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ABSTRACT. We consider the problem of deciding resource allocation
policies in open embedded systems, where the system components have
to form opportunistic alliances, share partial knowledge and collectively
agree a policy that is congruent with the state of the environment in which
the system is embedded. This problem arises in a number of systems and
applications, including sensor networks, virtual organisations, cloud com-
puting, swarm robotics, and infrastructure management. In this position
paper, we outline a model for addressing this problem, and overview some
of its features for which logical and epistemological issues concerning the
dynamics of beliefs in a multi-agent system turn out to be relevant.
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1. Introduction

This paper considers the problem of deciding resource allocation policies in
open embedded systems, where the system components have to form oppor-
tunistic alliances, share partial knowledge and collectively agree a policy that is
congruent with the state of the environment in which the system is embedded.
Such systems are increasingly common for managing mobile ad hoc, sensor
and vehicular networks [15], service-oriented systems such as virtual organisa-
tions and cloud computing [1], swarm robotics [16], and for delivering smarter
demand-side infrastructure management, e.g. for water [2] or energy [18].

However, developing suitable models for this kind of situation (i.e. models
which optimise ‘fairness’ and ‘endurance’ [12], which prevent strategic manip-
ulation, or which promote security [11]) is a question for which logical, philo-
sophical and epistemological research has particular relevance. In this position
paper, we outline a model for addressing this problem and overview some of its
features, for which logical and epistemological issues concerning the dynam-
ics of beliefs in a multi-agent system provide deeper insight. In particular, we
use key ideas from these research areas (scoring rules, affinity functions and
depth-bounded reasoning) to map environmental states, partial knowledge and
expressed preferences onto an actual resource allocation policy.

Accordingly, this paper is organised as follows. The next section presents a
fuller description of the abstract problem specification, while Section 3 presents
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some elements of the proposed model. We conclude in Section 4 with some
comments on how recent non-standard characterisations of classical logic could
be employed to engineer more realistic models in which ‘rational agents’ are
not assumed to be logically omniscient, but may be endowed with limited and
non-uniform reasoning resources.

2. Abstract Problem Specification

There are many applications of open systems, including sensor networks, cloud
computing, swarm robotics, and infrastructure management. In all these ap-
plications, the system components have to reason with partial information, and
they have to share information and resources to achieve individual and collec-
tive goals. Moreover the system itself is embedded in an environment that is
mutable by uncertain, exogenous events.

The operation of these systems can then be loosely divided into three stages:
form an opportunistic alliance, decide a policy to provision and appropriate re-
sources, and then perform the resource allocation, repeating as often as required.
In previous work [12], we have advocated an institutional approach to this pro-
cess, based on a logical axiomatisation of the socio-economic principles for
common pool resource management [8]. One of these principles concerned
congruence, specifically that the appropriation and provision rules should be
congruent with the prevailing state of the environment in which the system is
embedded. Since these are open, distributed and decentralised systems com-
prising autonomous, heterogenous and possibly competing components, this
requires that they sense their local environment, communicate their beliefs to
other nodes, and express a preference for the resource allocation policy that best
suits the local environment. The collection of expressed preferences is then used
to make a decision on an actual resource allocation policy.

However, the components themselves may perform actions which directly
affect the environment, and the environment state may also change due to ex-
ogenous events beyond the nodes’ control. Therefore, the operational resource
allocation policy has to suit the current state of the environment, but the state
of that environment is dependent upon the uncertain occurrence of significant
(environment-changing) events. Accordingly, we require that the nodes make
a forecast, as a subjective degree of belief, about the likely occurrence of these
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events. This introduces a ‘security’ problem, as it exposes the policy selection
process to strategic manipulation: a node can be deliberately deceptive about the
occurrence of an event to persuade others to decide on a policy that is beneficial
to the deceiver but not in the common interest.

Minimally, this general (abstract) resource allocation problem can be for-
mulated as a set of n nodes (agents) A = {a1, . . .an} forming k clusters (oppor-
tunistic alliances) C = {C1, . . .Ck}, such that ∀i, i≤ 1≤ k,Ci ⊆A . Picking one
cluster C ∈ C , we formally define a self-organising institutional cluster at time
t as a 4-tuple:

It = 〈C,ε,L,m〉t

where:

• C is the set of agents;

• ε is the environment, a pair 〈B,F〉 where B is the set propositions whose
truth-values are determined by the physical state, and F is the set propo-
sitions whose truth-values are determined by conventional agreement1;

• L, is the resource allocation ‘legislature’, the set of rules by which agents
are allocated resources; and

• m is a partial function C 7→ [0,P] which specifies the amount of resources
allocated to each agent in C.

Assuming the system operates in time-slices, in each time-slice an agent
may make a request for resources. The problem for the institutional cluster
(or rather its members) is to compute the mapping m for the current time slice
t based on the operational choice rules specified in L, and then select the op-
erational choice rules for the next time-slice t + 1 based on forecasts for the
occurrence of uncertain events which may change the environment.

For example, the set of possible operational choice rules (policies) for the
resource allocation could be:

1 B and F are respectively called in philosophy the set of ‘brute’ and ‘institutional’ facts
[17], with the institutional facts being the product of exercising institutional power [6]; i.e. the
performance of a designated action in a specific context by an empowered agent, usually occu-
pying a certain role.
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• largest first: the agent making the largest resource request is allocated
first, then the next largest, etc.;

• smallest first: the agent making the smallest resource request is allocated
first, then the next smallest, etc.;

• first-come-first-served: the requests are allocated in the order in which
they are generated;

• in turn: each agent is allocated resources in rotation;

• priority: the request with the highest priority is allocated first;

• ration: each request is partially allocated.

The best policy is determined by the current amount of resources to be allocated
P, and the replenishment rate of the resource from the environment. This is
determined by exogenous events whose occurrence is uncertain. For the sake of
example, let us suppose that the replenishment rate can be low, normal or high
as a result of certain events (in the water distribution CPR systems studied by
Ostrom [8], the events could be weather-related, storms, rains, sunshine, etc.).

In a centralised, closed or co-operative system, such as an operating system,
this is a scheduling problem which can be solved by well-known algorithms.
In a distributed, open and competitive system, where the components are au-
tonomous, heterogeneous and may (by accident or design) not comply with the
provision or appropriation rules, we require a different approach in keeping with
the use of institutions. Our proposal is discussed in the next section.

3. Logical, Philosophical and Epistemological Issues

In this section, we examine some features of the model for which important log-
ical and epistemological issues concerning the dynamics of beliefs in a multi-
agent system are particularly relevant. This includes scoring rules, affinity func-
tions, depth-bounded reasoning, and judgement aggregation.
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3.1. Scoring Rules

Let Ei, with i ≥ 1, be a sequence of uncertain events. Essentially, a scoring
rule is a function f (ai,ei), where ai is a real number in [0,1] that represents a
forecaster a’s expressed opinion (subjective degree of belief) about the occur-
rence of Ei, and ei is a Boolean variable such that ei = 1 if Ei actually occurs
and ei = 0 if Ei does not occur. Then the forecaster is charged (or symmetri-
cally rewarded) f (ai,1) if Ei occurs and f (ai,0) if Ei does not occur. Such rules
are often employed in evaluating the accuracy of probabilistic forecasters and
measuring their predictive success2.

Applying this to the problem specified in the previous section, we might
have three independent environment states, ε0, ε1 and ε2, and events causing
transitions between states, i.e. E0,0, E0,1, etc., as shown in Figure 1.

Then we require each agent, in the corresponding environmental state i at
time-slice t, to express it’s subjective belief in the likelihood of the events Ei,i,
Ei, j and Ei,k. These predictions are evaluated using the scoring rules in the
following-time slice, and the agents rewarded accordingly. Note the reward
might simply be an increase in ‘reputation’ and that this might effect implicit
roles in the cluster such as leadership. Furthermore, if the scoring rule is proper,
rational agents who aim to maximise their reward are forced to make forecasts
that coincide with their true beliefs.

3.2. Opinion Formation

We now have a way of eliciting an opinion from an agent which precludes strate-
gic manipulation, we also want to consider the influence of the opinion and the
social network within the cluster.

2 De Finetti showed that certain mathematical forms of the scoring rule prevent rational
agents from ‘cheating’, that is, from expressing opinions about the occurrence of the uncertain
event E that are different from their ‘true beliefs’ (on this point, see [7]). Scoring rules that have
this property are called proper. If a non-proper scoring rule is used, there is room for strategic
behaviour. But proper scoring rules can have various mathematical forms. De Finetti also showed
that if one specific proper scoring rule is used (the quadratic scoring rule, called also Brier’s rule)
then subjective degrees of belief must obey Kolmogorov’s axioms of probability, that is rational
agents ought to reason in accordance with the laws of probability.
However, this does not happen if other proper scoring rules are adopted. On the other hand
D’Agostino and Sinigaglia [5] showed that, under certain intuitive axioms, the quadratic scoring
rule is uniquely determined as the only one that can be appropriately used in this context.
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FIG. 1: Events and Environment States

In previous work, we have used use the opinion formation model of [14],
whereby an agent i increases its confidence in another agent j based on how
well j’s opinion coincides with i’s mindset. Assuming a positive evaluation for
those opinions matching agent i’s mindset and a negative for those contradicting
it, then it can be said that the confidence in an exchange partner j increases as
j’s opinion matches i’s mindset.

In this model, the opinion formation dynamics occurred at discrete time
points and on a per issue basis. At each time point each agent exchanges opin-
ions with other agents. An agent i’s opinion changes at time t +1 by weighting
each received opinion at time t with the confidence in the corresponding source
(including its own opinion weighted by its self-confidence). Then in each time
step, the affinity between agents can be different for each ordered pair of agents
corresponding to the fitness between opinions and mindsets.

Furthermore, affinity affected confidence, so the confidence in other agents
was redistributed accordingly. The ‘distance’ between one agent’s mindset and
another agent’s opinion (as expressed to that agent) was used to update the affin-
ity of the former agent for the latter. Confidence changed in time differently for
each agent, based on the affinity between agents. Agents increased the confi-
dence in those agents whose opinions fit their mindset.

In this context the work of [3] on distance functions appears to be relevant
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and allow for a natural extension of the model. In [14] affinity was supposed to
compare an agent’s mindset with another agent’s expressed opinion concerning
a single issue. This was a simplifying assumption of [14] , but it is natural to
consider more realistic models in which affinity is evaluated with reference to
a set of issues rather than a single one. In this approach, an agent’s mindset or
opinion on given set of n issues is expressed as a real-valued n-dimensional vec-
tor and affinity is therefore a function from Rn×Rn to R. Here the background
problem is the same as in the theory of multidimensional spatial voting, where
voters are supposed to choose the candidates whose expressed opinions on the
importance of a given set of issues have a minimal distance from the voter’s
‘true’ opinions. D’Agostino and Dardanoni [3] have recently shown that, under
some reasonable assumptions, the appropriate distance function must be some
monotonic transformation of Euclidean distance, if all the issues are assumed
to have the same ‘relevance’ for the agent who is making the affinity evaluation,
or of weighted Euclidean distance, if some issues are more relevant than oth-
ers (and the weights express their relative relevance). So, in the general case,
affinity should be measured by a function fa of the following form:

fa = K
( n

∑
i=1

(wa.iai−wa.ibi)
2
)
,

where: a is the agent who is making the affinity evaluation, wa.i is the weight
assigned by a to issue i, ai represents a’s mindset about i, and bi the expressed
opinion of agent b about i.

3.3. Depth-bounded Reasoning and Belief Revision

Given that each agent in the institutional cluster expresses an opinion, and that
opinion influences other agents, the next issue to address is how an agent may
be prompted to change its opinions so as to trigger a global revision process that
may lead to a change in the expressed preferences and, therefore, in the resource
allocation policy.

An opinion, valued in [0,1], is an agent’s subjective degree of belief in the
truth of a given proposition, i.eȧ fuzzy notion. However, agents often need to ex-
press their preferences by means of crisp propositions, which may in turn result
from the application of inference rules whose premises and conclusions are also
crisp. So we assume that each agent is equipped with a defuzzification method
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to turn their fuzzy opinions into crisp beliefs that are represented by signed for-
mulas, i.e. expressions of the form t P or f P, where P is arbitrarily complex
formula built up from the atomic formulas of the language by means of the
usual Boolean operators. The set of such crisp beliefs forms the agent’s belief
database. Moreover, we assume that agents are able, in various degrees, to ex-
tend their belief database and to detect inconsistencies by performing deductive
inferences. Finally, we assume that each agent has the capability of applying ad-
ditional inference rules that enables it to derive signed atomic atomic formulas
from finite set of signed atomic formulas.

For example, suppose that, in a given agent’s belief database, we have signed
formulas of the form:

t common pool(high), t common pool(normal), t common pool(low)

which indicate that the agent has a (sufficiently strong) subjective belief that
is is true that the common pool resource P is, in some sense, respectively
‘high’, ‘normal’ and ‘low’. (There may also be integrity constraints required
to ensure that the database does not contain incompatible crisp beliefs such as
t common pool(high) and t common pool(low).) Depending on the observation
of events, the opinion formation, and the defuzzification process, it will also
have a subjective belief on the replenishment rate, i.e. t rep rate(high). Then it
would be able to infer an overall belief in the availability of resources by means
of the following inference rule:

t common pool(high)
t rep rate(high)
t resources(high)

Or, suppose the agents measure their satisfaction which goes up or down ac-
cording to whether or not they receive resources in a time-slice [13]. They also
communicate this satisfaction as an opinion, and the agents can form a (sub-
jective) overall assessment of whether the satisfaction in the cluster is high or
low. There might be additional inference rules of the following form that allow

9



PITT, SCHAUMEIER AND D’AGOSTINO

agents to form a belief in the preferred operational choice rule (see next section):

t resources(high)
t satisfaction(high)
t ocr(largest first)

t resources(high)
t satisfaction(normal)
t ocr(smallest first)

t resources(normal)
t satisfaction(low)
t ocr(first come first served)

t resources(normal)
t satisfaction(high)
t ocr(in turn)

t resources(low)
t satisfaction(normal)
t ocr(priority)

t resources(low)
t satisfaction(low)
t ocr(ration)

Now, the problem is that we cannot realistically assume that each agent, at a
given time slice t, ‘believes’ all the signed formulas that can be inferred from
the set of formulas that are explicitly stored at t in the belief database, since the
corresponding problem is computationally unfeasible. Moreover, for the same
reason, an agent’s database may be inconsistent, but the agent may be unable
to detect this inconsistency and so find no motivation for revising its beliefs.
A realistic model requires the possibility of grading the inferential power of
agents, so that different agents may be able and/or willing to spend resources on
performing deductive inferences up to different degrees of complexity. An agent
that only reasons ‘shallowly’ may remain unaware of inconsistencies and so
not revise its beliefs, whereas an agent that commits more of its own resources
to reasoning ‘deeply’ might detect such inconsistencies and so start a belief
revision process that may result in changing its expressed preference for the
resource allocation policy (the operational choice rule).

A promising approach for solving this problem seems to be the one pre-
sented in [4], which allows for a natural proof-theoretical characterisation of
an infinite hierarchy of tractable approximations to Boolean logic in terms of
‘depth-bounded’ natural deduction. This hierarchy of logical systems may be
associated with a corresponding hierarchy of agents endowed with increasing
inferential power. We maintain that replacing a complete deduction system for
Boolean logic with a suitable depth-bounded approximation system and aug-
menting the latter with a suitable revision algorithm yields a logical model in
which (i) agents can be realistically assumed to ‘believe’ all the depth-bounded
logical consequences of their belief databases only up to a certain depth that is
characteristic of each agent; (ii) when the database is inconsistent, belief revi-
sion may or may not be triggered depending on whether the inconsistency can
be detected at the depth that bounds the inferential power of the agent.
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3.4. Judgement Aggregation

After belief revision, the agents in a cluster will have to use their (new) beliefs
to make judgments about logically interconnected propositions. However, a
judgement on one proposition is not independent on judgements on some other
propositions. Aggregating such judgements is not straightforward and leads to a
variety of paradoxes (most notably the discursive paradox (the observation that
majority voting applied to premises may yield a different outcome to majority
voting on a conclusion).

The performance of different aggregation procedures for truth-tracking (such
as the preference based procedure, the conclusion based procedure, and belief
merging) has been investigated [9], and a formal characterisation of a voting
protocol from the perspective of institutionalised power is given in [10]. Fur-
thermore, there are many algorithms for single winner-determination given a
list of candidates or alternatives. This is known as social choice or mechanism
design: common alternatives include negotiation, auctions, and voting.

Five well-known methods based on voting are:

• Plurality. Each voter selects one candidate; the most named candidate
wins.

• Runoff. Each voter selects one candidate in the first round. Top two (un-
less one already has a majority) enter a second round. Each voter selects
one candidate (of two) in the second round; the most named candidate
wins.

• Borda. Each voter rank orders all candidates. The Borda score for each
candidate is computed from the accumulation of Borda points associated
with each vote (with N candidates, rank k scores N−k+1 Borda points).
The candidate with the highest Borda score wins.

• Instant Runoff. Each voter rank orders all candidates. The candidate with
the least number of top-ranked vote is eliminated. The process is repeated
until only one candidate remains.

• Approval. Each voter selects a subset of the candidates; the most named
candidate wins.
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It may be that each winner determination method (wdm) will return a differ-
ent winner form the same set of votes. For example, given the following list of
candidate votes for a set of policy choices {a,b,c,d,e, f} (where a represents
largest first, b represents smallest first, and so on):

[[a,b,c,e], [a,d,b,e], [a,c,d,e], [b,c,d,e], [b,d,c,e], [c,d,e,b], [d,c,e,b]]

we get the comparative results using a Prolog implementation, see Table 1.

method winner prolog inferences robustness[19]
plurality a 33 low
runoff b 89 high
borda c 281 low

instant (runoff) d 328 high
approval e 194 low

TABLE 1: Comparison of Winner Determination Methods

Thus it matters which winner determination method is used, not only be-
cause it may affect the selected winner, but the different methods have different
resource requirements to compute, and also have a different level of robustness,
as a measurement of its resistance to strategic manipulation [19].

4. Summary and Conclusions

In this position paper, we have presented a preliminary study of aligning re-
source allocation policies to the prevailing state of the environment, in resource-
constrained open embedded systems. We considered a scenario in which a clus-
ter (group) of agents have to (collectively) select rules for resource provision
and appropriation, the method by which this selection is made, and (individu-
ally) decide how much of their resources to contribute to the performance of
the job and the collective decision-making. We have suggested how suitable
models of scoring rules, depth-bounded reasoning and judgement aggregation
may fruitfully be combined to map environmental states, partial knowledge and
expressed preferences onto an actual allocation.
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There are several applications of logic in this scenario. Clearly, it plays
a key role in the belief revision and in the judgement aggregation processes.
However, the development of realistic models prompts for a departure from the
mainstream approaches that can be found in the logic literature. In particular,
we want to model ‘population distributions’ in which agents are assumed to
have realistic and non-uniform reasoning capabilities, while it is widely agreed
that logical systems are idealisations and, therefore, not intended to model the
actual behaviour of rational agents.

This gap between the idealised assumptions of traditional logic and the ob-
served inferential behaviour of real-life agents stands out as highly problem-
atic in several areas of economics, sociology, psychology and political science.
Granting that a certain amount of abstraction and simplification is necessarily
involved in any scientific model, real applications require an approach to logical
systems that (i) takes resource limitations and environmental constraints seri-
ously and (ii) allows for indefinitely increasing degrees of idealisation. Such a
graded approach would put researchers in a position to model situations where
certain agents are capable of committing resources to reasoning ‘deeply’, and
so bring to light non-trivial inconsistencies that trigger the belief revision pro-
cess, compared to other agents which reason ‘shallowly’, and so may remain
unaware of inconsistencies whenever these are deeper and therefore (computa-
tionally) harder to detect. We maintain that the revisitation of classical proposi-
tional logic put forward in [4], leading to a natural hierarchy of depth-bounded
tractable logics of increasing complexity, can be sensibly employed to model a
corresponding hierarchy of resource-bounded logical agents.

Moreover, as we try to lift from autonomous systems management to self-
aware systems management, we conjecture that a proper treatment of depth-
bounded reasoning in the style of [4] – given the link between awareness and
tractability – may turn out to be useful to understand the proper manifestation
of self-awareness in multi-agent systems.
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