
Data-domain image processing
Digital image sampling & re-sampling

The type of 2-D signal f(x,y) we deal with is represented by a real 
function of two integer variables
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Copyright notice:  Most images in this package are
© Gonzalez and Woods, Digital Image Processing, Prentice-Hall
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• A 2-D function is causal if f(x,y)=0  for  (x<0 and y<0)

It is semicausal if f(x,y)=0  for  x<0, (x=0 and y<0)

• A 2-D processing system is

causal or semicausal

if the "previous" input data are located left/above the dashed lines

Digital image sampling & re-sampling



Digital image sampling & re-sampling
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Digital image sampling & re-sampling



Digital image sampling & re-sampling



The Moiré pattern is an 
aliasing effect, often
visible on finely textured
regions.

In this case it takes the 
form of a low-frequency
vertically running sinusoid

Digital image sampling & re-sampling



Digital image 
quantization



Digital image 
quantization



Digital image quantization: dithering

Adding noise before quantization can improve the 
appearance of coarsely quantized images.
• The existence of pixels having amplitude close to the 

threshold(s) is made apparent.

• A randomized version of halftone printing.
• More visually effective algorithms exist 

(Floyd-Steinberg: error diffusion)

Note: the 
binarization
threshold is 
the same

See Matlab



Image Enhancement in the Spatial Domain:
Bit-plane slicing

e.g.:
f(m,n) = 8710

= 010101112



Image Enhancement in the Spatial Domain:
Bit-plane slicing



4, 8, 16 gray levels respectively

Reconstruction: Sum_n [ bit-plane_n * 2^(n-1) ]

Can be used for 
• data compression
• implementation of order-statistics filters (see later)
• LSB steganography: hides information modifying the 

least significant bit of every pixel

→ Matlab dip05_0

Image Enhancement in the Spatial Domain:
Bit-plane slicing



Generic, possibly nonlinear, pointwise operator:

Image Enhancement in the Spatial Domain:
Gray-level transforms (Tone mapping)



Basic gray-level
transformations:

Negative:

Generic log:

Power law:
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Image Enhancement in the Spatial Domain:
Gray-level transforms



Image Enhancement in the Spatial Domain:
Gray-level transforms



Image Enhancement in the Spatial Domain:
Gray-level transforms



Image Enhancement in the Spatial Domain:
Gamma correction



1) Monitor response can 
"compensate" for Weber-law 
sensitivity of HVS:
dp = k dL/L  → p = k log(L)
higher sensit. in dark areas 
→ dark transitions can be 

compressed with power law 
L = x^gamma (e.g. 2.4)
1a) ...provided quantization 
errors are not incurred
2) Beware of nonlinearities 
that are already included in 
image data (e.g., JPEG)

Image Enhancement in the Spatial Domain:
Gamma correction

displayed!

displayed!



Image Enhancement in the Spatial Domain:
Gamma correction

"The fact that a CRT’s 
transfer function is very 
nearly the inverse of the 
lightness sensitivity of 
vision is an amazing, and 
fortunate, coincidence!"
(Charles Poynton)

Modern displays replicate 
the CRT's luminance 
response.
Rec. ITU-R BT.1886 (2011) 
states that 2.4-power EOTF
shall be standard for 
HD content creation. 
Consumer displays are 
expected to conform. the slope of the function is limited near zero 

(linear portion) in order to minimize quantization 
noise in the dark regions of the picture. 

OETF:
Rec. BT.709 
(production of 
HD video) 
transfer function

CIE primaries: X,Y,Z

z05_ITU-R_BT.1886.pdf


Image Enhancement in the Spatial Domain:
Gray-level transforms



Image Enhancement in the Spatial Domain:
Gray-level transforms



Note: stretching is
useless if the image 
has to be thresholded

Image Enhancement in the Spatial Domain:
Piece-wise linear mapping



Image Enhancement in the Spatial Domain:
Gray-level slicing

→ GraylevelMapping.m



Histogram: normalized frequency (y) of gray level values (x).

Image Enhancement in the Spatial Domain:

Histogram-based processing



(can be inverted and 
preserves gray-level 
ordering)

Image Enhancement in the Spatial Domain:

Histogram-based processing



Suppose the gray levels in an image are realizations of a random variable
r in the range (0,1), with a probability density function (pdf):
Let be a monotonic, invertible transformation on r
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All the pixels below the curve           in 
the interval are mapped to  
pixels below in
i.e., the two areas are equal:

Now, let the transformation be the 
cumulative distribution function (cdf) of r

It is monotonic and invertible (if the pdf 
is nonzero for all r)
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Image Enhancement in the Spatial Domain:

Histogram equalization



The derivative of this function is of course
Substituting in
i.e. the transformed variable has an exactly uniform pdf.

In a practical discrete case:

i.e., mapping each gray level into the value given above yields a 
uniform pdf for the output image.

Note: in general, only an approximately uniform distribution will be 
obtained in the discrete case.

Note: no parameters are needed; the processing is automatic and 
straightforward.
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Image Enhancement in the Spatial Domain:

Histogram equalization



Example (continuous case):

Equalization is obtained via the
transformation:

The transformed variable has a 
uniform pdf.  Indeed:
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S. Das, IIT Madras, Course on Computer Vision

Image Enhancement in the Spatial Domain:

Histogram equalization



Example (discrete case): 

S. Das, IIT Madras, Course on Computer Vision

Image Enhancement in the Spatial Domain:

Histogram equalization



S. Das, IIT Madras, Course on Computer Vision

Image Enhancement in the Spatial Domain:

Histogram equalization



Image Enhancement in the Spatial Domain:

Histogram equalization



Image Enhancement in the Spatial Domain:

Histogram equalization



Remember that the mapping

yields a (approx.) uniformly distributed output. Another variable z, 
with a different, known and desired pdf pz , will satisfy the same
equation:

substituting:

i.e., mapping each gray level rk into the zk value given above yields
the desired histogram (pdf) for the output image.
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Image Enhancement in the Spatial Domain:

Histogram specification



sk: uniformly 
distributed image
G: determined as cdf of 
the desired pdf pz

zk: image with desired 
histogram

Image Enhancement in the Spatial Domain:

Histogram specification



Example:

S. Das, IIT Madras, Course on Computer Vision

Then determine 
T(r) and G(z)
(cdf’s of the 
histograms):

Image Enhancement in the Spatial Domain:

Histogram specification



T(r) G(z)

Image Enhancement in the Spatial Domain:

Histogram specification
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S. Das, IIT Madras, Course on Computer Vision

Image Enhancement in the Spatial Domain:

Histogram specification



S. Das, IIT Madras, Course on Computer Vision

distributions:     original target                         obtained

n’k

0

0

0

790

1023

850

656+329

245+122+81

p’(zk)

0

0

0

0.19

0.25

0.21

0.24

0.11

Image Enhancement in the Spatial Domain:

Histogram specification



Image Enhancement in the Spatial Domain:

Histogram specification



Image Enhancement in the Spatial Domain:

Histogram specification



Image Enhancement in the Spatial Domain:

Histogram specification

Note: Histogram manipulation of color images can 
be performed in the HSV color space → Matlab



Image Enhancement in the Spatial Domain:

Histogram manipulation of color images

https://www.mathworks.com/help/images/understanding-color-spaces-and-color-
space-conversion.html 

• Colors typically represented as RGB numeric values 
• Other models exist, referred to as color spaces because most of them 

can be mapped into a 3-D coordinate system
• They make certain calculations more convenient
• They provide a way to identify colors that is more intuitive

• They may avoid (reduce) color alterations!

Matlab provides commands to convert data among different color spaces



Image Enhancement in the Spatial Domain:

Histogram manipulation of color images

RGB

Linear RGB

Raw data obtained from a camera sensor. R, G, and B are 
directly proportional to the amount of light that illuminates 
the sensor. Preprocessing of raw image data, such as white 
balance, color balance, and chromatic aberration 
compensation, are performed on linear RGB values

sRGB

sRGB values apply gamma correction to linear RGB values. 
Images are frequently displayed in the sRGB color space 
because they appear brighter and colors are easier to 
distinguish

https://www.mathworks.com/help/images/gamma-correction.html


Image Enhancement in the Spatial Domain:

Histogram manipulation of color images

Y
Luminance or brightness of the image. Colors increase 
in brightness as Y increases

Cb
Chrominance value that indicates the difference 
between the blue component and a reference value

Cr
Chrominance value that indicates the difference 
between the red component and a reference value

YCbCr is widely used for digital video 

YCbCr does not use the full range of the image data type so that the video 
stream can include additional (non-image) information:

• float: Y is in [16/255, 235/255] and Cb and Cr are in [16/255, 240/255]
• uint8: Y is in [16, 235] and Cb and Cr are in [16, 240]
• uint16:Y is in [4112, 60395] and Cb and Cr are in [4112, 61680]



Image Enhancement in the Spatial Domain:

Histogram manipulation of color images

HSV
corresponds better to how people
experience color than RGB does

H

Hue corresponds to the color’s
position on a color wheel. H is in the
range [0, 1]. As H increases, colors transition from red to 
orange, yellow, green, cyan, blue, magenta, and finally 
back to red. Both 0 and 1 indicate red.

S

Saturation is the amount of hue or departure from neutral. 
S is in the range [0, 1]. As S increases, colors vary from 
unsaturated (shades of gray) to fully saturated (no white 
component).

V

Value is the maximum value among the red, green, and 
blue components of a specific color. V is in the range [0, 1]. 
As V increases, the corresponding colors become 
increasingly brighter.

Histogram manipulation in the HSV color space → Matlab



Image Enhancement in the Spatial Domain:

Exact Histogram specification

→ Paper (z05_Exact_HS) &  Matlab (demoHS.m)

Image Enhancement in the Spatial Domain:

2-D Histogram specification

→ Papers (z05_2D_HistEq) & (z05_HVS_ToneMapping)



At each location the local histogram is computed, the required mapping
is determined, and the pixel is mapped. 
(At the next step, just update the histogram)

→ (CL)AHE paper

Image Enhancement in the Spatial Domain:

Local histogram modification



Local values can be estimated for different image statistics, and 
used to locally control a gray-level modification function.
E.g.: local mean and variance in the neighborhood Sxy:

Enhancement example: increase by a factor A>1 the luminance
of pixels in medium-variance, low-mean areas:

Mf and Df respectively are the global average and s.d. of the 
image; they are used to make the operator more robust.
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Image Enhancement in the Spatial Domain:
Enhancement based on local statistics



Image Enhancement in the Spatial Domain:
Enhancement based on local statistics



Image Enhancement in the Spatial Domain:
Enhancement based on local statistics



Image Enhancement in the Spatial Domain:
Enhancement based on local statistics



Image Enhancement in the Spatial Domain:
Using multiple images: subtraction

Using a «local-along-time» neighborhood



Using a «local-along-time» neighborhood

Assume an image is formed as:

where n(x,y) is i.i.d. zero-mean noise. If we can average K
acquisitions of the image, the variance of the noise is reduced by the 
factor K:

This approach is useful when the sensor noise is relatively high: 
poorly illuminated (static) scenes, astronomical images, …
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Image Enhancement in the Spatial Domain:
Using multiple images: averaging



Fig.3.30
A) Ideal
B) Noise added 

(s.d.=64)
C) K=8
D) K=16

Image Enhancement in the Spatial Domain:
Using multiple images: averaging



Generic, possibly nonlinear, 
neighborhood-based
operator:
g(x,y)=T[f(x,y)]

Image Enhancement in the Spatial Domain:
Local operators

Note: this mask is centered in (x,y), i.e. its
origin is its center. → noncausal operator

Other choices generate phase shift
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The mask entries are coefficients
that can be used in different ways.

The simplest is linear filtering via 
the normalized convolution sum:

Note: other scaling factors are used if
the coeffs. sum is zero

Note: if the output image is required to 
be the same size as the input image, 
the latter must be suitably padded.

Image Enhancement in the Spatial Domain:
Local operators



Image Enhancement in the Spatial Domain:
Local operators



Matlab
implementation
using ‘imfilter’

Image Enhancement in the Spatial Domain:
Local operators



Matlab: 
correlation or 
convolution

Image Enhancement in the Spatial Domain:
Local operators



Matlab: image padding + filtering
[ lowpass, w = ones(31,31) ]

Image Enhancement in the Spatial Domain:
Local operators



Both masks have
power-of-two
coefficients, which
are simple to 
implement. In the 
second one even
the sum of the 
coefficients is a 
power of two.

Image Enhancement in the Spatial Domain:
Linear lowpass filters

Note: a uniform input image is not changed
Note: for an image having amplitude 1 and 

frequency p in both hor. and vert. directions:

....                        ....

the output amplitude is respectively:
G1 = ( 5x1 + 4x(-1) ) / 9 = 1/9
G2 = ( 8x1 + 8x(-1) ) / 16 = 0

1 -1 1 -1

-1 1 -1 1

1 -1 1 -1



Image Enhancement in the Spatial Domain:
Linear lowpass filters



Original 3x3

Image Enhancement in the Spatial Domain:
Linear lowpass filters



5x5 9x9

Image Enhancement in the Spatial Domain:
Linear lowpass filters



15x15 35x35

Image Enhancement in the Spatial Domain:
Linear lowpass filters



… A first elementary result in image segmentation!

Image Enhancement in the Spatial Domain:
Linear lowpass filters

gr
Text Box
another usage example:
exact histogram equalization



Let Sxy be an mxn neighborhood of (x,y); define the Median filter:
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Sort the pixel values in Sxy and take the one in position (mn+1)/2

The filter can be iteratively applied to the data, possibly until 
convergence ("root signal")

Note: mn should be odd; if it is even one can take as output the 
average of the values in positions mn/2 and mn/2+1. The formal 
statistical properties of the filter change.

[More about order statistics later, when dealing with image restoration]

Image Enhancement in the Spatial Domain:
Nonlinear "lowpass" filters



Image Enhancement in the Spatial Domain:
Nonlinear "lowpass" filters



Define a 1-D digital derivative (other definitions are possible):

First-order: Note: phase response is not zero

Second-order:
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Image Enhancement in the Spatial Domain:
Linear highpass filters



2-D case:

Gradient:

Laplacian:
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Image Enhancement in the Spatial Domain:
Linear highpass filters



Beware: all such definitions 
can be found in the literature

Image Enhancement in the Spatial Domain:
Linear highpass filters



NOTE: the 
superposition principle
always applies to 
linear operators

Image Enhancement in the Spatial Domain:
Linear highpass filters

0 1 0

1 -4 1

0 1 0

0 0 0

1 -2 1

0 0 0

0 1 0

0 -2 0

0 1 0

1 1 1

1 -8 1

1 1 1

0 0 0

1 -2 1

0 0 0

0 1 0

0 -2 0
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Add a fraction of the 
Laplacian of an image to 
the image itself:

(use ‘+’ sign if masks in 
Fig.3.39 c or d are used)

This is usually named
“Unsharp Masking”:

Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening



Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening

Note: for an image having

amplitude 1 and frequency p in 

both hor. and vert. directions:

....

and if =1, the output 

amplitude is respectively:
G1 = 5x1 + (-4)x(-1) = 9
G2 = (9-4)x1 + (-4)x(-1) = 9

1 -1 1 -1

-1 1 -1 1

1 -1 1 -1

Note: a uniform
input image 
remains unchanged
(sum of the coeffs. 
is 1)



High-boost filtering
Generalization of the sharpening filter
(beware: the average gray level changes!):

Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening



Image Enhancement in the Spatial Domain:
Laplacian-based image sharpening



Estimation of the gradient

Wrong, but useful solutions

Roberts

Sobel
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Image Enhancement in the Spatial Domain:
Gradient-based image sharpening

1 -1 1 -1

-1 1 -1 1

1 -1 1 -1

Note: a uniform input 
image yields 0 (sum 
of the coeffs. is 0)

Note: response to 

frequency p is 0 too



Image Enhancement in the Spatial Domain:
Gradient-based image sharpening



a = b = c = d =
Original (NMR) Laplacian(a) a+b Sobel(a)

Image Enhancement in the Spatial Domain:
Gradient- and Laplacian-based image sharpening



e = LP(d)

f = b . e

g = a + f

h = T(g)

(b)

Image Enhancement in the Spatial Domain:
Gradient- and Laplacian-based image sharpening
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A control term avoids noise
amplification and excessive
amplification of sharp and 
large edges.
Peak amplification is 1 for 
zx=zy=1 

peak position is controlled by 

Image Enhancement in the Spatial Domain:
Rational unsharp masking

gr
Text Box
See also: DL_BUM, Blur-guided UM



Problem: image enhancement

• Poorly illuminated images 

• Backlit objects

• Light sources within the image

Solution:

• Retinex-based approaches increase 
the brightness in dark areas and 
emphasize the details

Retinex-based algorithms

Courtesy Dr. Stefano Marsi

A specific, simple version of a multi-faceted approach

→ Retinex_at_50_McCann17.pdf



• Retinex = Retina + Cortex

• An image I can be considered as 
the product of the scene 
illumination L and the objects 
reflectance R

• The perception of an object is, 
to a certain extent, independent 
of the illumination conditions

L

I

R

I

Retinex-based algorithms

),(),(),( yxRyxLyxI =



• Through an estimation of the illumination it is possible to obtain 
an approximation of the reflectance.

• The components are separately processed and then recombined

• The reflectance (details) is suitably emphasized

• The illumination is increased in dark areas

• Logarithmic data are typically used (as provided by HDR sensors, 
or deliberately transformed):

• The product is replaced by an addition block

• The division is replaced by a subtraction block

: *

Luminance

estimation

In Out

L

R
~

~

…

…Illumination

Estimation

Retinex-based algorithms



Illumination characteristics:

• The illumination typically changes very smoothly among 
contiguous pixels 

• Abrupt transitions can also appear

• in presence of light sources in the image

• in presence of different illumination systems (e.g. backlights)

The illumination should be estimated using a 
narrow band and edge-preserving lowpass filter

Linear narrow band filters are realized:

• via very large masks

• via recursive filtering

• via multi-resolution decomposition

Retinex-based algorithms:
Estimation of the illumination



We can use a (nonlinear) Recursive Rational Filter (RRF)

A simple first order IIR filter is

a can be used to trim the bandwidth:

-- a → 1 : very narrow passband

-- a = 0   : the filter is switched off

Let’s make this filter nonlinear using a ratio of suitable terms
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Retinex-based algorithms:
Estimation of the illumination
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where

• Sh and Sv resp. are the horizontal and vertical uniformity sensors

• Note: filtering has to be applied forward and backward to get 
zero-phase overall response

Retinex-based algorithms:
Estimation of the illumination



Retinex-based algorithms:
Estimation of the illumination

• It is manifest that the output can include a sharp “map” of bright 
objects in the image, not necessarily a map of light sources



A modified gamma function is used …

• To increase the brightness in dark zones

• To avoid excessive dynamics compression in bright areas

… possibly followed by histogram stretching

• To better exploit the system dynamics
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Retinex-based algorithms:
Processing the illumination



In the log domain, the derived reflectance is a zero-mean 
image of local differences

A sigmoid-like function is used to process the reflectance 
component, in order to:

• emphasize the details when these are poorly defined

• limit the emphasis when the details are already well 
defined, to avoid artifacts generation

• reduce the signal when it is extremely weak 
(the information is superseded by the noise)

Retinex-based algorithms:
Processing the reflectance



The adopted function is:

where c is a suitable coefficient which controls the slope of the 
sigmoid and creates the central dead zone

Dead zone term

c(R1)

Overall reflectance

mapping R2(R1)
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Retinex-based algorithms:
Processing the reflectance



Original

output

Illumination

Estimation
Processed

Illumination

Reflectance

Estimation

Processed

Reflectance

Retinex-based algorithms:
Processing example



1. Original

2. Histogram equalization

3. Gamma correction

4. Retinex-based method

Retinex-based algorithms:
a comparison



(a) (b)

without (a) and with (b) the dead zone

Retinex-based algorithms:
Noise control



Retinex-based algorithms:
More images…



Retinex-based algorithms:
More images…

See also: Blur-guided UM
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