# Sistemi Operativi per la Robotica

Enzo Mumolo

## Sistemi Operativi per la Robotica

- www.units.it/~mumolo 

  sito web del corso (in preparazione)
- Sito web 

  programma preliminare, materiale, provetta, risultati etc.
- mumolo@units.it oppure emumolo@computer.org □ indirizzi docente
- 040.558.3861 □ telefono ufficio docente
- orari corso:lunedì dalle 9 alle 11, mercoledì 14-17
- Aule: lunedì: aula Insiel, mercoledì fisica tecnica
- esame: 40% provetta in aula + 60% tesina

#### Sistemi robotici



#### Sistemi robotici



- Sistemi meccanici che possono funzionare autonomamente
  - □ Sistemi meccanici: sistemi costruiti dall'uomo
  - □ Funzionamento autonomo: i sistemi robotici possono prendere decisioni autonomamente, cioè non sotto il controllo di un operatore, in funzione delle letture sensoriali
- La difficoltà principale del funzionamento autonomo sta nel fatto che l'ambiente è solo approssimativamente conoscibile

- Motivazione ai sistemi robotici: ausilio all'uomo
  - in ambienti ostili e in attività noiose o pesanti
- Motivazione ai sistemi robotici: svolgere attività che non può svolgere l'uomo (entrare in luoghi piccoli, attenzione, stanchezza, incendio o gas ...)
- Alcuni campi di attività collegati alla robotica:
  - Architetture software (cognitiove model, real time, efficiency...)
  - Computer Vision (pattern recognition...)
  - Haptics & Virtual Reality (grasping, interaction...)
  - Medical Applications (surgery, rehabilitation, prosthesis..)
  - Mobile Robotics (autonomy, walking..)
  - etc

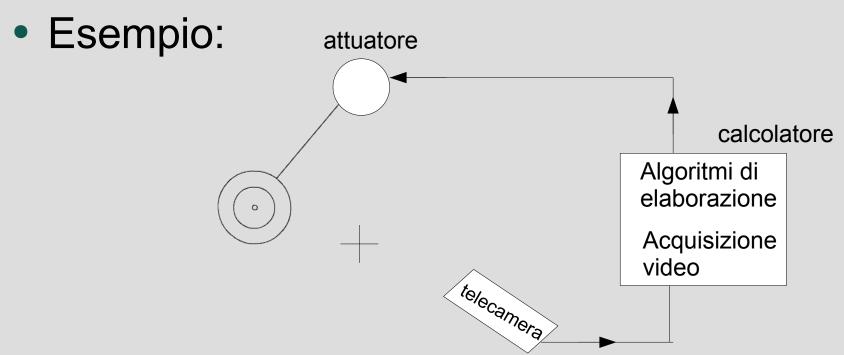
- Modalità operative
  - Terra
  - Aria
  - Superficie
  - Sottomarini
- Componenti
  - Mobilità
  - Percezione
  - Controllo
  - Alimentazione
  - Comunicazione

- Robot terrestri:
  - □ Robot mobile
    - DARPA Grand Challenge: è una gara tra veicoli autonomi su percorsi e terreno reali; ogni partecipante deve obbedire a regole per quanto riguarda la distanza percorsa e la velocità
    - NASA MER (Mars Exploration Rovers)
  - Umanoide
    - Honda P3, Sony Asimo
  - Animaloide
    - Sony Aibo
  - Robot Miniaturizzati

- Robot aerei
  - □ Ad ali fisse (Predator)
  - VTOL (veicoli a decollo verticale)
  - UCAV (Unmanned Combat Air Vehicles)
- Robot sottomarini
  - Telecontrollati
  - Autonomi
- Robot che si muovono sulla superficie del mare

- Robot e Al
  - Interpretazione dei sensori
  - Interazione uomo-robot
  - Incertezza
  - Apprendimento
- Qualche area in Al/robotica
  - Rappresentazione della conoscenza
  - Linguaggio naturale
  - Ricerca
  - Visione
  - Pianificazione

#### **Implementazione**


- Caratteristiche generali
  - Sensori
  - Attuatori
  - Architetture
- Sistemi operativi in tempo reale
- Programmazione in Linux RTAI
- Programmazione in Java Real Time

#### Pianificazione e navigazione

- Rappresentazione dello spazio
- Ricerca di cammini ottimi in un grafo
- Algoritmi di ricerca (Dijkstra, A\*)
- Algoritmi di navigazione
  - Localizzazione (Dead-reckoning)
  - Pianificazione della traiettoria
  - Pianificazione mediante algoritmi genetici
- Esercizi ed esempi

#### Robotica e Tempo reale

 Sistemi in tempo reale: il risultato dipende non solo dal risultato numerico ma anche dal tempo nel quale viene ottenuto.



#### Robotica e tempo reale

- I vincoli temporali devono essere garantiti: il tempo di elaborazione e il tempo dell'evento da gestire devono essere noti
- Condizioni necessarie (ma non sufficienti):
  - il sistema deve essere predicibile
  - Condizione necessaria: il tempo di risposta del sistema deve essere molto basso
  - Inoltre: il sistema di calcolo deve essere veloce

#### Robotica e Tempo Reale

- Le applicazioni di questo tipo sono moltissime, per es.:
  - Telefoni cellulari
  - Lettori DVD e dischi fissi
  - Robotica
  - Reti e sistemi distribuiti
  - Linee di produzione automatizzate
  - Sistemi militari
  - Avionica
  - etc...

- Un sistema opera in tempo reale soltanto se fornisce i risultati attesi entro predefiniti limiti temporali
- Real-time con vincoli temporali
  - Hard RT se la relativa deadline deve sempre essere rispettata
    - Periodico con frequenza di esecuzione costante
    - Sporadico in caso contrario
  - Soft RT se la relativa deadline può essere disattesa in condizioni di temporaneo sovraccarico
    - Periodico con frequenza di esecuzione costante
    - Aperiodico in caso contrario

- I sistemi dedicati ('embedded') sono quelli che fanno parte integrante di un dispositivo
  - Ad esempio: un calcolatore PDA, un telefono cellulare, una segreteria telefonica elettronica, una centralina di controllo di un'automobile sono tutti sistemi che vengono attivati all'accensione del dispositivo di cui fanno parte integrale
  - A seconda dei vincoli temporali richiesti dal dispositivo i sistemi possono essere considerati in tempo reale o meno

- Alcuni SO in tempo reale
  - VxWorks (Motorola, Pentium, StrongArm, Arm)
  - Windows CE .NET (ARM, StrongArm, XScale, MIPS, Pentium)
  - QNX Neutrino RTOS (Pentium, Power PC, ARM, StrongArm, XScale, MIPS, SH-4)
  - pSOSystem 3
  - Arx RTOS http://arx.snu.ac.kr/html/overview-arx.en.html
  - AvSys http://www.avocetsystems.com
  - CMX RTOS http://www.cmx.com
  - Linux Real Time:
    - uCLinux → eliminazione di funzionalità dal kernel Linux standard
    - Montavista's Hard Hat Linux, KURT → modifiche al kernel Linux standard
    - RTLinux, RTAI → Linux all'interno di un sistema real-time

- Real-Time Java
  - Vantaggi di OOP in Java rispetto a C++:
    - Semplicità
    - Classi disponibili
    - Concorrenza
  - Svantaggi di Java:
    - Alto livello di astrazione → bassa predicibilità
    - Parti critiche: thread, monitor, accesso in memoria, rilascio della memoria dinamica (garbage collection)
  - Real-Time Java:
    - Aumenta la predicibilità dei tempi di esecuzione
    - Compatibile con Java tradizionale

- Sistemi in Tempo Reale
- Sistemi Intelligenti
- Robotica
- Simulazione di applicazioni robotiche
- Programmazione dei sistemi robotici
- Studio e Sviluppo di sistemi robotici reali

- Sistemi in Tempo Reale
  - Introduzione
  - Schedulazione in tempo reale
  - Protocolli di accesso alle risorse condivise

- Sistemi Intelligenti (Russell, Norvig, "Artificial Intelligence-A Modern Approach")
  - Introduzione
  - Agenti intelligenti
  - Ricerca informata, ricerca non informata
  - Logica del primo ordine
  - Incertezza, insiemi Fuzzy
  - Apprendimento
    - Reti neurali
    - Apprendimento con rinforzo: ottimizzazione genetica, ottimizzazione Simulated Annealing

Robotica ("Robot Motion Planning" J.C. Latombe,

"Computational principles of mobile robotics", Dudek, Jenkin

- Architetture cognitive
- Localizzazione
- Navigazione
- Spazio delle configurazioni
- Rappresentazione simbolica

- Sistemi a coda d'attesa
  - Analisi e progetto di semplici architetture robotiche mediante la teoria delle code d'attesa

- Simulazione di applicazioni robotiche
  - Simulatore OpenSource
  - Realizzazione di semplici algoritmi di robotica

- Programmazione dei sistemi robotici
  - Sistema operativo Linux RTAI
    - Principi, programmazione
  - Linguaggio RTJAVA
    - Principi, programmazione

- In parallelo alle presentazioni 'teoriche' il corso prevede lo svilupo di esercitazioni pratiche su piattaforme reali
- Gli studenti vengono divisi in gruppi, ogni gruppo lavora su una applicazione reale (tesina) che viene presentata alla fine del corso.