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Fundamentals of Fuzzy Sets

 Classical set theory (1900)  crisp sets interaction. 
These interactions are called operations.

 Also fuzzy sets have well defined properties.

 These properties and operations are the basis on 
which the fuzzy sets are used to deal with uncertainty 
on the one hand and to represent knowledge on the 
other.



  

Definition

 How can we represent expert knowledge that uses 
vague and ambiguous terms in a computer?

 Fuzzy logic is not logic that is fuzzy, but logic that is used 
to describe fuzziness. Fuzzy logic is the theory of fuzzy 
sets, sets that calibrate vagueness.

 Fuzzy logic is based on the idea that all things admit of 
degrees.  Temperature, height, speed, distance, beauty 
– all come on a sliding scale.
 The motor is running really hot.
 Tom is a very tall guy.



  

Definition

 Boolean logic uses sharp distinctions.  It forces us to 
draw lines between members of a class and non-
members. For instance, we may say, Tom is tall 
because his height is 181 cm.  If we drew a line at 
180 cm, we would find that David, who is 179 cm, is 
small.

 Is David really a small man or we have just drawn 
an arbitrary line in the sand?



  

Bit of History
 Fuzzy, or multi-valued logic, was introduced in the 

1930s by Jan Lukasiewicz, who introduced logic that 
extended the range of truth values to all real 
numbers in the interval between 0 and 1.

 For example, the possibility that a man 181 cm tall is 
really tall might be set to a value of 0.86.  It is likely 
that the man is tall   possibility theory.

 In 1965 Lotfi Zadeh paper  “Fuzzy sets”.



  

Why?

 Why fuzzy?

As Zadeh said, the term is concrete, immediate and 
descriptive; we all know what it means.  

 Why logic?  

Fuzziness rests on fuzzy set theory, and fuzzy logic 
is just a small part of that theory.



  

The Term “Fuzzy Logic”

 The term fuzzy logic is used in two senses:

 Narrow sense: Fuzzy logic is a branch of fuzzy 
set theory, which deals (as logical systems do) 
with the representation and inference from 
knowledge.  Fuzzy logic, unlike other logical 
systems, deals with imprecise or uncertain 
knowledge. 

 Broad Sense: fuzzy logic synonymously with 
fuzzy set theory 



  

More Definitions
 Fuzzy logic is a set of mathematical principles for 

knowledge representation based on degrees of 
membership.

 Fuzzy logic uses the continuum of logical values 
between 0 (completely false) and 1 (completely 
true).

(a)  Boolean Logic. (b)  Multi-valued Logic.
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Fuzzy Sets

 However, our own language is also the supreme 
expression of sets. For example, car indicates the 
set of cars. When we say a car, we mean one out of 
the set of cars.

 The classical example in fuzzy sets is tall men.  The 
elements of the fuzzy set “tall men” are all men, but 
their degrees of membership depend on their height. 
(see table on next page)



  

Fuzzy Sets
Degree of Membership

Fuzzy

Mark
John
Tom

Bob

Bill

1
1
1
0
0

1.00
1.00
0.98
0.82
0.78

Peter

Steven

Mike
David

Chris
Crisp

1

0
0
0
0

0.24
0.15
0.06
0.01
0.00

Name Height, cm
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155
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179

208



  

Crisp Vs Fuzzy Sets
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The x-axis represents the 
universe of discourse – the 
range of all possible values 
applicable to a chosen variable. 

The y-axis represents the 
membership value of the fuzzy 
set.  



  

A Fuzzy Set has Fuzzy Boundaries

 Let X be the universe of discourse and its elements be 
denoted as x.  In the classical set theory, crisp set A of 
X is defined as function fA(x) called the characteristic 
function of A:
 fA(x) : X  {0, 1},  where

This set maps universe X to a set of two elements.  
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A Fuzzy Set has Fuzzy Boundaries

 In the fuzzy theory, fuzzy set A of universe X is defined 
by function µA(x) called the membership function of set A

µA(x) : X  {0, 1}, whereµA(x) = 1 if x is totally in A;
µA(x) = 0 if x is not in A;
0 < µA(x) < 1 if x is partly in A.

 For any element x of universe X, membership function 
µA(x) equals the degree to which x is an element of set A. 
 This degree, a value between 0 and 1, represents the 
degree of membership, also called membership 
value, of element x in set A.



  

Fuzzy Set Representation

 .

 The universe of discourse – the men’s heights – 
consists of three sets: short, average and tall men. 
As you will see, a man who is 184 cm tall is a 
member of the average men set with a degree of 
membership of 0.1, and at the same time, he is also 
a member of the tall men set with a degree of 0.4. 
(see graph on next page)



  

Fuzzy Set Representation
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First, we determine the membership functions. In our “tall men” example, we can 
obtain fuzzy sets of tall, short and average men



  

Fuzzy Set Representation

 Typical functions that can be used to represent a fuzzy 
set are sigmoid, gaussian and pi  complex  Therefore, 
in practice, most applications use linear fit functions.

Fuzzy Subset A

Fuzziness

1

0
Crisp Subset A Fuzziness x

X
µ (x)



  

Linguistic Variables and Hedges
 At the root of fuzzy set theory lies the idea of linguistic variables.
 A linguistic variable is a fuzzy variable. For example, the 

statement “John is tall” implies that the linguistic variable John takes 
the linguistic value tall.

 In fuzzy expert systems, linguistic variables are used in fuzzy rules.  
For example:

IF wind is strong
THEN sailing is good

IF project_duration is long
THEN completion_risk is high

IF speed is slow
THEN stopping_distance is short



  

Linguistic Variables and Hedges
 The range of possible values of a linguistic variable 

represents the universe of discourse of that variable.  
For example, the universe of discourse of the linguistic 
variable speed might have the range between 0 and 220 
km/h and may include such fuzzy subsets as very slow, 
slow, medium, fast, and very fast.

 Concept of fuzzy set qualifiers, called hedges.

 Hedges are terms that modify the shape of fuzzy sets.  
They include adverbs such as very, somewhat, quite, 
more or less and slightly.



  

Membership Functions

 A fuzzy set is denoted as:

A = µA(xi)/xi + …………. + µA(xn)/xn

where µA(xi)/xi (a singleton) is a pair “grade of 
membership” element, that belongs to a finite 
universe of discourse:

A = {x1, x2, .., xn}



  

Operations of Fuzzy Sets

Intersection Union

Complement

Not A

A

Containment

AA

B

BA BAA B



  

Complement

 Crisp Sets: Who does not belong to the set?
 Fuzzy Sets: How much do elements not belong to the set?

 The complement of a set is an opposite of this set. For 
example, if we have the set of tall men, its complement is the 
set of NOT tall men. When we remove the tall men set from 
the universe of discourse, we obtain the complement.  

 If A is the fuzzy set, its complement ~A can be found as 
follows:

µ~A(x) = 1 − µA(x)



  

Containment

 Crisp Sets: Which sets belong to which other sets?
 Fuzzy Sets: Which sets belong to other sets?

 A set can contain other sets.  The smaller set is called the 
subset. Example:
 the set of tall men contains all tall men; very tall men is a subset 

of tall men. However, the tall men set is just a subset of the set of 
men. 

 In crisp sets, all elements of a subset entirely belong to a larger 
set. 

 In fuzzy sets, however, each element can belong less to the 
subset than to the larger set. Elements of the fuzzy subset have 
smaller memberships in it than in the larger set.



  

Intersection

 Crisp Sets: Which element belongs to both sets?
 Fuzzy Sets: How much of the element is in both sets?

 In classical set theory, an intersection between two sets 
contains the elements shared by these sets. In fuzzy sets, an 
element may partly belong to both sets with different 
memberships.

 A fuzzy intersection is the lower membership in both sets of 
each element. The fuzzy intersection of two fuzzy sets A and 
B on universe of discourse X:

µA∩B(x) = min [µA(x), µB(x)] = µA(x) ∩ µB(x),   
where x∈X



  

Union

 Crisp Sets: Which element belongs to either set?
 Fuzzy Sets: How much of the element is in either set?

 The union of two crisp sets consists of every element that falls 
into either set. 

 In fuzzy sets, the union is the reverse of the intersection. That 
is, the union is the largest membership value of the element 
in either set. The fuzzy operation for forming the union of two 
fuzzy sets A and B on universe X can be given as:

µA∪B(x) = max [µA(x), µB(x)] = µA(x) ∪ µB(x),   
where x∈X



  

Properties of Fuzzy Sets : Equality

 Fuzzy set A is considered equal to a fuzzy set B, IF 
AND ONLY IF (iff):

 µA(x) = µB(x), ∀x∈X

A = 0.3/1 + 0.5/2 + 1/3
B = 0.3/1 + 0.5/2 + 1/3

therefore A = B



  

Properties of Fuzzy Sets: Inclusion
 Inclusion of one fuzzy set into another fuzzy set. Fuzzy 

set A ⊆ X is included in (is a subset of) another fuzzy 
set, B ⊆ X:

µA(x) ≤ µB(x), ∀x∈X

Consider X = {1, 2, 3} and sets A and B

A = 0.3/1 + 0.5/2 + 1/3;
B = 0.5/1 + 0.55/2 + 1/3

then A is a subset of B, or A ⊆ B



  

Properties of Fuzzy Sets: Cardinality
 Cardinality of a non-fuzzy set, Z, is the number of 

elements in Z.  BUT the cardinality of a fuzzy set A is 
expressed as a SUM of the values of the membership 
function of  A, µA(x):

cardA = µA(x1)  + µA(x2) + … µA(xn) = ΣµA(xi), for i=1..n

Consider X = {1, 2, 3} and sets A and B

A = 0.3/1 + 0.5/2 + 1/3;
B = 0.5/1 + 0.55/2 + 1/3

 cardA = 1.8
 cardB = 2.05



  

Properties of Fuzzy Sets: Empty Fuzzy Set

 A fuzzy set A is empty, IF AND ONLY IF:
µA(x) = 0, ∀x∈X

Consider X = {1, 2, 3} and set A

A = 0/1 + 0/2 + 0/3

then A is empty



  

Fuzzy Set Normality

 A fuzzy subset of X is called normal if there exists at least 
one element x∈X such that µA(x) = 1.

 A fuzzy subset that is not normal is called subnormal.

 All crisp subsets except for the null set are normal. In fuzzy 
set theory, the concept of nullness essentially generalises to 
subnormality.

 The height of a fuzzy subset A is the large membership grade 
of an element in A

height(A) = maxx(µA(x))



  

Fuzzy Sets Core and Support

 Assume A is a fuzzy subset of X:

 the support of A is the crisp subset of X consisting 
of all elements with membership grade:

supp(A) = {x µA(x) > 0 and x∈X}

 the core of A is the crisp subset of X consisting of all 
elements with membership grade:

core(A) = {x µA(x) = 1 and x∈X}



  

Fuzzy Set Math Operations

 aA = {aµA(x), ∀x∈X}
Let a =0.5, and 

A = {0.5/a, 0.3/b, 0.2/c, 1/d}
then

 aA = {0.25/a, 0.15/b, 0.1/c, 0.5/d}

 Aa = {µA(x)a, ∀x∈X}
Let a =2, and 

A = {0.5/a, 0.3/b, 0.2/c, 1/d}
then

Aa = {0.25/a, 0.09/b, 0.04/c, 1/d}
 …



  

Fuzzy Sets Examples

 Consider two fuzzy subsets of the set X,
X = {a, b, c, d, e }

referred to as A and B

A = {1/a, 0.3/b, 0.2/c 0.8/d, 0/e}
and

B = {0.6/a, 0.9/b, 0.1/c, 0.3/d, 0.2/e}



  

Fuzzy Sets Examples
 Support:

supp(A) = {a, b, c, d }
supp(B) = {a, b, c, d, e }

 Core:
core(A) = {a}
core(B) = {o}

 Cardinality:
card(A) = 1+0.3+0.2+0.8+0 = 2.3
card(B) = 0.6+0.9+0.1+0.3+0.2 = 2.1



  

Fuzzy Sets Examples

 Complement:
A = {1/a, 0.3/b, 0.2/c 0.8/d, 0/e}
¬A = {0/a, 0.7/b, 0.8/c 0.2/d, 1/e}

 Union:
A ∪ B = {1/a, 0.9/b, 0.2/c, 0.8/d, 0.2/e}

 Intersection:
A ∩ B = {0.6/a, 0.3/b, 0.1/c, 0.3/d, 0/e}

Recall B = {0.6/a, 0.9/b, 0.1/c, 0.3/d, 0.2/e}



  

Fuzzy Rules

 A fuzzy rule can be defined as a conditional 
statement in the form:

IF x is A
THEN y is B

 where x and y are linguistic variables; and A and B 
are linguistic values determined by fuzzy sets on the 
universe of discourses X and Y, respectively.



  

Classical Vs Fuzzy Rules

 A classical IF-THEN rule uses binary logic, for 
example,

Rule: 1       Rule: 2
IF speed is > 100       IF speed is < 40
THEN stopping_distance is long THEN  stopping_distance is short

 The variable speed can have any numerical value 
between 0 and 220 km/h, but the linguistic variable 
stopping_distance can take either value long or short.  
In other words, classical rules are expressed in the 
black-and-white language of Boolean logic.



  

Classical Vs Fuzzy Rules

 We can also represent the stopping distance rules in 
a fuzzy form:

Rule: 1       Rule: 2
IF      speed is fast       IF      speed is slow
THEN  stopping_distance is longTHEN  stopping_distance is short

 In fuzzy rules, the linguistic variable speed also has 
the range (the universe of discourse) between 0 and 
220 km/h, but this range includes fuzzy sets, such 
as slow, medium and fast.  



  

Classical Vs Fuzzy Rules

 Fuzzy rules relate fuzzy sets.

 In a fuzzy system, all rules fire to some extent, or in 
other words they fire partially.  If the antecedent is 
true to some degree of membership, then the 
consequent is also true to that same degree.



  

Firing Fuzzy Rules

 These fuzzy sets provide the basis for a weight estimation model.  
The model is based on a relationship between a man’s height and 
his weight:

IF         height is tall
THEN  weight is heavy

Tall men Heavy men
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Firing Fuzzy Rules

 The value of the output or a truth membership grade of the rule 
consequent can be estimated directly from a corresponding truth 
membership grade in the antecedent.  This form of fuzzy inference 
uses a method called monotonic selection.
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Firing Fuzzy Rules

 A fuzzy rule can have multiple antecedents, for example:

IF project_duration is long
AND project_staffing is large
AND project_funding is inadequate
THEN risk is high

IF service is excellent
OR food is delicious
THEN tip is generous

 The consequent of a fuzzy rule can also include multiple parts, for instance:

IF temperature is hot
THEN hot_water is reduced;

cold_water is increased



  

Fuzzy Sets Example

 Air-conditioning involves the delivery of air which can be warmed or 
cooled and have its humidity raised or lowered.

 An air-conditioner is an apparatus for controlling, especially 
lowering, the temperature and humidity of an enclosed space.  An 
air-conditioner typically has a fan which blows/cools/circulates fresh 
air and has cooler and the cooler is under thermostatic control.  
Generally, the amount of air being compressed is proportional to the 
ambient temperature.

 Consider Johnny’s air-conditioner which has five control switches: 
COLD, COOL, PLEASANT, WARM  and  HOT. The corresponding 
speeds of the motor controlling the fan on the air-conditioner has the 
graduations: MINIMAL, SLOW, MEDIUM, FAST and BLAST.



  

Fuzzy Sets Example

 The rules governing the air-conditioner are as follows:

RULE 1:
IF TEMP is COLD THEN SPEED is MINIMAL

RULE 2:
IF TEMP is COOL THEN SPEED is SLOW

RULE 3:
IF TEMP is PLEASANT THEN SPEED is MEDIUM

RULE 4:
IF TEMP is WARM THEN SPEED is FAST

RULE 5:
IF TEMP is HOT THEN SPEED is BLAST



  

Fuzzy Sets Example

The temperature graduations are 
related to Johnny’s perception of 
ambient temperatures.

where:
Y : temp value belongs to the set 
(0<µA(x)<1)

Y* : temp value is the ideal member 
to the set (µA(x)=1)

N : temp value is not a member of 
the set (µA(x)=0)

Temp 
(0C).

COL
D

COO
L

PLEASA
NT

WARM HO
T

0 Y* N N N N

5 Y Y N N N

10 N Y N N N

12.5 N Y* N N N

15 N Y N N N

17.5 N N Y* N N

20 N N N Y N

22.5 N N N Y* N

25 N N N Y N

27.5 N N N N Y

30 N N N N Y*



  

Fuzzy Sets Example

Johnny’s perception of the speed 
of the motor is as follows:

where:
Y : temp value belongs to the set 
(0<µA(x)<1)

Y* : temp value is the ideal member 
to the set (µA(x)=1)

N : temp value is not a member of 
the set (µA(x)=0)

Rev/s
ec

(RPM)

MINIMA
L

SLO
W

MEDIU
M

FAS
T

BLAS
T

0 Y* N N N N
10 Y N N N N
20 Y Y N N N
30 N Y* N N N
40 N Y N N N
50 N N Y* N N
60 N N N Y N
70 N N N Y* N
80 N N N Y Y
90 N N N N Y

100 N N N N Y*



  

Fuzzy Sets Example

 The analytically expressed membership for the reference fuzzy subsets for 
the temperature are:

 COLD:
for 0 ≤ t ≤ 10 µCOLD(t) = – t / 10 + 1

 SLOW:
for 0 ≤ t ≤ 12.5 µSLOW(t) = t / 12.5
for 12.5 ≤ t ≤ 17.5 µSLOW(t) = – t / 5 + 3.5

 etc… all based on the linear equation:
y = ax + b



  

Fuzzy Sets Example

Temperature Fuzzy Sets
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Fuzzy Sets Example

 The analytically expressed membership for the reference fuzzy subsets for 
the temperature are:

 MINIMAL:
for 0 ≤ v ≤ 30 µCOLD(t) = – v / 30 + 1

 SLOW:
for 10 ≤ v ≤ 30 µSLOW(t) = v / 20 – 0.5
for 30 ≤ v ≤ 50 µSLOW(t) = – v / 20 + 2.5

 etc… all based on the linear equation:
y = ax + b



  

Fuzzy Sets Example

Speed Fuzzy Sets
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Exercises

For
A = {0.2/a, 0.4/b, 1/c, 0.8/d, 0/e}
B = {0/a, 0.9/b, 0.3/c, 0.2/d, 0.1/e}

Then, calculate the following:
- Support, Core, Cardinality, and Complement for A 
and B independently
- Union and Intersection of A and B
- the new set C, if C = A2

- the new set D, if D = 0.5B
-



  

Solutions
A = {0.2/a, 0.4/b, 1/c, 0.8/d, 0/e}
B = {0/a, 0.9/b, 0.3/c, 0.2/d, 0.1/e}

Support
Supp(A) = {a, b, c, d}
Supp(B) = {b, c, d, e}

Core
Core(A) = {c}
Core(B) = {}

Cardinality
Card(A) = 0.2 + 0.4 + 1 + 0.8 + 0 = 2.4
Card(B) = 0 + 0.9 + 0.3 + 0.2 + 0.1 = 1.5

Complement
Comp(A) = {0.8/a, 0.6/b, 0/c, 0.2/d, 1/e}
Comp(B) = {1/a, 0.1/b, 0.7/c, 0.8/d, 0.9/e}



  

Solutions

A = {0.2/a, 0.4/b, 1/c, 0.8/d, 0/e}
B = {0/a, 0.9/b, 0.3/c, 0.2/d, 0.1/e}

Union
AB = {0.2/a, 0.9/b, 1/c, 0.8/d, 0.1/e}

Intersection
AB = {0/a, 0.4/b, 0.3/c, 0.2/d, 0/e}

C=A 2
C = {0.04/a, 0.16/b, 1/c, 0.64/d, 0/e}

D = 0.5B
D = {0/a, 0.45/b, 0.15/c, 0.1/d, 0.05/e}



  

Fuzzy Inference

 The most commonly used fuzzy inference technique 
is the so-called Mamdani method.

 In 1975, Professor Ebrahim Mamdani of London 
University built one of the first fuzzy systems to 
control a steam engine and boiler combination.  He 
applied a set of fuzzy rules supplied by experienced 
human operators.



  

Mamdani Fuzzy Inference

 The Mamdani-style fuzzy inference process is 
performed in four steps:

1. Fuzzification of the input variables

1. Rule evaluation (inference)

1. Aggregation of the rule outputs (composition)

1. Defuzzification.



  

Mamdani Fuzzy Inference

We examine a simple two-input one-output problem that includes three rules:

Rule: 1 Rule: 1
IF x is A3 IF project_funding is adequate
OR y is B1 OR project_staffing is small
THEN z is C1 THEN risk is low

Rule: 2 Rule: 2
IF x is A2 IF project_funding is marginal
AND y is B2 AND project_staffing is large
THEN z is C2 THEN risk is normal

Rule: 3 Rule: 3
IF x is A1 IF project_funding is inadequate
THEN  z is C3 THEN risk is high



  

Step 1: Fuzzification

 The first step is to take the crisp inputs, x1 and y1 (project funding and 
project staffing), and determine the degree to which these inputs belong to 
each of the appropriate fuzzy sets.

Crisp Input
y1

0.1

0.7
1

0 y1

B1 B2

Y

Crisp Input

0.2
0.5

1

0

A1 A2 A3

x1

x1 X
µ (x = A1) = 0.5
µ (x = A2) = 0.2

µ (y = B1) = 0.1
µ (y = B2) = 0.7



  

Step 2: Rule Evaluation

 The  second  step  is   to  take  the  fuzzified  inputs, µ(x=A1) = 0.5, 
µ(x=A2) = 0.2, µ(y=B1) = 0.1 and µ(y=B2) = 0.7, and apply them to the 
antecedents of the fuzzy rules.

 If a given fuzzy rule has multiple antecedents, the fuzzy operator 
(AND or OR) is used to obtain a single number that represents the 
result of the antecedent evaluation.

 This number (the truth value) is then applied to the consequent 
membership function.



  

Step 2: Rule Evaluation

RECAL:
To evaluate the disjunction of the rule antecedents, we use the OR 
fuzzy operation.  Typically, fuzzy expert systems make use of the 
classical fuzzy operation union:

µA∪B(x) = max [µA(x), µB(x)]

Similarly, in order to evaluate the conjunction of the rule antecedents, 
we apply the AND fuzzy operation intersection:

µA∩B(x) = min [µA(x), µB(x)]



  

Step 2: Rule Evaluation

A3
1

0 X
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x1 0

0.1
C1

1
C2

Z

1

0 X

0.2

0
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Step 2: Rule Evaluation

 Now the result of the antecedent evaluation can be 
applied to the membership function of the 
consequent.

 There are two main methods for doing so:
 Clipping
 Scaling



  

Step 2: Rule Evaluation

 The most common method of correlating the rule consequent with 
the truth value of the rule antecedent is to cut the consequent 
membership function at the level of the antecedent truth. This 
method is called clipping (alpha-cut).

 Since the top of the membership function is sliced, the clipped fuzzy 
set loses some information.

 However, clipping is still often preferred because it involves less 
complex and faster mathematics, and generates an aggregated 
output surface that is easier to defuzzify.



  

Step 3: Aggregation of the rule outputs

 Aggregation is the process of unification of the outputs of 
all rules.

 We take the membership functions of all rule 
consequents previously clipped or scaled and combine 
them into a single fuzzy set. 

 The input of the aggregation process is the list of clipped 
or scaled consequent membership functions, and the 
output is one fuzzy set for each output variable.



  

Step 3: Aggregation of the rule outputs
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Step 4: Defuzzification

 The last step in the fuzzy inference process is 
defuzzification.

 Fuzziness helps us to evaluate the rules, but the 
final output of a fuzzy system has to be a crisp 
number.

 The input for the defuzzification process is the 
aggregate output fuzzy set and the output is a single 
number.



  

Step 4: Defuzzification

 There are several defuzzification methods, but probably 
the most popular one is the centroid technique.  It finds 
the point where a vertical line would slice the aggregate 
set into two equal masses.  Mathematically this centre 
of gravity (COG) can be expressed as:
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Step 4: Defuzzification

 Centroid defuzzification method finds a point 
representing the centre of gravity of the fuzzy set, A, on 
the interval, ab.

 A reasonable estimate can be obtained by calculating it 
over a sample of points.
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Step 4: Defuzzification
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Sugeno Fuzzy Inference

 Michio Sugeno suggested to use a single spike, a 
singleton, as the membership function of the rule 
consequent.

 A singleton, or more precisely a fuzzy singleton, is a 
fuzzy set with a membership function that is unity at a 
single particular point on the universe of discourse and 
zero everywhere else.



  

Sugeno Fuzzy Inference

 Sugeno-style fuzzy inference is very similar to the Mamdani 
method.  Sugeno changed only a rule consequent.  Instead of 
a fuzzy set, he used a mathematical function of the input 
variable.  The format of the Sugeno-style fuzzy rule is

IF x is A
AND y is B
THEN z is f(x, y)

where x, y and z are linguistic variables; A and B are fuzzy 
sets on universe of discourses X and Y, respectively; and f(x, 
y) is a mathematical function.



  

Sugeno Fuzzy Inference

 The most commonly used zero-order Sugeno fuzzy 
model applies fuzzy rules in the following form:

IF x is A
AND y is B
THEN z is k

where k is a constant.

 In this case, the output of each fuzzy rule is constant. All 
consequent membership functions are represented by 
singleton spikes.



  

Sugeno Rule Evaluation
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Sugeno Aggregation of the Rule Outputs
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Sugeno Defuzzification
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Mamdani or Sugeno?

 Mamdani method is widely accepted for capturing 
expert knowledge.  It allows us to describe the 
expertise in more intuitive, more human-like manner. 
However, Mamdani-type fuzzy inference entails a 
substantial computational burden.

 On the other hand, Sugeno method is 
computationally effective and works well with 
optimisation and adaptive techniques, which makes 
it very attractive in control problems, particularly for 
dynamic nonlinear systems.
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