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ABSTRACT. We argue that the dream of a ‘perfect language’ – namely,
a universal, unambiguous and semantically transparent medium of
expression –, whose intriguing story has been told by Umberto Eco
(1993), is deeply intertwined with the myth of instant rationality: the
idea that a perfect language is one in which all logical relations beco-
me immediatly visible, so that the language itself “does the thinking
for us” (Frege 1884). In the first part of this paper we trace this ver-
sion of the dream in the works of Leibniz, Frege, Russell and Witt-
genstein. In the second part we re-examine it in the light of more re-
cent negative results in logic and theoretical computer science.
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1.  The myth of the logically perfect language

“It [operating with figures mechanically] only became possible at all after the
mathematical notation has, as a result of genuine thought, been so developed
that it does the thinking for us so to speak” (Frege 1884, p. IV). These words
by Gottlob Frege clearly and concisely express the myth of the ‘logically per-
fect language’ that constitutes the theme of the present essay.

Reflection on the perfect (or original) language has been a recurrent theme
in scientific-philosophical thought beginning from Greek antiquity.1 However,
this phrase has been used to mean several things that are quite different from
one another. So, let us immediately clarify that here we will not deal with proj-
ects based on the idea that names express the profound essence of things or
give information on lexical semantics, thus proving to be ‘semantically trans-
parent’. We will deal, instead, with the ‘logically perfect language’, meaning
a language that can guarantee the correctness of processes of reasoning and
one in which we can immediately recognize the relationships between propo-
sitions simply by means of sensory perception. Hence, this is a meaning of
perfection in which semantic transparency concerns ‘logical words’ and not
lexical terms. All that is required of the latter is referential univocity: to each
conceptual content there must correspond only one term – a real character, to
use the happy expression coined by Francis Bacon.

Like many other inventors of philosophical languages, Gottfried Wilhelm
Leibniz believed that the possibility of a perfect language was founded on iden-
tification of the primitive notions that make up the knowable. A number should
be attributed to every primitive notion and these numbers should combine to-
gether, producing all possible notions. A system of translation of these numbers
into consonants and vowels would then allow us to assign to each notion a char-
acter 2 that refers univocally to the notion designated by it. Lastly, on the com-
binatory rules of these characters there should be founded the ars iudicandi:

I necessarily arrived at this remarkable thought, namely that a kind of
alphabet of human thoughts can be worked out and that everything can
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1 Among the numerous works that could be mentioned, two that after many years have
aroused interest in this theme are Couturat (1903a) and Eco (1993). 

2 For an explanation of how to construct the ‘characters’, see Leibniz (1679a). More in gen-
eral, on pp. 42-92 there is the first systematic attempt by Leibniz to develop a logical calculus. For
an English translation of many of his writings, see Leibniz (2000). On the similarity and differ-
ences between Leibniz’s ideas and those of other seventeenth-century authors engaged in projects
for creating calculation languages, like George Dalgarno and John Wilkins, see Rossi (2000). 



be discovered and judged by a comparison of the letters of this alphabet
and an analysis of the words made from them (Leibniz 1679c, p. 222).

Although for Leibniz all knowledge was potentially translatable into the Char-
acteristica, this instrument could also have worked in specific domains, and
therefore could also have been used before the whole alphabet of human
thought was identified. In this connection, the grammar of this language would
be unique and indifferent to the sphere of application. Such grammar would
not be different from logic, seen as “the art of using the understanding not on-
ly to judge proposed truth, but also to discover hidden truth” (Leibniz 1696, p.
475). Hence, it would be, at one and the same time, a method of discovery (ars
inveniendi) and a method of decision (ars iudicandi). Thus, once the funda-
mental notions have been identified, there could be a calculus ratiocinator in
the light of which all controversies become vain:

Obviously, once this is performed, every paralogism is nothing but a
calculation mistake, and [...] every sophism, expressed in this kind of
new writing, is nothing but a solecism or a barbarism, to be resolved
easily through the laws of this philosophical grammar itself. 
Henceforth, when controversies arise, there would be no more need of
disputation between two philosophers than between two accountants.
For it would suffice to take their pencils in their hands, sit down with
their counting-tables (having called in a friend, if they like) and say to
each other: let us calculate (Leibniz 1684, p. 200, our translation).

Such a system would not be applicable to historical-natural language,3 but to
ideographic language, the characteristica universalis, in which there is a rig-
orous one-to-one correspondence between simple signs and simple ideas and,
consequently, between compound signs and compound ideas. Only a similar
artificial language would ensure this possibility, and not ordinary languages.
The fact is that the latter:

although they serve for reasoning, nevertheless they are subject to innu-
merable misunderstandings, nor can they be employed for calculation,
that is to say in such a way that the errors of reasoning can be discov-
ered (Leibniz 1684, p. 205). 
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3 Awareness of the historical character of languages is at the heart of Leibniz’s theoretical
reflection, and does not contradict logico-combinatory works like Dissertatio de arte combina-
toria. See Mugnai (1976) and Gensini (1991).



Hence characteristica will not make all men equally able to attain prodigious
results in discovery, but it will make them all able not to commit errors or, pos-
sibly, to recognize errors by themselves, whether committed by them or by
others. On one side, therefore, we have a system of discovery, linked to indi-
vidual ability, and on the other a system of control that would become me-
chanical, and even immediate: 

And this is the advantage of our method – we can judge at once, through
numbers, whether proposed proposition are proved, and so we accom-
plish, solely with the guidance of characters and the use of a definite
method which is truly analytic, what others have scarcely achieved with
the greatest mental effort and by accident. And therefore we can succeed
in presenting conclusion within our own century which would scarcely
be provided for mortals in many thousands of years otherwise (Leibniz
1679b, p. 236, our emphasis).

Thus the characteristica universalis should make us immediately able to judge
the correctness of reasoning and this immediateness would be made possible
by the reduction of control to simple sensory perception. As for Leibniz, in lat-
er authors too this strong idea of instant rationality will characterize the proj-
ects of logically perfect languages.

“Leibniz’s dream”, as Giuseppe Peano was to call this grandiose programme
of the German philosopher,4 was taken up in the late nineteenth century and the
early twentieth, interweaving with projects for refounding logic. Explicit refer-
ences to Leibniz’s programme can be found in Boole and, even more marked-
ly, in Frege, who at the beginning of his Begriffsschrift harks back precisely to
Leibniz’s “calculus philosophicus or ratiocinator” (1879, p. 6). In this work,
Frege, after indicating in the symbolic systems of arithmetic, geometry and
chemistry partial realizations of Leibniz’s project, though relating to particular
fields of knowledge, claims for his own ideography the merit of having added
a new field and “indeed the central one, which borders on all the others” (1879,
p. 7). In an article devoted to clarifying the difference between Peano’s ideog-
raphy and his own, Frege actually writes: “it [the Begriffsschrift] is, to use an
expression coined by Leibniz, a lingua characterica” (Frege 1897).5
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4 See Peano (1908). The expression is taken up by Bertrand Russell (1901). On this topic
see also Mondadori (1986).

5 An analogous concept is found in Frege (1880-81). This reference is important for under-
standing that what Frege really meant to obtain was not a calculus – and so a variant of Boole’s
logic. Thanks to the possibilities afforded by “predicate letters, variables and quantifiers”, the



An important implication of Leibniz’s programme is that if one succeeded
in taking it to its conclusion, there would be no more need for logic as such:
correct syntactic formulation would in itself constitute a guarantee of correct
logical reasoning. That the ‘end of logic’ is the inevitable result of the fulfil-
ment of Leibniz’s dream is particularly clear in the words of Frege: 

if we had a logically perfect language we would perhaps further need no
logic, or we could read it off language. But we are at a vast distance
from being in this condition (Frege 1915, p. 252).

2.  Wittgenstein’s ‘adequate notation’ and the futility of logic

Although in Wittgenstein’s work there are no explicit references to Leibniz,
and it is a very arduous undertaking to reconstruct his library, it appears very
likely that the work of the German philosopher, possibly through the media-
tion of Frege and Russell, was very much present in the mind of the author of
the Tractatus. In this connection, there are manifold (though little investigat-
ed) echoes of Leibniz in his writings.6

In the Tractatus,7 Wittgenstein raises the question of an ‘adequate nota-
tion’, meaning a notation in which the grammatical structure and the logical
structure of sentences coincide, and one through which each sentence shows
its sense. For Wittgenstein, the sense of a proposition is to be identified with
the possibility of its being true or false: “The sense of a proposition is its agree-
ment and disagreement with the possibilities of the existence and non-exis-
tence of the states of affairs” (T. 4.2).8 He distinguishes two types of proposi-
tions, elementary propositions [Elementarsätze] and propositions that have a
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proposition becomes articulated and a meaning can be expressed by means of a language that can
be considered a lingua characteristica, as already remarked by Van Heijenoort (1967b). A similar
view is expressed in Hintikka (1997). Recently Korte has maintained that the decision to consid-
er his Begriffsschrift a lingua characteristica “is related to his logistic program, which was to show
that judgements of arithmetic are not synthetic, as Kant had claimed, but analytic” (Korte 2010).

6 Among the few authors that relate the works of the first analytic philosophers with earli-
er artificial language projects, there are Soren Stenlund (2002) and Nicolay Milkov (2006).

7 The reference is to Wittgenstein (1921). Here we quote the English translation, sometimes
with slight modifications.

8 Here we will not consider the consequences of an adequate notation in the framework of
the distinction between senselessness [Sinnloss] of logical propositions, which at all events rep-
resent the framework of the world (cf. T. 6.124), and the nonsense [Unsinn] of non-logical
propositions (cf. T. 4.003). See the now classic Diamond (1991), and Conant (2000). 



complex structure, being formed by elementary propositions. While the truth
of elementary propositions consists in the existence or non-existence of a cer-
tain fact about the world, the truth of the other propositions depends on the re-
lations that link the elementary propositions contained in them: complex
propositions are truth functions of the elementary propositions. As Wittgen-
stein writes: “A proposition is the expression of agreement and disagreement
with the truth-possibilities of the elementary propositions” (T. 4.4).

Thus if the sense of a proposition consists in the conditions in which it is
true or false, an adequate notation should be able to show these conditions ex-
plicitly. Wittgenstein has no doubt about the fact that this should be possible.
In the Tractatus there is even a certain tension in relation to the idea that the
proposition already shows its meaning in ordinary language – “a proposition
shows its sense” (T. 4.022) – and not only in the presence of adequate sym-
bolism. Nevertheless, Wittgenstein shares with Frege and Russell, however
different their positions on common language may be, the idea that: “[in com-
mon language] it is humanly impossible to deduce the logic of language” (T.
4.002), because the grammatical structure does not mirror the logical structure
of the sentence itself. The logic underlying linguistic utterances could instead
be made evident by a more appropriate symbolism, one capable of making it
immediately visible 9 without resorting to any ‘deductive process’. This seems
also to be lurking in the back of Russell’s mind, when he writes:

In a logically perfect language, there will be one word and no more for
every simple object, and anything that is not simple will be expressed by
a combination of words. [...] A language of that sort will be completely
analytic, and will show at a glance the logical structure of the facts as-
serted or denied (Russell 1918, p. 176, our emphasis).

For Wittgenstein the logically perfect language is the practicable result of his
proposal of a new kind of symbolism in which recognition of tautologies can
be immediate. Since the deducibility of q from p (where p indicates the con-
junction of the premises and q the conclusion of a deductive process) is equiv-
alent to the tautologyhood of p→q, the correctness of the inference of q from
p would prove, in a symbolism of the kind, to be immediately visible. 

Frege and Russell had demonstrated that it was possible, although ex-
tremely complicated, to show in a purely formal way the tautological char-
acter of a proposition through the creation of a proof system founded on self-
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9 Wittgenstein made explicit use of visual metaphors probably more than any other philoso-
pher and the centrality of vision in cognitive processes is one of the main themes of the Tractatus. 



evident logical axioms (propositions whose tautological character is imme-
diately recognizable) starting from which it was possible to derive all the
other tautologies through valid rules of inference (which preserve tautology-
hood).

We prove a logical proposition by creating it out of other logical propo-
sitions by applying in succession certain operations, which again gener-
ate tautologies out of the first. (And from a tautology only tautologies
follow.) (T. 6.126).

In Wittgenstein’s view, however, the systems of Frege and Russell were not as
perspicuous as they should. In the first place, their approach made logical re-
lationships opaque, causing propositions that are in fact identical to appear as
distinct. For example, p→q (if p then q) and ~p ∨ q (not p or q), though dif-
ferent signs, for Wittgenstein are the same proposition because both are true
for all values of p and q, except in the case in which p is true (T) and q is false
(F). Secondly, the privileged position of the tautologies that play the role of ax-
ioms is entirely arbitrary in such systems. Furthermore, recognizing that a
proposition is a tautology, through a formal derivation, may generally be an
extremely complicated process, and this appears in sharp contrast with the idea
that “every tautology itself shows that it is a tautology” (T. 6.127).10 Hence for
Wittgenstein, the systems of Frege and Russell do not realize an ‘adequate no-
tation’ for expressing logical connections. Indeed, in such a notation

That the truth of one proposition follows from the truth of other propo-
sitions, we perceive from the structure of the propositions (T. 5.13, our
emphasis)

and

we can recognize in an adequate notation the formal properties of the
propositions by mere inspection (T. 6.122). 

Hence:

‘Laws of inference’, which – as in Frege and Russell – are to justify the
conclusion are senseless and would be superfluous (T. 5.132).

7

LOGIC AND THE MYTH OF THE PERFECT LANGUAGE

10 For a discussion of the effective decidability of the propositions of logic within the struc-
ture of the Tractatus see Marconi (2005). 



Thus the outcome of this position is the thesis according to which in an ade-
quate notation logical deduction would be wholly superfluous!11

It seems plausible that, according to Wittgenstein, an adequate notation could
be provided by the famous method of the truth-tables introduced by himself in
the Tractatus. The truth-table of a proposition explicitly shows its truth condi-
tions in terms of the truth and falsehood of the elementary propositions con-
tained in it. Further, for Wittgenstein every truth-table constitutes a proposition-
al sign (T. 4.442):

For example the following is a propositional sign:
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11 On this point see also D’Agostino and Floridi (2009).

p q

T T T

F T T

T F

F F T

The table in the example illustrates the conditions of truth (and of falsehood)
of the implication if p then q (but also of the disjunction not-p or q) in terms
of the truth and falsehood of the elementary propositions p and q. It follows
that if p then q is false only in the case in which p is true and q false, while
it is instead true in all other cases. An abbreviation of this scheme could be
(TT-T) (p, q) or, more explicitly, (TTFT) (p, q). Other logical connections be-
tween the same elementary propositions would evidently give rise to other
configurations. 

Thus, the ideal of an adequate notation, a symbolic system in which propo-
sitions explicitly show their own truth conditions, seems to be fully accom-
plished. The theoretical move that allows for this result consists in considering
the truth-table itself as a ‘propositional sign’, that is to say, a configuration of
signs able to serve as a proposition. The difficulty about recognising tautolo-
gies that afflicted Frege’s and Russell’s systems seems to dissolve into a sym-
bolism in which logical relations become immediately (and instantly) visible.
In this vein, Wittgenstein writes: “if two propositions contradict one another,
then their structure shows it; the same is true if one of them follows from the
other. And so on” (T. 4.1211). Hence we could say that we see from the propo-
sitional signs (TTFT) (p, q) and (FFTF) (p, q) – that is to say from a compar-
ison between the arrangements of the signs T and F appearing in them – that

«

».



the propositions in question contradict one another.12 Therefore we do not need
any logical demonstrations.

By way of example, remembering that “Every proposition of logic is a
modus ponens present in signs” (T. 6.1264), consider this simple inference: 

If it rains I put on my hat
It rains
Then I put on my hat

Let us now consider the truth-table that shows that this inference – which exem-
plifies modus ponens – is tautological (p and q stand for arbitrary propositions):

Recognition of the tautological character of the proposition in the last column
– which guarantees the correctness of the inference in question – does not here
require any ‘logical demonstration’, but the simple inspection of the proposi-
tional sign representing the proposition in the tabular notation. 

In the Tractatus (6.1203), Wittgenstein also provides another example of
adequate notation. It is not clear whether this intended to be an alternative
method to the tabular one, serving for visual recognition of the tautologies or,
as it would seem, amounts to essentially the same method: 

9
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p q p→q (p→q)∧p ((p→q)∧p)→q)

T T T T T

F T T F T

T F F F T

F F T F T

12 On this point see Piana (1973, p. 54).



Let p and q be the connected elementary propositions in a complex propo-
sition. Each proposition may have two truth values T and F that will be con-
nected to those of the other proposition, yielding the same values as obtained
with the truth-tables.13

As we will see more clearly in the next sections, the central problem in both
methods is that the number of possible assignments of truth-values increases
exponentially with the number of elementary propositions occurring in the
complex proposition, making both the tabular notation and the graphic one
outlined above entirely unfeasible. Wittgenstein does not consider this prob-
lem,14 and does not provide examples of how the most complex tautologies
should be written in one of these symbolisms. 

We will argue, in the next sections, that this is by no means an empirical prob-
lem that falls outside the austere perspective of Tractatus, and that the unfeasi-
bility of the symbolisms proposed by Wittgenstein is only a special case of a gen-
eral logical problem that (with all probability) does not admit of any solution.

3.  The perfect language and mathematical logic

Through the interpretation of the truth-table as a propositional sign, the myth
of the logically perfect language seems to find partial realization in Wittgen-
stein’s Tractatus, though in the narrow domain of propositional logic. In this
connection, the truth-table of a proposition fully expresses the sense of the log-
ical words that occur in it and it would therefore provide an example of ‘ade-
quate notation’ that, according to Wittgenstein, would make the process of log-
ical deduction entirely superfluous. It is true that Church-Turing’s undecid-
ability theorem (1936)15 excludes the possibility of finding a similar perfect
language for more powerful logics, such as the logic of quantifiers (with non-
monadic predicates). But it is also true that this negative result does not imply
that there cannot be, even for the logic of quantifiers, an ‘almost-perfect’ lan-
guage, which works reasonably well in all practical contexts. After all, the im-
pact of the undecidability theorem on the massive attempts set going in the
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13 Max Black (1964, comment on T 6.1203) defines this system “coarse and unusable”,
while claiming that its tabular equivalent is by far better.

14 As Pasquale Frascolla puts it, the speaker able to see all meta-logical relations is not the
empirical speaker, because he would be a logically omniscient being; and Frascolla observes
that this raises a new the problem: “in what sense, if any, can formal relations be said to exist
even when the speaker is not in fact able to see them?” (2006, p. 180).

15 For a historical reconstruction of the decision problem and of the negative results of
Church and Turing, see Kneale and Kneale (1962).



1950s to realize Leibniz’ dream through so-called ‘automated deduction’ was
practically none. If anything, there prevailed the enormous impression aroused
by the positive results, also made possible by theoretical contributions such as
Herbrand’s theorem, that provided methods of great practical interest for re-
ducing quantificational reasoning to Boolean reasoning.

Analogous considerations also hold for other famous negative results of
modern logic, first of all Gödel’s theorems. These meta-mathematical exploits
struck at the heart the hard-core of Hilbert’s philosophical programme on the
foundations of mathematics, that is to say, the assumption that an adequate for-
malization of mathematics is possible (Gödel’s first theorem), and the assump-
tion that it should be possible to show the consistency of this formalization with
reliable means (Gödel’s second theorem).16 From the point of view of deductive
practice and the possibility of a logically perfect language that would make it
trivial or even superfluous, the first theorem is clearly the important one, but it
is not at all obvious what its real scope is. As Solomon Feferman has observed:

A common complaint about this result is that it just uses the diagonal
method to “cook up” an example of an undecidable statement. What one
would really like to show undecidable by PA or some other formal sys-
tem is a natural number-theoretical or combinatorial statement of prior
interest. The situation is analogous to Cantor’s use of the diagonal
method to infer the existence of transcendental numbers from the denu-
merability of the set of algebraic numbers; however, that did not provide
any natural example. The existence of transcendentals had previously
been established by an explicit but artificial example by Liouville. Nei-
ther argument helped to show that e and π, among other reals, are tran-
scendental, but they did at least show that questions of transcendence
are non-vacuous. Similarly, Gödel’s first incompleteness theorem shows
that the question of decidability of sentences by PA or any one of its con-
sistent extensions is non-vacuous. That suggests looking for natural
arithmetical statements which have resisted attack so far to try to see
whether that is because they are not decided by systems that formalize
a significant part of mathematical practice (2006, pp. 436-437).

But so far this search has produced no results.17 Indeed, one of the most accred-
ited candidates, the statement of Fermat’s conjecture, has recently been proved,
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16 For an entertaining discussion of Hilbert’s programme within the framework of the search
for the perfect language, see Chaitin (2009), inspired by Eco (1997).

17 Paris and Harrington’s result, according to which a certain modification of a famous the-
orem of Ramsey is independent of Peano arithmetic, in a sense constitutes an exception. Nev-



and according to some logicians its proof could be formalized in Peano arith-
metic. For none of the other candidates that survive, including Goldbach’s con-
jecture and Riemann’s hypothesis, has anyone ever succeeded in showing their
independence of Peano arithmetic or of any of its coherent extensions. 

Hence the famous negative results of 20th-century meta-mathematics, obvi-
ously without denying their importance on the philosophical side, have not had
such a practical impact as to establish once and for all that the very idea of a
logically perfect language is void of content, that is to say, cannot have any re-
al instantiation that corresponds, more or less, to what Leibniz, Frege and
Wittgenstein had in mind. From this point of view, perhaps it is not the nega-
tive results that are surprising. What is truly surprising, as George Kreisel once
remarked, is the discovery that certain branches of mathematics – such as pure
logical reasoning on truth functions and quantifiers or elementary Euclidean
geometry – are, after all, mechanizable.18

Therefore in this perspective the emphasis must be, if anything, on the nu-
merous positive results, first of all the decidability of elementary Euclidean
geometry, proved by Tarski in 1951,19 and one may wonder what Leibniz’s re-
action would have been to a result of the kind! From this perspective, the dream
of a logically perfect language would perhaps be impossible ‘in principle’ – that
is to say, there would be no foundation to the grand theoretical pretension of
finding a universal adequate notation, in which the solution of all logical prob-
lems can be ‘read’ off their statement itself – but it may well be realizable ‘in
practice’, in the vast majority of the interesting cases that come to our attention
and that, in the imperfect language of ordinary reasoning, can only be solved
through tiresome (and therefore highly fallible) deductive processes. Leibniz’s
dream, and the myth of the perfect language that is indissolubly associated with
it, would die as a philosophical research programme, but would survive as the
metaphysical hard-core of a scientific research programme that, in spite of the
negative results, appears to be highly progressive.20
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ertheless, as Feferman himself observes, even in this case it was not a matter of an undemon-
strable proposition whose truth had previously been the object of conjecture. For Ramsey’s the-
orem and Paris and Harrington’s result see Mangione and Bozzi (1993, in particular p. 516 and
pp. 856-857).

18 On this point see Kreisel and Krivine (1971, p. 165-166).
19 Tarski (1951). 
20 As Gregory Chaitin puts it: “There’s a wonderful intellectual tension between incom-

pleteness and the fact that people still believe in formal proof and absolute truth. People still
want to go ahead and carry out Hilbert’s program and actually formalize everything, just as if
Gödel and Turing had never happened!” (2009, p. 19).



However, this hope for the realizability of a ‘practically perfect’ logical lan-
guage is also, with all probability, entirely unfounded. We will see that this
pessimistic conclusion is the consequence of a profound result obtained in a
field of research, that of computational complexity, whose origins are appar-
ently very distant from typical philosophical problems, such as that of the per-
fect language, and are instead linked to a vast constellation of practical prob-
lems raised by the development of computer technology. 

4.  ‘Unfeasible’ tautologies

In his Games of Arithmetic and Interesting Problems, published for the first
time in 1925, Giuseppe Peano introduces a series of problems serving to make
“arithmetic more pleasant and less boring.” Among the “captious problems”,
in which “the true answer is not the one that first presents itself to the mind”,
there was the following one:

A party of 7 travellers go to a hotel and ask for a bed for each traveller.
The hotelier answers: “I only have six beds, distinguished with the let-
ters A, B, C, D, E and F. But I will try to accommodate you anyway.”
So he tells two travellers to sleep in bed A, then one in bed B, and that
is three; then one in C, and that is four; then one in D, and that is five;
then one in E, and that is six; then he takes one of those that were in A
and transfers him to F, and that is seven. Thus the 7 travellers sleep in 6
beds, one per bed. How did he do this? Anyone who plays the game rep-
resents the beds with six cards, and proceeds fast, so that the listener
does not realize that a traveller has been counted twice (Peano 1925).

The impossibility of an ‘honest’ solution to the problem of the hotel keeper
is ensured by a fundamental combinatorial principle, also known as ‘pi-
geonhole principle’ or ‘Dirichlet’s principle’, according to which n + 1 ob-
jects cannot be placed in n boxes unless one of the boxes contains more than
one object. Despite its obviousness from the intuitive point of view, this
principle is surprisingly useful for showing an enormous variety of mathe-
matical facts, from simple curiosities, for example that in London there are
at least two people that have the same number of hairs, to numerical matters
that are anything but obvious, for example that among N integers chosen at
random there are always two whose difference is divisible by N – 1, or that
for any irrational number a there exist infinite rational numbers r = p/q such
that |a – r|< q–2.
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It is well known that this important combinatorial principle can be ex-
pressed in a simple and natural way through a class of tautologies of Boolean
logic. Indicating with pi.j the sentence according to which the object i occupies
box j, the proposition

(*) (p1.1 ∨ p1.2) ∧ (p2.1 ∨ p2.2) ∧ (p3.1 ∨ p3.2) ∧ ¬(p1.1 ∧ p2.1) ∧
∧ ¬(p1.2 ∧ p2.2) ∧ ¬(p1.1 ∧ p3.1) ∧ ¬(p1.2 ∧ p3.2) ∧ ¬(p2.1 ∧ p3.1) ∧
∧ ¬(p2.2 ∧ p3.2)

asserts, for example, that three objects can be placed in two boxes in such a
way that each box contains at most one object. The impossibility of the situa-
tion described by this proposition is therefore a special case of the pigeonhole
principle, with n = 2. The interesting thing is that this proposition is logically
inconsistent (even simply at the level of Boolean logic) and therefore its nega-
tion is a tautology. Hence the pigeonhole principle is expressed by the class of
all the tautologies obtained by negating the propositions constructed on the
model of (*) for each positive whole number n > 1.

Well, the tautology that expresses the pigeonhole principle for a given n
contains f(n) = (n + 1) × n distinct propositional letters and the length of the
expression representing it in the still “imperfect” logical language of Frege and
Russell contains (including the parentheses and counting each pi.j as a single
symbol) an overall number of symbols equal to: 

g(n) = 7/2 n3 + 11/2 n2 + 4n + 1.

On the other hand, the number of lines contained in the complete truth-table for
this expression, that is to say in its translation into the ‘adequate notation’, is
equal to h(n) = 2 f(n). The problem is that with an increase in n, the length of the
translation into the ‘logically perfect’ language of the truth-tables grows much
faster than the length of the proposition expressed in a standard Boolean lan-
guage. While g(n) is a polynomial function of n (of degree 3), h(n) is an expo-
nential function of n, and it is well known that the speed of growth of expo-
nential functions very soon takes the length of the translation beyond the limits
of feasibility. For example, returning to the ‘captious’ problem of Peano, to ex-
press the fact that 7 travellers cannot be put in 6 beds, a string containing 979
symbols is sufficient in an ordinary logical language, but its translation into the
perfect language would require the construction of a truth-table containing
4 398 046 511 104 lines (without calculating the length of each line)! It can eas-
ily be verified that, even for relatively low values of n, the overall number of
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symbols occurring in the truth-table required to ‘see immediately’ that the ex-
pression is a tautology would be higher than the number of atoms contained in
the known universe, while the same tautology expressed in the imperfect stan-
dard language containts only a few thousand symbols. It follows that translat-
ing a proposition from the ordinary logical language of Frege and Russell into
the logically perfect language of the truth-tables – in which it is possible to rec-
ognize that a certain expression is a tautology simply by examining the expres-
sion itself – is a task that is practically impossible. If a logically perfect lan-
guage exists, and it must be possible to use it in practice, it cannot be that in
which the propositional signs are constituted by the truth-tables.

This reductio ad absurdum of the idea that a logically perfect language
could be that of the truth-tables is obviously not sufficient to render research in
this direction entirely vain. There might be a more concise way to give a com-
plete representation of the sense of a proposition – that is to say, to perform the
same task as Wittgenstein assigned to the truth-tables – which however does not
determine any combinatorial explosion. After all, in the truth-table method there
are obvious inefficiencies that could easily be eliminated: (a) the same propo-
sitional letter can occur many times, so that a symbolic expression could be
‘compressed’ by resorting to a representation in the form of a graph, and (b) the
enumeration of the truth conditions is manifestly redundant: for example, any
‘state of affairs’ that makes p true also makes true the disjunction p ∨ q, and it
is not necessary to consider all possible assignments to the atomic propositions
that occur in q. It is legitimate to wonder whether the elimination of these inef-
ficiencies would not in itself be sufficient to render truly perfect the language
of the truth-tables; or, alternatively, whether it is possible to contrive some oth-
er representation of propositions, maybe wholly different from that proposed by
Wittgenstein, that really is able to satisfy his request for an ‘adequate notation’
in which the tautological character of a proposition proves to be ‘immediately’
perceivable. At this precise point the theory of computational complexity enters
the scene. Its impact on the scientific research programmes descending from
Leibniz’ dream and from the myth of the perfect language, which survived the
limitative theorems of the 1930s without big traumas, has been very important
and has involved a profound change of perspective whose philosophical conse-
quences are not yet fully understood.

5.  Perfect language and computational complexity

The theory of computational complexity can be considered a refinement of the

15

LOGIC AND THE MYTH OF THE PERFECT LANGUAGE



16

MARCO CARAPEZZA AND MARCELLO D’AGOSTINO

traditional theory of computability taking into account the resources (time and
space) used by algorithms. Its principal innovation consists in having replaced the
concept of ‘effective procedure’ with that of ‘feasible procedure’.21 An effective
procedure or algorithm by and large consists in a ‘mechanical method’, i.e. one
executable in principle by a machine, to solve a given class of problems. An ef-
fective procedure is feasible when it can also be carried out by a machine in
practice, and not only in principle. The expression ‘in practice’ involves a cer-
tain degree of vagueness that computational complexity researchers have re-
moved by agreeing to consider as feasible, executable in practice, algorithms that
can be performed in polynomial space and time. To clarify the meaning of this
convention, let us observe first of all that a problem is usually associated with a
class of strings of symbols, in which every string identifies a particular istance
of the problem. Thus the ‘tautology problem’ (abbreviated with TAUT) can be as-
sociated with the class of strings of symbols that represent ‘well-formed formu-
las’ in a standard logical language, let us say the language of the Principia Math-
ematica of Russell and Whitehead. A solution to a particular istance of this prob-
lem consists, in this case, in an answer of the ‘yes-or-no’ type: ‘yes’ (usually
encoded with the symbol ‘1’) if the string in question is a tautology, ‘no’ (usual-
ly encoded with the symbol ‘0’) if it is not. The string of symbols in (*), which
we used above to encode a particular istance of the ‘pigeonhole problem’, rep-
resents a logically inconsistent formula, and since the negation of an inconsistent
formula is a tautology, a correct algorithm solving TAUT has to produce the an-
swer ‘yes’ whenever it receives as input the negation of (*). A problem like TAUT,
whose solution consists in an affirmative or negative answer, is referred to as a
decision problem. Not all interesting problems are decision problems. Indeed,
many of the problems that are met in practice are described as determination
problems (‘what is the area of a circle of radius r?’), and among them a major
role is played by optimization problems, problems that require finding an opti-
mal solution within a set of possible solutions (‘given a graph and a starting node
s, find a minimum pathway from s to a given other node of the graph’). Never-
theless, these problems can be transformed into equivalent decision problems, so
that it is possible to simplify the analysis by making reference only to decision
problems and to the resources employed by the algorithms solving them. 

The running time T(n) of an algorithm measures the (maximum) number of
steps that the algorithm has to perform as a function of the complexity of the
input, that is to say, of the length of the string of symbols that encodes a partic-
ular instance of the problem. Likewise, the running space S(n) can be defined

21 For an excellent exposition, still valid after thirty years, see Garey and Johnson (1979).



as the (maximum) number of units of memory that the algorithm has to use as
a function of the complexity of the input. The problem is: how do these func-
tions grow with an increase in the complexity n of the input? There is wide-
spread agreement in defining as feasible (i.e. solvable in practice) problems that
can be solved by algorithms working in polynomial time, i.e. ones for which a
polynomial p exists such that, for any input of complexity n, the algorithm
yields an answer in a number of steps ≤ p(n). (Solvability in polynomial time
implies solvability in polynomial space, so that the time factor is privileged in
the definition of the feasibility of a problem.) The underlying idea is that poly-
nomial algorithms do not produce the kind of combinatorial explosion that we
have observed in relation to truth-tables. 

If, instead, the most efficient algorithm possible works in super-polynomi-
al time, for example in exponential time (that is, described by a function like
2n), the problem is considered unfeasible. Although certain polynomial time
algorithms may well be highly inefficient and, for some inputs, even much
more inefficient than exponential time algorithms that solve the same problem
– for example when the running time is described by a polynomial of a very
high degree, such as n100 – it must be observed that (a) their asymptotic be-
haviour is always enormously more efficient than that of exponential time al-
gorithms; this also implies that, in practice, the actual time employed by these
algorithms is highly sensitive to technological innovation, leading to the con-
struction of faster and faster computers, while the latter is wholly irrelevant for
exponential time algorithms (in this connection see Figure 1); (b) in actual fact
the polynomial time algorithms that have emerged from attempts to solve nat-
ural problems arising in any research areas have a running time described by
a polynomial of a low degree (usually not above three). 
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Running time With present
computer

With computer
100 times faster

With computer
1000 times faster

n N1 100 N1 1000 N1

n2 N2 10 N2 31.6 N2

n3 N3 4.64 N3 10 N3

n5 N4 2.5 N4 3.98 N4

2n N5 N5+6.64 N5+9.97

3n N6 N6+4.19 N6+6.29

FIG. 1: Effect of improved technology on several polynomial and exponential time al-
gorithms (from Garey and Johnson 1979).

Size of largest problem instance solvable in one hour



The class P is the class of all tractable decision problems, i.e. those that can
be solved through an algorithm working in polynomial time. The bad news is
that many interesting problems met in mathematical and technological re-
search, for which a decision procedure is known, do not belong to P. Among
these there stands out the problem of establishing whether a certain proposi-
tion is a theorem of elementary Euclidean geometry. Although, as we have al-
ready mentioned, this problem was ‘solved’ by Tarski in 1951, twenty-three
years later Fischer and Rabin proved that it is in fact an intractable problem.22

Other decidable problems whose intractability has been shown are:

– The arithmetic of the addition of natural numbers (Fischer and Rabin 1974;
decidability shown by Pressburger in 1929).

– The arithmetic of the multiplication of natural numbers (Fischer and Rabin
1974).

– The theory of linear orders (which is obtained by the first-order axioms that
express transitivity, totality and anti-symmetry; non-elementary lower
bound demonstrated by A. R. Meyer in 1975; decidability shown by Rabin
in 1969).23

What can one say about TAUT, our problem of recognizing tautologies? It is lic-
it to require that a ‘logically perfect language’ should be a language L in which:

1. Inside L the problem of tautology should be solvable in polynomial time: if
it has to be possible to recognize a tautology ‘immediately’, simply by ex-
amining the propositional sign expressing it, that is to say, if one must be
in a condition of ‘seeing’ from the sign itself that a certain expression is a
tautology, then a minimum requirement is that there exists a polynomial
time algorithm that allows one to make such recognition;

2. The translation from ordinary logical language into L should be feasible,
that is to say, it should be possible to express in L what can be expressed in
the ordinary logical language without producing any combinatorial explo-
sion that would make the logically perfect language L ‘perfectly’ useless for
the purposes of deductive practice.

Well, Wittgenstein’s ‘logically perfect language’, in which the propositional
signs coincide with the truth-tables, satisfies the first requirement – given any
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formal language in which it is possible to represent the truth-tables, it is pos-
sible to recognize in polynomial time whether a string of symbols in this lan-
guage encodes the truth-table of a tautology24 – but does not satisfy the second,
since the length of the translation increases, as we have seen, exponentially in
relation to the length of the proposition translated. It is to be observed that this
does not only happen for artificial examples – for ‘logical monsters’ con-
structed ad hoc in order to obtain the desired result – but is a general phe-
nomenon that manifests itself as the number of atomic propositions involved
increases and therefore, as we have seen, also concerns tautologies expressing
entirely natural logical principles, of great utility in both mathematical and or-
dinary reasoning. Thus the ‘adequate’ notation proposed by Wittgenstein in the
Tractatus is not a logically perfect language. But does another formal language
exist that satisfies both our requirements? We can call this question ‘the prob-
lem of the logically perfect language’. 

6.  Cook’s theorem and the inevitable imperfection of logical languages

In 1971 Stephen Cook proved a result from which it immediately follows that
the problem in question is very probably unsolvable (Cook 1971). To outline
the meaning of this result we have first to introduce a new concept: that of non-
deterministic algorithm. Let us consider the complementary problem of TAUT,
i.e. the satisfiability problem, which we can abbreviate as SAT: given any string
of symbols expressing a proposition (a ‘well-formed formula’ again) in a stan-
dard Boolean language, the problem is to determine whether an assignment of
truth values (true or false) to the atomic propositions that occur in it exists – or,
as Leibniz would have put it, whether there is ‘a possible world’ – that renders
this proposition true. In such a case the formula in question is said to be satis-
fiable. Since a tautology is a formula that is true for all assignments of this type
(true in ‘all possible worlds’), and given that a formula is true if and only if its
negation is false, it follows that a formula is satisfiable if and only if its nega-
tion is not a tautology, so that SAT and TAUT are complementary problems. 

Let us now imagine an ‘algorithm’ attempting to determine whether a giv-
en formula is satisfiable using ‘guesswork’, that is to say by assigning at ran-
dom a truth value to each atomic proposition and verifying whether the as-
signment thus obtained makes the given proposition true. An algorithm of the
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24 For this purpose it is sufficient to ensure that the truth values are assigned correctly on
each line and that the final column only contains “1”.



kind is ‘non-deterministic’ in that there are no instructions that exactly speci-
fy how the truth values that are assigned to the elementary propositions are to
be chosen. Hence, the computation is no longer expressed as a sequence of
steps, but as a tree of possible choices. Well, the running time of such a non-
deterministic algorithm is the (maximum) number T(n) of steps that must be
performed for any input of length n, in the case in which the choices made are
always the ‘luckiest’ possible, that is to say, those that lead to recognizing the
yes-instances of the problem (in our case to an assignment, if any, that makes
the input formula true). In the case of SAT, supposing that the luckiest choices
of truth values are always made for the elementary propositions, it can be ver-
ified in linear time that the assignment thus obtained is correct, and therefore
SAT can be ‘solved’ in polynomial time by a non-deterministic algorithm that
simply consists in guessing an assignment and then verify that it is correct. 

The class of problems analogous to SAT, i.e. the ones that can be solved in
polynomial time by a similar ideal ‘algorithm’ always making the best choic-
es, is named NP (in which the letter ‘N’ stands for ‘non-deterministic’ and the
letter ‘P’ for ‘polynomial’). The class NP can also be characterized, as emerges
from our discussion, as the class of problems for which it is possible to verify
in polynomial time whether a putative proof that the answer is “yes” is indeed
correct. For example, a given assignment to the atomic formulas that makes a
complex formula true can be seen as a proof that the formula in question is sat-
isfiable (that is, it belongs to SAT), and it is easy to verify that the proof, once
found, is correct. It has emerged that the answer to many important problems
is very difficult to find through ordinary deterministic algorithms, although the
yes-instances admit of proofs that can be easily verified once they have been
found. These problems are therefore in NP, but have eluded so far every at-
tempt to show that they are also in P. One of these recalcitrant problems is pre-
cisely SAT. 

It is legitimate to wonder whether luck really is so essential in solving prob-
lems in NP. Given a problem in NP is it perhaps always possible to find a de-
terministic algorithm that solves it in polynomial time? If the answer were af-
firmative then P would be equal to NP; in the opposite case the two classes
would be different. Given its enormous scientific and technological impact,
this is one of the seven ‘problems of the millennium’ for whose solution the
Clay Mathematics Institute has put up a prize of seven million dollars (one
million for each problem).25 The point is that, among the problems in NP, there
are some that are really hard: not only have they always eluded the efforts of
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researchers to find deterministic algorithms solving them in polynomial time,
but it is also possible to show that if one of these were solved feasibly, then all
problems in NP would be. An example is the famous ‘travelling salesman
problem’, abbreviated as TSP: given a network of towns connected by roads
and a numerical bound B, the problem is finding a tour, if any, that visits all
the towns exactly once and has lenght no more than B. It can be shown that,
for any problem Π in NP, a feasible procedure exists (i.e. one with polynomi-
al running time) for translating any instance I of Π into an instance I ′ of TSP

in such a way that I ′ is a yes-instance of TSP if and only if I is a yes-instance
of Π. Therefore, if TSP were in P, that is to say, if it were a tractable problem,
then every problem in NP would also be tractable and therefore P would be
equal to NP. Problems of this type are called NP-complete. Another example
of an NP-complete problem is the ‘problem of the partial sums’: given a finite
set of integers, the problem is to determine whether it includes a subset such
that the sum of its elements is zero. It can quickly be verified whether or not a
given subset yields a solution to the problem, but no method is known for find-
ing a solution that is significantly more efficient than checking, one by one, all
the subsets (which are exponential in number). The list of the NP-complete
problems increases very fast 26 and covers hundreds of interesting issues, be-
longing to a variety of research fields, which have always eluded any attempt
to find an efficient algorithmic solution. Recently the problem of sudoku, well
known to puzzle-solvers, has joined the list.27

Since all problems in NP are polynomially reducible to each of the NP-
complete problems, the latter are all equivalent to one another (that is to say,
polynomially reducible to one another). Therefore, either they are all tractable
and P = NP, or they are all intractable and P ≠ NP. The dominant conjecture
among researchers is that P ≠ NP and, accordingly, that all NP-complete prob-
lems are intractable. This conjecture is used in numerous application areas (al-
so ones that are critical from the security point of view, such as cryptography)
as if it were demonstrated. From this point of view, its epistemological status
is no different than that of a well corroborated hypothesis in a theory belong-
ing to the empirical sciences: we behave as if it were true, though aware that
one day or another it could prove false. 
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26 For an ample overview check the latest edition of Garey and Johnson (1979).
27 In its most general version the sudoku problem requires inserting numbers between 1 and

n 2 in a matrix of n2×n2 elements subdivided into n2 sub-matrixes of dimension n2, so that no num-
ber appears more than once in every line, column and sub-matrix. For a proof of its NP-com-
pleteness see Yato (2003). 



Cook’s theorem, which opened up the way to the theory of NP-complete-
ness, consists precisely in the statement that in a standard Boolean language:

SAT is NP-complete.

It is therefore highly plausible (though unproven) that in a standard Boolean
language like that of Frege and Russell, SAT is an intractable problem. Since a
proposition is a tautology if and only if it is not satisfiable, any solution to SAT

is also a solution to TAUT, the tautology problem; therefore, in a standard
Boolean language, we must expect TAUT to be intractable too. 

The probable intractability of the tautology problem in a standard Boolean
language immediately implies that our two requirements for a logically perfect
language cannot simultaneously be satisfied. If in a given language L tautolo-
gies can immediately be recognized through mere inspection of the symbols
(that is to say in linear or, at worst, polynomial time), it is then highly implau-
sible, via Cook’s theorem and the related conjecture that P ≠ NP, that there is
a feasible translation from the ordinary logical language to L. For, its existence
would also imply the existence of an efficient deterministic algorithm to solve
the tautology problem (in the standard language), which instead, according to
the currently accepted conjecture, does not exist. It therefore seems that the
dream of a perfect language, in which the answer to a question is contained in
its very ‘clear and distinct’ formulation, is unattainable in practice even in the
case of apparently very simple problems for which it has long been known that
it can be attained in principle. Hence there is no such thing as instant ration-
ality (even for the most basic problems). 

6.  Logic in a network of imperfect languages

The conclusion that we reached in the previous section forces us to revisit the
old idea of the presumed ‘tautological’ character of propositional logic. How is
it possible for a logical truth ‘to say nothing’ (T. 6.11) if recognizing the fact
that it ‘says nothing’ is such a hard problem that, with all probability, it does not
admit any practical algorithmic solution? We should conclude that what a
proposition ‘says’ cannot be fully understood or communicated, except in the
simplest cases (in which only few atomic propositions occur), even with the
help of the fastest computers that can be built compatibly with the laws of na-
ture. But such a conclusion certainly appears paradoxical and constitutes a par-
ticularly strong version of what the philosopher Jaakko Hintikka has called ‘the
scandal of deduction’:
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C.D. Broad has called the unsolved problems concerning induction a
scandal of philosophy. It seems to me that in addition to this scandal of
induction there is an equally disquieting scandal of deduction. Its ur-
gency can be brought home to each of us by any clever freshman who
asks, upon being told that deductive reasoning is ‘tautological’ or ‘ana-
lytical’ and that logical truths have no ‘empirical content’ and cannot be
used to make ‘factual assertions’: in what other sense, then, does de-
ductive reasoning give us new information? Is it not perfectly obvious
there is some such sense, for what point would there otherwise be to log-
ic and mathematics? (Hintikka 1973, p. 222)

Hintikka’s thesis, in brief, it is that the idea of the ‘tautological’ or ‘analytical’
character of deductive reasoning clashes both with intuition and with the dis-
covery, by Church and Turing in the 1930s, that quantificational logic is un-
decidable.

Hintikka proposes to resolve the scandal through a revision of the tradi-
tional notion of semantic information (from which it would result that logical
reasoning does not produce any new information), on whose basis it is possi-
ble to argue that the truths of quantificational logic are not tautological.28 Nev-
ertheless, this conclusion cannot be extended to propositional logic, given that
for the latter a mechanical decision procedure exists. Thus, according to Hin-
tikka, “the term ‘tautology’ does characterize very aptly the truth and infer-
ences of propositional logic. One reason for its one-time appeal to philoso-
phers was undoubtedly its success in this limited area” (Hintikka 1973, p.
154). It is precisely this conclusion of Hintikka’s that is challenged, according
to our reconstruction, by the consequences of Cook’s result discussed in the
previous sections.29

The thesis that deductive logic (in general) is ‘tautological’ has been taken
up more recently by Carlo Cellucci (1998, 2000) in the context of his criticism
of the ‘closed world conception’, that is to say the traditional point of view ac-
cording to which mathematical theories are closed systems that cannot ex-
change information with the environment and are based on the axiomatic
method. According to this orthodox view, mathematics is correctly represent-
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themes discussed in this paper, see Sequoiah-Grayson (2008).

29 A thorough discussion of the consequences of Cook’s theorem on the very idea that
propositional logic is tautological, inspired by some ideas in D’Agostino and Mondadori (2000),
can be found in D’Agostino and Floridi (2009). On the related theme of ‘logical omniscience’
see also D’Agostino (2010). 



ed by formal systems in which, according to a famous analogy by Gottlob Frege,
theorems are contained in axioms “like plants in seeds” (Frege 1884, § 8), and
its truths are established in a rigorously deductive way. But, since deduction
cannot increase information (given that logic is ‘tautological’), and indeed
generally reduces it (the conclusions are usually weaker than the premises), the
closed world conception fails to explain the utility and creativeness of mathe-
matical reasoning. According to Cellucci, this reductio ad absurdum of the
closed world conception shows, (a) that mathematics cannot be adequately de-
scribed by formal systems, and (b) that the methods of mathematics cannot be
contained in the narrow confines of traditional deductive logic, but must be
sought in alternative logics, able to represent reasoning processes that increase
the information content. To the ‘closed world conception’ Cellucci opposes an
‘open world conception’, according to which mathematical knowledge is more
similar to a ‘distributed environment’ of open systems, each of which affords
a partial representation of the corresponding domain and is able to exchange
information with the others. 

The image of the growth of mathematical knowledge emerging from this
analysis is undoubtedly more realistic and interesting than the traditional one.
Nevertheless, one of the premises on which it is founded, that is to say the pre-
sumed ‘tautological’ character of deductive reasoning, appears to be difficult
to justify in the light of our discussion. If it is true that mathematics is a net-
work of open systems, this is largely independent of the thesis that deductive
reasoning is tautological, which can hardly be defended even in the elemen-
tary domain of propositional logic. Nevertheless, the consequences of the the-
ory of NP-completeness that we have discussed here lend further support to
Cellucci’s open world conception. In this connection, Cook’s theorem can be
exploited to maintain that the ‘closed world conception’ is untenable even
within (traditional) deductive logic! It is not possible – or more exactly it is
highly unlikely – that there exists a single formal system for classical proposi-
tional logic that can be used in practice to solve all problems in this domain.
We have seen that one of these formal systems, the method of truth-tables, fails
miserably in the practical attempt to recognize the tautological character of a
fundamental combinational principle, the so-called ‘pigeonhole principle’. We
chose this principle, by way of example, because it is an ‘intuitively obvious
fact’ widely used in mathematical practice, not an artificial problem concoct-
ed for the sole purpose of challenging a particular formal system. Furthermore,
the class of tautologies that express this principle is difficult even to prove for
most complete formal systems used in automated deduction (in the technical
sense that the shortest proof has exponential length). We can therefore main-
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tain that all these formal systems are practically incomplete and that their in-
completeness emerges in relation to classes of logical truths whose mathemati-
cal meaning is unquestionable, quite independently of the intractability proof.

On the other hand, it is not difficult to construct formal systems for propo-
sitional logic in which the pigeonhole problem can ‘easily’ be solved (in poly-
nomial time).30 Cook’s theorem implies, however, that all these formal systems
must also, with all probability, be ‘practically incomplete’ too, in that they will
not succeed in recognizing in polynomial time other (infinite) classes of tau-
tologies. Therefore the only hope, even in this elementary domain, is to build
up a ‘distributed environment’ of logical systems that are able to exchange in-
formation with one another, each of which yields a partial but feasible repre-
sentation of a fragment of propositional logic. It follows from Cook’s theorem
that this ‘network’ of systems cannot be finite,31 so that the search for a solu-
tion to our logical problems will necessarily be, in accordance with the open
world conception, a potentially infinite process. The myth of the logically per-
fect language, of a characteristic language for logic that can save us from the
toil of deduction, has to give way to a pluralistic vision in which, instead of a
single ‘perfect’ language, there is a (potentially infinite) variety of logical lan-
guages, each of which is inevitably ‘imperfect’ and can only attain perfection
in relation to a partial domain, to a tiny fragment of the universe of logical re-
lations. It is only from such a continual interaction of imperfect languages,
from the full heuristic unfolding of the ‘perfection/imperfection’ opposition,
that there can gradually (and never completely) emerge a practical solution to
the tautology problem, as well as to other general problems that for centuries
have challenged the ability of logicians and mathematicians.
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