7
517 0.06 0.95 1
6/7 0.03 0.98 1
7717 0.02 1 1

Z,

o/7
117
217
37
417
SI7
6/7
777

P (zy)

0
0
0
0.15
0.2
0.3
0.2
0.15

cdf(zy)

0

0

0
0.15
0.35
0.65
0.85

= N WA SN

N

£

UNIVERSITA

s DEGLI STUDI
i’ DITRIESTE

Gray
level

0/7
0/7
or7
17
217
SI7
6/7
1

G(2)
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Image Enhancement in the Spatial Domain:

Histogram specification

L = G_l(T (rk))

I T(r)=.. ..=2G(z,)
017 0.19 0 0/7
117 0.44 \ 0 117
217 0.65 0 217
317 0.81 0.15 317
Ar7 0.89 0.35 Al7
517 0.95 0.65 517
6/7 0.98 \ 0.85 6/7
717 1 \- 1 717

S. Das, IIT Madras, Course on Computer Vision

Mapping
function
0O — 3
] — 4
2 — 5
34 — 6
56 7— 7
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Image Enhancement in the Spatial Domain:

Histogram specification

distributions: original

M Ny Pk

0/7 790 0.19
107 1023 0.25
27 850 0.21
37 656 0.16
417 329 0.08
ST 245 0.06
6/7 122 0.03
17 81 0.02

S. Das, IIT Madras, Course on Computer Vision

V774

target

| P (z)

0

0

0
0.15
0.2
0.3
0.2
0.15

4! ,(?""’w\*% UNIVERSITA
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obtained

n’y P"(zk)
0 0

0

0
790 0.19
1023 0.25
850 0.21
656+329 0.24
245+122+81 0.11
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Image Enhancement in the Spatial Domain:
Histogram specification

Number of pixels ( * 10%)

0 | | |
0 a4 128 192 255

Gray level

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's Mars Global
Surveyor. (b) Histogram. (Original image courtesy of NASA.)



Image Enhancement in the Spatial Domain:
Histogram specification

255 i
| | : =

2 10 7/ FIGURE 3.21
% (a) Transformation
~. function for

= :

£ 128 histogram

g equalization.

= (b) Histogram-
= b4 . .

o equalized image

(note the washed-
0 | | | out appearance ).
0 64 128 192 (c) Histogram
Input gray levels of (b).
7.00 | |

=

. 5250

E

= 350 _

I

21751 ‘ |

E ‘

? |

0 | | [F——
0 64 128 192 235

Gray level



Image Enhancement in the Spatial Domain:
specification

ac
b
d

FIGURE 3.22
{(a) Specified
histogram.

(b) Curve (1) 1s
from Eq. (3.3-1
using the
histogram in (a);
curve (2) was
obtained using
the iterative
procedure in

Eq. (3.3-17).

(¢) Enhanced
image using
mappings from
curve (2).

(d) Histogram
of (¢).

Note: Histogram manipulation of color images can
be performed in the HSV color space

14).

Histogram

7.00

Number of pixels ( * 10*)

255

192

128

Output gray levels

Gray level

128 152

128 192 255
[nput gray levels

- Matlab

% UNIVERSITA
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Number of pixels ( % 10%)

b4 128 192
Gray level
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Image Enhancement in the Spatial Domain:
Histogram manipulation of color images

https://www.mathworks.com/help/images/understanding-color-spaces-and-color-
space-conversion.html

Colors typically represented as RGB numeric values

Other models exist, referred to as color spaces because most of them
can be mapped into a 3-D coordinate system

They make certain calculations more convenient

They provide a way to identify colors that is more intuitive

They may avoid (reduce) color alterations!

Matlab provides commands to convert data among different color spaces
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Image Enhancement in the Spatial Domain:
Histogram manipulation of color images

RGB

Raw data obtained from a camera sensor. R, G, and B are
directly proportional to the amount of light that illuminates
Linear RGB the sensor. Preprocessing of raw image data, such as white
balance, color balance, and chromatic aberration
compensation, are performed on linear RGB values

SRGB values apply gamma correction to linear RGB values.

Images are frequently displayed in the sRGB color space
because they appear brighter and colors are easier to
distinguish

SRGB

Adobe RGB
'SRGB

Whae
(255,255,255)



https://www.mathworks.com/help/images/gamma-correction.html
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Image Enhancement in the Spatial Domain:
Histogram manipulation of color images

YCbCr is widely used for digital video

Luminance or brightness of the image. Colors increase

v in brightness as Y increases

Chrominance value that indicates the difference
Cb

between the blue component and a reference value
Cr Chrominance value that indicates the difference

between the red component and a reference value

YCbCr does not use the full range of the image data type so that the video
stream can include additional (non-image) information:

e float: Yisin [16/255, 235/255] and Cb and Cr are in [16/255, 240/255]
e Uint8: Yisin [16, 235] and Cb and Cr are in [16, 240]
e Uintl6:Yisin [4112, 60395] and Cb and Cr are in [4112, 61680]



Image Enhancement in the Spatis
Histogram manipulation of colol

HSV

corresponds better to how people
experience color than RGB does

1¥ Saturation

Hue corresponds to the color’s
position on a color wheel. H is in the )
range [0, 1]. As H increases, colors transition from red to
orange, yellow, green, cyan, blue, magenta, and finally
back to red. Both 0 and 1 indicate red.

Saturation is the amount of hue or departure from neutral.
S isin the range [0, 1]. As S increases, colors vary from
unsaturated (shades of gray) to fully saturated (no white
component).

Value is the maximum value among the red, green, and
blue components of a specific color. Vis in the range [0, 1].
As V increases, the corresponding colors become
increasingly brighter.

Histogram manipulation in the HSV color space - Matlab
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Image Enhancement in the Spatial Domain:
| Exact Histogram specification

o

- Paper (z05_Exact_HS) & Matlab (demoHS.m)

Image Enhancement in the Spatial Domain:
[ 2-D]Histogram specification

- Papers (z05_2D_HistEq) & (z0O5_HVS_ToneMapping)
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Image Enhancement in the Spatial Domain:
Local histogram modification

At each location the local histogram is computed, the required mapping
is determined, and the pixel is mapped.
(At the next step, just update the histogram)

- (CL)AHE paper

abc

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. {¢) Result of local histogram
equalization using a 7 X 7 neighborhood about each pixel.
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Image Enhancement in the Spatial Domain:
Enhancement based on local statistics

Local values can be estimated for different image statistics, and
used to locally control a gray-level modification function.
E.g.: local mean and variance in the neighborhood Sxy:

mey = Z r(S1t) p[r(S,t)] Gszxy = Z[r(s,t) - mey]2 p[r(S,t)]

s,teSxy s,teSxy

Enhancement example: increase by a factor A>1 the luminance
of pixels in medium-variance, low-mean areas:

Af(x,y) if mg, <kM; & kD;< aszxy <k,D;,
g(X,y) = .
f(x,y) otherwise

M: and D¢ respectively are the global average and s.d. of the
image; they are used to make the operator more robust.
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Image Enhancement in the Spatial Domain:
Enhancement based on local statistics

FIGURE 3.24 SEM
image of a
tungsten filament
and support.,
magnified
approximately
1303 (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).
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Image Enhancement in the Spatial Domain:
Enhancement based on local statistics

A i e

FIGURE 3.25 (a) Image formed from all local means abtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (¢) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.



Image Enhancement in the Spatial Domain:
Enhancement based on local statistics

FIGURE 3.26
Enhanced SEM
image. Compare
with Fig. 3.24. Note
in particular the
enhanced area on
the right side of
the image.
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Image Enhancement in the Spatial Domain:
Using multiple images: subtraction

Using a «local-along-time» neighborhood

ab

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
oul.
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Image Enhancement in the Spatial Domain:
Using multiple images: averaging

Using a «local-along-time» neighborhood

Assume an image is formed as:
g(x,y)=f(x,y)+n(xy)

where n(x,y) is i.i.d. zero-mean noise. If we can average K
acquisitions of the image, the variance of the noise is reduced by the
factor K:

90X Y) =2 29X ) = FOX )+ D ()

This approach is useful when the sensor noise is relatively high:
poorly illuminated (static) scenes, astronomical images, ...



Image Enhancement in the Spatial Domain:
Using multiple images: averaging

Fig.3.30

A) Ideal

B) Noise added
(s.d.=64)

C) K=8

D) K=16
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Image Enhancement in the Spatial Domain:
Local operators

Note: this mask is centered in (x,y), i.e. its

FIGURE 3.1 A origin is its center. > noncausal operator
3 % 3 . Other choices generate phase shift
neighborhood Origin -

about a point

(x. ¥) 1n an image. - (x.y)

Generic, possibly nonlinear,
neighborhood-based
operator:

g(x,y)=Tf(x,y)]

Image f(x, v)

= o
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Image Enhancement in the Spatial Domain:
Local operators

12C OrgIn

Image orig
<

The mask entries are coefficients
that can be used in different ways.

The simplest is linear filtering via
the normalized convolution sum:

Za: Zblw(s,t)f(x—s,y—t)
g(X, y) _ S=—a t:—ba

D> w(s,t)

s=—a t=-Db

Image fi{x. y)

Note: other scaling factors are used if
the coeffs. sum is zero

Note: if the output image is required to
be the same size as the input image,
the latter must be suitably padded.
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Image Enhancement in the Spatial Domain:

FIGURE 3.33
Another
representation of
a general 3 X 3
spatial filter mask.

Local operators

e

ot

o

ey

g
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Image Enhancement in the Spatial Domain:

Local operators

Options Description
Filtering Mode
‘corr' Filtering is done using correlation (see Figs. 3.13 and 3.14). This is
the default.
'conv' Filtering is done using convolution (see Figs.3.13 and 3.14).
Boundary Options
P The boundaries of the input image are extended by padding with a
value, P (written without quotes). This is the default, with value 0.
'replicate' The size of the image is extended by replicating the values in its
outer border.
'symmetric'  The size of the image is extended by mirror-reflecting it across its
border.
'‘circular'’ The size of the image is extended by treating the image as one

Size Options
‘full'’

'same'’

period a 2-D periodic function.

The output is of the same size as the extended (padded) image
(see Figs.3.13 and 3.14).

The output is of the same size as the input. This is achieved by
limiting the excursions of the center of the filter mask to points
contained in the original image (see Figs. 3.13 and 3.14). This is
the default.

% UNIVERSITA
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Matlab
implementation
using ‘imfilter’

TABLE 3.2
Options for
function
imfilter.
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Image Enhancement in the Spatial Domain:
Local operators

G0

-

Padded f
000 0O0O0O0
Origin f 000O0OO0OO0D
0O 0 00O 0O 00 0 O0O0DO0 .
0O 0 0 0O w 0001000 Matlab'
00100 123 0000000 correlation or
00000 456 00O0O0O0O0O0 H
0O0O0O0OO0O 789 00O0OO0O0OO0O0 ConVOIUtlon
(a) (b)
b Initial position for w Correlation result Full correlation result
:i'z":ﬂ 0000 0000000
14 5 6: 00 0O 00 0 0O 00 O0O0O0O0OO©O0
7.8 910 0 0 0 09870 0098700
0001000 06 540 00 6 5 400
00 0O0O0O00O0 03 210 0032100
00 0 0O0O0O0 00 0 0O 00 0O0O0O0OO0
0000000 0000000 FIGURE 3.14
() () (e) [llustration of
,—V— li(itited w Convolution result Full convolution result two-dimensional
9 8§ 710 0O O 0O 0O 0 0 0 O0O0@O0 :
|
16 5 4: 0O 0 0 0 0O 0 0 00 0O 0 0 0O0O0O0 Correlatl(.)n and
3210000 01230 0012300 convolution. The
00 010O00O0 0O 45 6 0 00 456 00 OS are Shown in
00 0 0O0O0ODO0 07 8 9 0 007 8 9 00 . .
00000O0O0 0000 0 0000000 gray to SImphfy
0000000 0000000 viewing.

(f) (g) (h)



Image Enhancement in the Spatial Domain:

Local operators

Matlab: image padding + filtering
[ lowpass, w = ones(31,31) ]

" m
"

a Al
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(a) Original image.
(b) Result of using
imfilter with
default zero padding.
(c) Result with the
‘replicate’
option. (d) Result
with the
'symmetric’
option. (e) Result
with the 'circular’
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Image Enhancement in the Spatial Domain:

Linear lowpass filters

1 1 1
X 1 1 1
1 1 1

di

Both masks have
power-of-two
coefficients, which
are simple to
implement. In the
second one even
the sum of the
coefficients is a
power of two.

= ol

(¢

. UNIVERSITA
| DEGLI STUDI
" DITRIESTE

3 X 3 smoothing
(averaging) filter
masks. The
constant multiphi
er in front of each
mask 1s equal to
the sum of the
values of 1ts
coefficients, as 1s

Note: a uniform input image is not changed
Note: for an image having amplitude 1 and

frequency 1 in both hor. and vert. directions:

11-1]1
-1 1 (-1
11-1]1

the output amplitude is respectively:
Gy =(5x1+4x(-1))/9=1/9
G, =(8x1+8x(-1))/16 =0
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Image Enhancement in the Spatial Domain:
jnear lowpass filters
- » m B . .

o
a0 0
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! b v
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FIGURE 3.35 (a) Original image. of size 500 > 500 pixels. (D)—(f) Results of smoothing
with square averaging filter masks of sizes n = 3,535,915, and 33, respectively. The black
squares at the top are of sizes 3, 5,9, 13,25, 35,45, and 35 pixels, respectively: their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 3 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles 1s
23 pixels. and their borders are 15 pixels apart; their gray levels range from 054 to 100M
black in increments of 20%. The background of the image is 1084 black. The noisy rec-
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Image Enhancement in the Spatial Domain:
Linear lowpass filters

e a e a
T 11

aaﬂaﬂaaa saaaaadaadd

Original 3%x3
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Image Enhancement in the Spatial Domain:
Linear lowpass filters

wd | ead
{111l 1111111

aaaaaaadd saaaaaad

5x5 9x9
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Image Enhancement in the Spatial Domain:
Linear lowpass filters

Y |
IR

STII TR N

15x15 35x35
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Image Enhancement in the Spatial Domain:

Linear lowpass filters

abc

another usage
example:

exact histogram
equalization

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.

(c) Result of thresholding {b). (Original image courtesy of NASA.)

... A first elementary result in image segmentation!


gr
Text Box
another usage example:
exact histogram equalization
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Image Enhancement in the Spatial Domain:
Nonlinear “lowpass" filters

k

Let Sxy be an mxn neighborhood of (x,y); define the Median filter:

f(x y) = median{g(s,t)}

(s,t)eSxy
Sort the pixel values in Sxy and take the one in position (mn+1)/2

The filter can be iteratively applied to the data, possibly until
convergence ("root signal™)

Note: mn should be odd; if it is even one can take as output the

average of the values in positions mn/2 and mn/2+1. The formal
statistical properties of the filter change.

[More about order statistics later, when dealing with image restoration]
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Image Enhancement in the Spatial Domain:
Nonlinear "lowpass" filters

L e

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 x 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi. Inc.)
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Image Enhancement in the Spatial Domain:

Linear highpass filters

Define a 1-D digital derivative (other definitions are possible):

First-order:

o2 f [f(X+D)—fO)]-[f(X)—f(x=D]=f(X+D)+ f(x=1)—2f(x)

Second-order: — _ —
OX?

i: f(x+1)—f(x)
OX

- [solated point

h

Note: phase response is not zero

2

/i
{

| DEGLI STUDI
DITRIESTE

= 7
T 6
E_' 3 . ':Ill.
% p xk.xf,_Ramp r‘l ' Thin H”EX Step_\‘:
- 3 A .II ! ]I
5;? 5 lL“-L i 1|Flarsegment:r N i
=~ 1 L"‘_t Ir I;.I r‘-_.-' I‘x I|
0 ‘.- -l -a - -
Image strip [ 5|5 |4 (3 (2|1|0|0(0|6|0[0O(O0|1|3(1 0000|7777
N T T N O (B O
First Derivative —1—-1-1-1-10 0 6 =60 0 0 1 2 -2—-10 0 0 7 0 0 0
O T S Y I I O
Second Derivative —1 0 0 00 1 0 6126 0 01 1 41 1 00 7 =700




Image Enhancement in the Spatial Domain:
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Linear highpass filters

2-D case:

Gradient: Vf = ﬂ,i
oX oy
2 2
Laplacian: V?2f :6 f+8 f
6)(2 6y2

= f(x+Ly)+ F(x=Ly)-2f (%, y)+ f(X,y+1) + f(x,y=1) - 2f (X, y)



Image Enhancement in the Spatial Domain:
Linear highpass filters

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 ~1 -1 -1
-1 4 -1 ~1 8 -1
0 -1 0 -1 -1 -1
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FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian.

Beware: all such definitions
can be found in the literature
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Image Enhancement in the Spatial Domain:
Linear highpass filters

NOTE: the — ]
mg = = » +
superp05|t|o_n principle M—— ) ) —> @k —> (1)
always applies to _r
linear operators L (1)
(a) (b)
0|10 O|l0|O0 O|1]0
1(-4(1| =]1]|-2(1|4+]0(-2]|0
0|10 O|l0|O0 O|1]0
1 (1|1 O(0]O0 O111]0 11010 0|01
11-8(1 | =|1]-2]1(4+|0|-2]{0(4+]0]|-2/0(4+]01]-2]0
1111 0010 O|1]0 0|01 1100




Image Enhancement in the Spatial Domair
Laplacian-based image sharpening

Add a fraction of the
Laplacian of an image to
the image itself: (c) Laplacian
Blurred signal . image scaled for

g(X, y) = f (X, y) ] vZ f (X, y) // dﬂ}" purposes.

(use '+’ sign if masks in
Fig.3.39 c or d are used)

This is usually named
“Unsharp Masking”:

Sharpened sign: g(x,y) =T (X y) -k Tp(xy)
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Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening

Note: a uniform o | -1
input image

remains unchanged 1| s
(sum of the coeffs.

is 1) 0 | -1

Note: for an image having

amplitude 1 and frequency 7 in
both hor. and vert. directions:

11-1(1
-1 1 ]-1
1(-1]1

and if A=1, the output
amplitude is respectively:

Gy =5x1 + (-4)x(-1) =9 - _ _ -
FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
G2 = (9'4)X 1 + ('4)X(' 1) - 9 electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),

respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
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Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening

High-boost filtering
Generalization of the sharpening filter
(beware: the average gray level changes!):

0 —1 0 —1 —1 —1

-1 | A+4| - 1 | a+s| -1 | FIGURE3.42 [he
high-boost filtering
technique can be
implemented with

0 ~] 0 -1 ~] -1 either one of these
masks, with A = 1.
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Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening

a b
cd

FIGURE 3.43

(a) Same as

Fig. 3.41(c), but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A=,

(¢) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A = 1.(d)Same
as (), but using
A=1.7.




£l A UNIVERSITA

Image Enhancement in the Spatial Domain:
Gradient-based image sharpening

2 2
Estimation of the gradient |Vf|= \/(af) +(afj

OX oy

Wrong, but useful solutions

Roberts Note: a uniform input
-1 0 0 -1 image yields 0 (sum
of the coeffs. is 0)
0 1 1 0
11-1(1
Sobel
—1 -2 —1 —1 0 ! -1(1 -1
11-1(1
0 0 0 —2 0 2
Note: response to
frequency 7 is O too
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Image Enhancement in the Spatial Domain:
Gradient-based image sharpening
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ab

FIGURE 3.45
Optical image of
contact lens (nole
defects on the
boundary at 4 and
5 o'clock).

(b} Sobel
eradient.
(Original image
courtesy of

Mr. Pete Sites,
Perceptics
Corporation.)



Image Enhancement in the Spatial Domain:i
Gradient- and Laplacian-based image sharpening

da = b = d =
Original (NMR) Laplacian(a) Sobel(a)

UNIVERSITA




Image Enhancement in the Spatial Domain:
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Gradient- and Laplacian-based image sharpening

e = LP(d)

FIGURE 3.46
(Continued )

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (1) Mask
image formed by
the product of (b)
and (e).

(g) Sharpened
image obtained
bv the sum of (a)
and (). (h) Final
result obtained by
applying a
power-law
transformation to
(g). Compare (g)
and (h) with (a).
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Image Enhancement in the Spatial Domain:
Rational unsharp masking

T Q

z,=(@-c)/p® z,=(d—e)*/y’

@

| (2b-a-c)(z; +4z,)  (2b—d —e)(z, +4z,)
b'=b+A >
32 + 2 3z, +2
1:
A control term avoids noise 0.8k
amplification and excessive
amplification of sharp and E 06-
large edges. 5
Peak amplification is 1 for S 04r
z,=2,=1 ©
peak position is controlled by u 0.2¢
0 r r r r r
See also: DL_BUM, Blur-guided UM 0 50 100 150 200 250
Absolute lum. difference
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Text Box
See also: DL_BUM, Blur-guided UM
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Retinex-based algorithms
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A specific, simple version of a multi-faceted approach
- Retinex_at_50_McCannl17.pdf

Problem: image enhancement
« Poorly illuminated images
« Backlit objects
» Light sources within the image

Solution:

« Retinex-based approaches increase
the brightness in dark areas and
emphasize the details

Courtesy Dr. Stefano Marsi



Retinex-based algorithms

Retinex = Retina + Cortex

An image I can be considered as
the product of the scene
illumination L and the objects
reflectance R

The perception of an object is,
to a certain extent, independent
of the illumination conditions

1(X,y)=L(X,y) R(X, y)
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Retinex-based algorithms

« Through an estimation of the illumination it is possible to obtain
an approximation of the reflectance.

/*\ Out

~

Illumination L

~ Estimation

« The components are separately processed and then recombined
« The reflectance (details) is suitably emphasized
« The illumination is increased in dark areas
- Logarithmic data are typically used (as provided by HDR sensors,
or deliberately transformed):
« The product is replaced by an addition block
« The division is replaced by a subtraction block
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Retinex-based algorithms:
Estimation of the illumination

Illumination characteristics:

« The illumination typically changes very smoothly among
contiguous pixels

« Abrupt transitions can also appear
* in presence of light sources in the image
* in presence of different illumination systems (e.g. backlights)

The illumination should be estimated using a
narrow band and edge-preserving lowpass filter

Linear narrow band filters are realized:
« via very large masks
 via recursive filtering
« via multi-resolution decomposition
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Retinex-based algorithms:
Estimation of the illumination

UNIVERSITA
DEGLI STUDI

We can use a (nonlinear) Recursive Rational Filter (RRF)

A simple first order IIR filter is

y(n)=(1-a)x(n)+ay(n-1)

a can be used to trim the bandwidth:
-- a—->1 :very narrow passband
-- a =0 : the filter is switched off

Let’s make this filter nonlinear using a ratio of suitable terms
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Retinex-based algorithms:
Estimation of the illumination

aly(n—-1,m)S, +y(n,m-1)S, ]+[(S, +S,)d— ) +1]x(n,m)

n,m) =
y(n.m) S, +S5, +1
where
A A
n T Y T Lm) Y
log +X(n,m-1) S l0g +x(n—-1,m) L5
1+ x(n,m+1) 1+ x(n+1,m)

« Sh and Sv resp. are the horizontal and vertical uniformity sensors

« Note: filtering has to be applied forward and backward to get
zero-phase overall response



Retinex-based algorithms:
Estimation of the illumination

« It is manifest that the output can include a sharp “map” of bright
objects in the image, not necessarily a map of light sources
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Retinex-based algorithms:
Processing the illumination

A modified gamma function is used ...
« To increase the brightness in dark zones
« To avoid excessive dynamics compression in bright areas

.. possibly followed by histogram stretching
« To better exploit the system dynamics

) — L ) K(L45e)+K
(L) = 255 ( -




Retinex-based algorithms:
Processing the reflectance

In the log domain, the derived reflectance is a zero-mean
image of local differences

A sigmoid-like function is used to process the reflectance
component, in order to:

« emphasize the details when these are poorly defined

« limit the emphasis when the details are already well
defined, to avoid artifacts generation

« reduce the signal when it is extremely weak
(the information is superseded by the noise)
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Retinex-based algorithms:
Processing the reflectance

The adopted function is:

RZZZK( L _1]
1+exp(—c(R)R,) 2

where c is a suitable coefficient which controls the slope of the
sigmoid and creates the central dead zone

14

12

Dead zone term o \/
C(Rl) ol

04 L
-5 0] 5

1

05

Overall reflectance or
mapping Ry(Ry)
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Reflectance Processed
Estimation Reflectance

Original

lllumination Processed
Estimation lllumination
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Retinex-based algorithms:

a comparison

W

Original

Histogram equalization
Gamma correction
Retinex-based method



Retinex-based algorithms: “
Noise control

without (a) and with (b) the dead zone
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Retinex-based algorithms:
More images...
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Retinex-based algorithms:
More images...

See also: Blur-guided UM
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