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ABSTRACT. It has been suggested that AI investigations of mechan-
ical learning undermine sweeping anti-inductivist views in the theory
of knowledge and the philosophy of science. In particular, it is claimed
that some mechanical learning systems perform epistemically justified
inductive generalization and prediction. Contrary to this view, it is ar-
gued that no trace of such epistemic justification is to be found within
a rather representative class of learning agents drawn from machine
learning and robotics. Moreover, an alternative deductive account of
these learning procedures is outlined. Finally, the opportunity of de-
veloping an induction-free logical analysis of non-monotonic reason-
ing in autonomous learning agents – capable of advancing and revising
learning or background hypotheses – is emphasized by a broad reflec-
tion on some families of non-monotonic, albeit deductive, consequence
relations.1

1We are grateful to Jeff Paris and David Makinson for useful comments and suggestions.

1



E. DATTERI – H. HOSNI – G. TAMBURRINI

KEYWORDS. Induction, machine learning, behavior-based robotics,
non-monotonic consequence relations, artificial intelligence.

1. Introduction

The idea that work in AI enables one to adjudicate epistemic issues about
induction has attracted ever growing attention over the last two decades.
Michalski made an initial suggestion to this effect in the early 1980s, at a
time when machine learning was just beginning to be recognized as an inde-
pendent field of investigation:

[. . . ] [T]here was even doubt whether it would ever be possi-
ble to formalize inductive inference and perform it on a machine
[. . . ]. The above pessimistic prospects are now being revised.
With the development of modern computers and subsequent ad-
vances in artificial intelligence research, it is now possible to
provide a machine with a significant amount of background in-
formation. Also the problem of automating inductive inference
can be simplified by concentrating on the subject of hypothesis
generation, while ascribing to humans the question of how to
adequately validate them. ([30], pp. 87-88.)

More recently, Howson suggested that developments in machine learning
provide significant material for philosophical and logical reflections on in-
duction:

[. . . ] the problem of induction, considered as the problem of
characterizing soundness for inductive inferences, has recently
become hot (so to speak). People are now for the first time allo-
cating [. . . ] substantial intellectual and material resources to the
design of intelligent machinery, and in particular machinery that
will learn from data [. . . ]. What is clear is that some logical ba-

We would also like to thank Alberto Mura and David Miller for fruitful discussions on this
topic over the past few years.
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sis for learning will certainly have to be built into any successful
system. ([18], p.3).2

And Gillies [16] claimed that recent advances in concept and rule learning
impel a real turn in epistemological discussions of induction, for these results
show that Popper’s radical brand of anti-inductivism [36] is untenable.

We argue here that these various expectations and claims are not sup-
ported by current work on mechanical learning: no matter how significant for
understanding or attaining mechanical intelligence, learning machines fail to
bolster the inductivist case in epistemology and the philosophy of science.

To state more precisely this claim, and to set the stage for an alternative
logical analysis of mechanical learning, to be sketched in the final part of this
paper, let us preliminarily recall salient features of inductive inference and
related epistemic issues.

In its most basic sense, an induction is a non-deductive argument
or inference from a sample to a conclusion which projects the
sample in some way. One way in which a reasoner or arguer
projects from a sample can be schematized as follows:

1. In sample S, the Fs are Gs,

2. So, Fs are Gs.

A second way is this:

1. In the sample, Fs are Gs,

2. So, the next-observed F will be a G.
2Elsewhere, the idea that computational learning systems can aptly perform inductive in-

ference is simply taken for granted:

The Theory of Machine Inductive Inference (or “Computational Learning The-
ory”, etc.) attempts to clarify the process by which a child or adult discovers
systematic generalizations about her environment. ([19], p. 28.)

In the same work, it is assumed that human reasoners possess an inductive competence:

The focus of our book is the inductive competence of scientists whose behavior
can be simulated by computer. ([19], p. 61).

For a criticism of this standpoint on recursion-theoretic learning, see [41], section 3.
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The first example illustrates generalization by inductive infer-
ence, and the second illustrates prediction by the same means.
([42], pp. 106-107)

Let us note two central features of the above account of inductive inference.
First, a rigid opposition between induction and deduction is evoked (it is
clearly assumed that the distinction is indeed a partition of the domain of in-
ference). Second, the term “projection” (of knowledge/information about the
sample) is used (in a fairly metaphorical way) to distinguish induction from
deduction, and projection is further qualified as a combination of “general-
ization” and “prediction”. The traditional epistemic issue about these gen-
eralizations and projections is whether and what sorts of constraints make it
reasonable to believe in their outcomes. This is indeed “the problem of char-
acterizing soundness for inductive inference” mentioned by Howson in the
passage quoted above.

We argue that current work in machine learning does not afford a positive
solution to the epistemic problem of induction. Moreover, a variety of al-
legedly inductive procedures in learning machines, - i.e., learning procedures
giving rise to the above mentioned “projective” behaviours from observed
samples - can be accounted for in terms of default-based deductive reasoning,
without appealing to as yet unjustified principles of mechanical induction.

This conclusion is reached by reference to representative classes of learn-
ing systems drawn from robotics and machine learning. Our first example,
in section 2., is drawn from behaviour-based robotics, which is chiefly con-
cerned with the design and implementation of autonomous systems that sur-
vive in realistic worlds. Some of these systems learn from experience, insofar
as they acquire new sensorimotor capabilities and generalize environmental
properties from observation. Analysis of a representative behaviour-based
architecture reveals that even these rudimentary learning mechanisms em-
body crucial assumptions about their environment. Accordingly, the epis-
temic problem of induction is reformulated as the problem of whether these
background assumptions make it reasonable to believe the associated projec-
tions about behavioural rules and environmental properties.

We address the epistemic problem of induction in section 3., by ref-
erence to the symbolically richer, ID3-style machine learning algorithms.
These algorithms provide the main basis for Gillies’s claim that radical anti-
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inductivism is untenable in the theory of knowledge and the philosophy of
science (see Gillies [16]). However, a sweeping problem in learning from
examples jeopardizes the idea that epistemically justified inductive processes
are at work there. This is the overfitting of training data, which reminds one
that a good approximation to the target concept or rule on training data is not,
in itself, diagnostic of a good approximation over the whole instance space
of that concept or rule. And the successful performances of these learning
systems are of no avail either: a familiar regress in epistemological discus-
sions of induction arises as soon as one appeals to past performances of these
systems in order to conclude that good showings are to be expected in their
future outings as well. Accordingly, we advance a different view of ID3-like
projective behaviours, which essentially rely on deductive reasoning from a
variety of heuristic hypotheses about concept spaces and current target con-
cept.

This interpretation of ID3 learning brings to the fore the central role of
deductive trial and error-elimination processes in autonomous learning mech-
anisms, which interleave default-based introduction of projective hypotheses
about observed samples, retraction of falsified hypotheses, and the selection
of new default, background hypotheses for more effective learning. In sec-
tion 4., the opportunity of developing an induction-free logical analysis of
this multifaceted reasoning process is enhanced by reflecting on some fami-
lies of non-monotonic, albeit deductive, consequence relations. These enable
one to frame mechanical projections of learning hypotheses from observed
samples into more comprehensive inference processes enabling agents to re-
tract falsified learning hypotheses and to modify underlying knowledge bases
in suitable ways.

2. Empirical assumptions of behaviour-based learning

Behaviour-based robotics is a relatively recent area of robotics research,
which grew out of a widespread dissatisfaction with traditional robotic ar-
chitectures for perception-action coordination in realistic environments. The
question whether behaviour-based systems actually help overcome this dis-
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satisfaction is still open. The point here is that some such systems, provided
with suitable learning mechanisms, exhibit interesting aspects of the projec-
tive behaviour which is customarily associated to inductive agents. Of partic-
ular interest to us is their capability to “acquire new knowledge from experi-
ence”.

Let us begin from a brief description of these systems, and then move on
to analyze their allegedly inductive capabilities.

It is useful to describe the functional structure of behaviour-based agents
as formed by a set of n layers, called behaviours, each layer computing a
function from sensor data to motor actions [2]. The response ri of behaviour
bi at time t is

ri = γ × bi(st) (1)

where st is the state perceived by the sensor associated with behaviour bi at
time t, γ is a real-valued gain and 0 ≤ i ≤ n.

Additionally, to each behaviour is associated a set of preconditions, that
is, of activation conditions. The architecture is parallel and asynchronous [6].

Ifm behaviours control the same actuator, a coordination functionC, tak-
ing as input the outcomes of those m behaviours, outputs a single command
for the actuator.

A typical coordination function (termed cooperative) blends together (typ-
ically sums) multiple responses, previously weighted by means of a set of m
real valued gains.3

The function C, together with the various gains and mappings constitut-
ing the behaviours, determines how the system acts in response to perceived
environmental conditions. Let this overall perception-action mapping be the
agent’s control function f [32]. Distinct sets of gains determine distinct reac-
tion policies to environmental stimuli, i.e. distinct control functions.

Appropriate tuning of perception-action control algorithms is required to
let these agents act properly and survive. When the appropriate perception-
action control algorithm, i.e. the appropriate sets of gains (for given agents,
environments, and tasks) is hard to choose a priori, then a viable option is to
let the robot learn these values by itself:

3Another typical coordination function, termed competitive, selects one of the responses
on the basis of some priority condition associated with each behaviour.
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One of the problems with behavior-based robots is that the com-
ponent modules have to be laboriously programmed by a human
designer. [. . . ] If new behaviors could be learned, it would also
free the designer from needing a deep understanding of the in-
teractions between a particular robot and its application environ-
ment [25].

Learning, in behaviour-based agents, is ordinarily achieved by changing
gain values over time, either those associated with each behaviour or those
associated with coordination function C. Moreover, one can add new behav-
iours to the system. These changes result into a new system control function.

The most direct way to devise a learning algorithm for a behaviour-based
system is to let the system learn the control function f from training ex-
amples, that is, from examples of how f acts on inputs xj , j = 1, . . . , k.
In many behaviour-based systems, however, good training sets are not eas-
ily available. For example, a Mars Pathfinder should be capable of learning
good perception-action policies on duty, since fully representative training
sets containing pairs of “perception – (right) action” on Mars are not avail-
able.

Reinforcement learning is particularly suited for situations of this kind
[20]. Started with default gains, the agent builds up an appropriate control
function by stepwise parameter modifications, which depend on positive or
negative action rewards, that is, on how the outcome of these actions are
evaluated with respect to the agent’s ultimate goal.

In a sense, reinforcement learning relieves system designers from the task
of specifying the perception-action control function in every detail. At first
sight, the system starts with no knowledge of the world, it is set free in its
environment, and comes across positive and negative rewards. It learns “di-
rectly” from the environment, acquiring knowledge and skills in a completely
autonomous and unbiased way, thereby exhibiting the main distinguishing
features of a genuine “inductive learning mechanism”4. This prima facie

4See [20]):

Reinforcement learning studies the problem of inducing by trial and error a
policy from states to actions that maximizes a fixed performance measure (or
reward).
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plausible account, however, fails to underscore the crucial role played by de-
fault assumptions in this reinforcement learning mechanism. An understand-
ing of this role, we submit, paves the way to a more satisfactory account of
this learning mechanism in terms of a particular kind of deductive process.

To begin with, let us see how the learning mechanism is biased by a
priori assumptions on how the result of the learning process should look like.
As an example, consider behaviour-based system described in [7] (A from
now on). It consists of three behaviours, each behaviour being associated
with one or more gains. These gains play a role in behavioural assemblage
which is achieved by summing the outcomes of each behaviour (cooperative
coordination function). Here we list, for each behaviour, the parameters that
are adjusted by the learning algorithm (omitting those additional parameters
that never change):

• move-to-goal:

– Gm (a gain)

• avoid-obstacle:

– Os (some sort of obstacle “influence sphere”)

– Og (a gain)

• noise:

– Np (some sort of “noise persistence”)

– Nm (a gain)

The designers of A emphasized the need of endowing this system with learn-
ing capabilities:

[. . . ] the robot may be required to navigate in unfamiliar environ-
ments where the appropriate values for the behaviors cannot be
known in advance. Our research has concentrated on extending
reactive controllers to include the ability to learn these values[].
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The learning strategy devised for this system is meant to allow A to
learn the appropriate gain values (consequently, the function f ) “assuming
no knowledge of the world”. It combines the principles of case-based rea-
soning [20] to a strategy named “learning momentum”, that adjusts the gains
at every perception-action step. Let us see in more details how this strat-
egy works, by analyzing the learning algorithm embedded in its ADJUSTER
module (L, for short).

Default behavioural parameters are set at the beginning of the navigation.
Then, L calculates reinforcement values by evaluating the amount and speed
of progress thatA has made towards the achievement of its goal. In particular,
it calculates the following values:

m̄ : the mean step size of the Hsteps past steps (“step size” refers to the dis-
tance travelled in one perception-action cycle);

p̄ : the mean progress toward the goal, calculated as the ratio of distance
travelled to the change in distance to the goal;

ō : the mean number of sensed obstacles.

At every step, L adjusts gains on the basis of the values of m̄, p̄ and ō.
Four basic cases are considered, requiring distinct adjustment parameters:

1. No-Movement, in case step size is below threshold:
m̄ < Tm

2. Movement-Toward-Goal, in case step size and progress to goal are
above threshold:
m̄ > Tm;
p̄ > Tp

3. No-Progress-With-Obstacles, in case the robot is moving away from
goal and there are several detectable obstacles:
m̄ > Tm;
p̄ < Tp

4. No-Progress-No-Obstacles, in case the robot is moving away from
goal and there are no detectable obstacles:
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m̄ > Tm;
p̄ < Tp;
ō < To

where Tm, Tp, To are fixed thresholds.
A set of values that the system uses to update gains Np, Nm, Gm, Og, Os

is associated to each of these four cases.
For example, in case of No-Movement, one can increase the gains asso-

ciated with the noise behaviour (Np and Nm) and decrease the other gains:

• Np: +1.0

• Nm: +0.1

• Gm: -0.1

• Og: -0.1

• Os: -0.5

In this way, when A’s behaviour is stagnant, the noise behaviour’s gains
are progressively increased. Accordingly, noise behaviour will eventually
dominate every other system behaviour, possibly enabling A to escape from
stalemate.

In case of No-Progress-With-Obstacles, two adjusting strategies suggest
themselves. In so-called ballooning strategy, the gains of noise and of avoid-
obstacle behaviours are increased:

• Np: +1.0

• Nm: +0.05

• Gm: -0.05

• Og: +0.01

• Os: +0.5
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The avoid-obstacle behaviour will drive the agent away from obstacles, in-
hibiting the effect of move-to-goal. Moreover, if the robot approaches a clus-
ter of obstacles including no pathway through them, the high gain set for the
noise behaviour will make the agent wander randomly, thus increasing its
chances to get around the obstacles.

But consider now a very cluttered environment, in which obstacles are
homogeneously distributed rather than grouped together. The distance be-
tween obstacles is small but sufficient for the agent to pass without colliding.
Increasing Os and Og, as in the ballooning strategy, could have the effect of
preventing the agent from getting close enough to find a path, as all free space
should be inside the obstacles’ sphere of influence. The ballooning strategy is
clearly unsuitable for this environment. A better option is to decrease Os and
Og in favour of the move-to-goal behaviour. As a result, A would no longer
escape vigorously from obstacles, as determined by the ballooning strategy,
and would rather look for a cleft among obstacles while still avoiding them.
Let us call squeezing strategy this alternative modification of parameters.

The ballooning strategy and the squeezing strategy have enabled us to il-
lustrate different learning biases, and to reveal the myth of tabula rasa learn-
ing in quite simple navigation tasks. Let us now assume that the two types
of environments, the one full of sparse clusters of obstacles or canyons, the
other one full of sparse, uniformly distributed obstacles, can be defined more
precisely - say, taking into account the mean dimensions of obstacle clusters,
the distance between their centers of mass, or other well-defined parameters.
Let us call these types of environment E1 and E2 respectively. Furthermore,
let L1 and L2 be the learning algorithms provided with the sets of adjustment
values corresponding to the ballooning strategy, and the squeezing strategy,
respectively. If e is the environment in which A is operating, conceptual
analyses of L1 and L2 and related experimental results described in [39] sug-
gest the following thesis

• due to its adjustment values, L1 will output a control function adequate
for A to survive in environments of type E1: actions generated after
learning in E1 will be positively rewarded;

• due to its adjustment values, L2 will output a control function adequate
for A to survive in environments of type E2: actions generated after
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learning in E2 will be positively rewarded.

These assumptions state a correlation between actions and positive re-
wards, as long as the right algorithm was chosen, based on the knowledge of
e’s properties:

If e is of type E1, then choose L1, and if e is of type E1, then
choose L2.

This discussion shows that no induction from tabula rasa is involved in
the generation of a control function suitable for e. Indeed, the only way to
make A survive in e is not just to let it act and learn. The fact that A will pro-
duce, at a certain point in time, a positively rewarded action (i.e., allowing its
survival in e) crucially depends on the adequacy of the assumptions expressed
above. In other words, the success of a certain action in a given environment
e is conditional on the empirical adequacy of the default assumptions about
the nature of the environment on which action execution ultimately depends.

Even though reinforcement learning algorithms relieve designers of the
control function from the task of specifying detailed information about the
environment, knowledge about the properties of the environment – and con-
sequently about the properties of the appropriate target function(s) that the
system should learn– is still necessary to devise an appropriate learning algo-
rithm:

The problem of programming however has not gone away. It has
only shifted from specifying sets of reactive rules to specifying
reinforcement policies that lead the learning system to discover
sets of rules that accomplish the desired task. [8]

Addressing the epistemic problem of induction in these cases is tanta-
mount to finding appropriate justification for the empirical adequacy (the
plausibility, reliability, and so on) of newly learnt behavioural rules in the
light of the default assumptions underlying chosen reinforcement policies.
In the next section, we argue that this epistemic problem is not solved by
representative inductive learning algorithms developed in machine learning.
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3. Machine learning and the epistemic problem of induction

In AI agents that learn concepts from examples, hypothesis spaces are
often construed as sets of Boolean-valued functions over concept instances.
In order to learn target concept h, the algorithm examines a training set, that
is a finite subset of the whole instance spaceX formed by positive or negative
instances of h. 5

The assumption that the projective behaviour of computational systems
that learn concepts from examples is epistemically justified can be schemati-
cally stated as follows:

(IC) Any hypothesis found to approximate the target function
well over a sufficiently large set of training examples will also
approximate the target function well over unobserved examples.6

A thorough examination of this assumption requires an extensive survey
of learning systems that goes well beyond the scope of this paper. Hence,
for present purposes, we will focus on versions of (IC) concerning the deci-
sion tree algorithm ID3. Decision tree learning is a widely used method in
concept learning, and Quinlan’s ID3 reflects crucial features of this method
[37, 38]. Moreover, ID3 has been widely appealed to in order to undercut
anti-inductivist claims in the theory of knowledge and the philosophy of sci-
ence.

Thus, let us focus on the following:

(IC-ID3) Any hypothesis constructed by ID3 which fits the target
5This theoretical framework is adequate to represent also some robotic behaviour-based

learning systems [32]. In typical AI machine learning systems the “learning” phase is prelim-
inary to the “testing” phase: the former runs through a set of pre-computed perception-action
pairs whilst the latter consists in the application of the learnt function for action. In behaviour-
based learning systems the learning and testing phases are usually mixed: every positively or
negatively rewarded instance is used both for learning (because it causes a positive or nega-
tive reward) and for acting (because it leads to an action). Nevertheless, the two phases are
conceptually distinct and easily identified in their algorithmic structure. The argument de-
veloped at the end of this section is applicable , with possible minor modifications, to many
behaviour-based learning systems too.

6Cp. ([31], p. 23).
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function over a sufficiently large set of training examples will
approximate the target function well over unobserved examples.

To begin with, let us recall some distinctive features of (the ID3) deci-
sion tree learning. Decision trees provide classifications of concept instances
in a training set, formed by conjunctions of attribute/value pairs. Each non-
terminal node in the tree stands for a test on some attribute, and each branch
descending from that node stands for one of the possible values assumed by
that attribute. Each path in the tree represents a classified instance. The ter-
minal node of each path in the tree is labeled with the yes/no classification.
The learnt concept description can be read off from the paths which termi-
nate into a “yes” leaf. Such description can be expressed as a disjunction
of conjunctions of attribute/value pairs.7 An instance in the training set is
classified by starting at the root of the tree, testing the attribute associated to
this node, selecting the descending branch associated to the value assumed
by this attribute in the instance under examination, repeating the test on the
successor node along this branch, and so on until a leaf is reached. Each
concept instance in the training set is associated to a path in a tree, which is
labeled “yes” or “no” at the terminal node. ID3 places closer to the tree root
attributes which better classify positive and negative examples in the training
set. This is done by associating to each attribute P mentioned in the training
set a measure of how well P alone separates the training examples according
to their being positive or negative instances of the target concept. Let us call
this preference in tree construction the ID3 “informational bias”.

There is another bias characterizing the ID3 construction strategy. ID3
stops expanding a decision tree as soon as an hypothesis accounting for train-
ing data is found. In other words, simpler hypotheses (shorter decision trees)
are singled out from the set of hypotheses that are consistent with training
data, and more complicated ones (longer decision trees) are discarded. On
account of this simplicity bias, longer decision trees that are compatible with
the training set are not even generated, and thus no conflict resolution strategy
is needed to choose between competing hypotheses.

7Concept descriptions that make essential use of relational predicates (such as “ancestor”)
cannot be learnt within this framework. Hence ID3 decision trees amount to nothing but
propositional binary decision diagrams.
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We are now in the position to state more precisely inductive claim (IC-
ID3), by reference to the main background hypotheses used by ID-3 to reduce
its hypothesis space:

(IC-ID3: second version): Any hypothesis constructed by ID3 on
the basis of its informational and simplicity biases which fits the
target function over a sufficiently large set of training examples
will also approximate the target function well over unobserved
examples.

Scepticism about this claim is fostered by the overfitting problem. An
hypothesis h ∈ H is said to overfit the training set if another hypothesis
h′ ∈ H performs better than h on the instance space X , even though h′

does not fit the training set better than h. Overfitting in ID3 trees commonly
occurs when the training set contains an attribute P unrelated to the target
concept, which happens to separate well the training instances. In view of
this “informational gain” P is placed close to the tree root.

Overfitting is a significant practical difficulty for decision tree
learning and many other learning methods. For example, in one
experimental study of ID3 involving five different learning tasks
with noisy, nondeterministic data,[. . . ] overfitting was found to
decrease the accuracy of learnt decision trees by 10-25% on most
problems. ([31], p. 68)

Unprincipled expansions of the original training set may not prevent the
generation of overfitting trees, for a larger training set may bring about ad-
ditional noise and coincidental regularities. Accordingly, claim (IC-ID3) is
to be further qualified: the “sufficiently large set of training examples” men-
tioned there must be “sufficiently representative of the target concept” as well.
This means that conjectures about the representativeness of concept instance
collections play a central role in successful ID3 learning.

Consider, in this connection, the post-pruning of overfitting decision trees
([31], pp. 67-72). In post-pruning, one constructs a “validation set”, which
differs from both training and test sets. The validation set can be used to re-
move a subtree of the learnt decision tree: this is actually done if the pruned
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tree performs at least as well as the original tree on the validation set. Ex-
pectations of a good performance of the pruned tree on as yet unobserved
instances rely on the assumption that the validation set is more representa-
tive of the target concept than the training set. Thus, the sceptical challenge
directed at (IC-ID3) can be iterated after post-pruning, just by noting the con-
jectural character of this assumption.

In order to counter this sceptical challenge to (IC-ID3), one should look
more closely at the criteria used for judging the representativeness of training
and validation examples. But additional problems arise here. These criteria
may vary over concepts, and are not easily stated in explicit form. In expert
systems, for example, the introspective limitations of human experts is a ma-
jor bottleneck in system development. The process of extracting rules from
human experts turns out to be an extremely time consuming and often un-
rewarding task. These subjects can usually pick out significant examples of
rules or concepts, but are often unable to state precisely the criteria underly-
ing these judgments. Accordingly, automatic learning from examples is more
likely to be adopted when criteria for selecting significant concept or rule in-
stances are not easily supplied by human experts; and yet an examination of
these criteria is just what is needed to support inductive claim (IC-ID3) by
appeal to the representativeness of training examples.

Confronted with these various difficulties, that the sceptic consistently
interprets as symptoms that inductive claim (IC-ID3) cannot be convincingly
argued for, let us try and see the extent to which ID3 fits into a deductive
framework.

We have already formed a vague picture of ID3 as a component of a trial
and error-elimination cycle: on the basis of assumptions guiding both training
set construction and selection of some concept c, ID3 makes predictions about
the classification of concept instances that are not included in the training set.

Let us now provide a deductive account of ID3 predictive behaviour,
drawing on the above distinction between the preferences or biases embedded
in ID3 proper (which determine both the language for expressing concepts
and the construction of decision trees) on the one hand, and the presupposi-
tions that are used to select training sets on the other hand. If the presuppo-
sitions of the first kind (ID3 biases) are suitably stated in declarative form,
a concept learning algorithm such as ID3 can be redescribed as a theorem
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prover. This is brought out by the following definition of the inductive bias
of a concept learning algorithm (see [31], p. 43).

Definition: Consider a concept learning algorithm L for the set
of instancesX . Let c be an arbitrary concept defined overX , and
let Dc = {〈x, c(x)〉} be an arbitrary set of training examples of
c. LetL(xi, Dc) denote the classification assigned to the instance
xi by L after training on the data Dc. The inductive bias of L is
any minimal set of assertions B such that, for any target concept
c and corresponding training examples Dc,

(∀xi ∈ X)[L(xi, Dc) is logically derivable from (B∧Dc∧xi)].

One is provisionally entitled to preserve B and Dc as long as the classi-
fications coming in through L or its equivalent deductive system are satisfac-
tory. Suppose, however, that for given i’s L(xi, Dc) is an incorrect predic-
tion. Then, this consequence of B and Dc is to be retracted, and either B or
Dc are to be appropriately revised in order to obtain a correct classification
in those cases. This trial and error-correction behaviour is essentially non-
monotonic. ID3-like systems perform only the “trial” part of this process,
but a fully autonomous learning machine should be capable of carrying out
the “error-correction” part as well. As a consequence, these machines should
be capable of performing non-monotonic reasoning, insofar as autonomous
learning involves, in addition to advancing learning hypotheses, the possibil-
ity of retracting empirically inadequate hypotheses and revising one’s knowl-
edge base accordingly.

One may wonder whether this requirement for non-monotonic reasoning
takes autonomous learning machines outside the realm of deductive reason-
ers. If this were the case, the behaviour of fully autonomous learning ma-
chines, unlike ID3-like systems, could not be accounted for in terms of de-
ductive procedures only. However, as we shall presently see, research efforts
converging in the theories of non-monotonic reasoning and belief revision,
which provide the more comprehensive and logically well-understood mod-
els of inference processes under conjectural knowledge, pave the way to a
deductive account of autonomous learning machines too.
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4. From learning projections to constrained monotonicity

We have just seen that the allegedly inductive behaviours of machine
learning algorithms à la ID3, involving generalizations and predictions from
sample data, are sensibly construed as default-based, deductive inferences
from theories and past observations. More specifically, these projections de-
pend on background assumptions capturing both the inductive bias of ID3,
which is invariant over the class of ID3 learnable concepts, and more “lo-
cal” assumptions about the target concept c under examination. These local
assumptions are embodied into the system’s empirical experience, that is, in
the training set selected for c. Thus, the retaining of any ID3 identification of
target concept is non-monotonically conditional on the empirical adequacy
of both sorts of assumptions. Let us notice, moreover, that in the behaviour-
based systems examined above, similar issues about the empirical adequacy
of background assumptions arise: one can choose between different learning
strategies about obstacle avoidance and navigation on the basis of local in-
formation/hypotheses about spatial distribution of obstacles in the currently
explored environment.

The aim of this section is to suggest that some families of non-monotonic
consequence relations provide an appropriate deductive logical framework
for investigating reasoning patterns of this sort which, in addition to ID3-like
generalization and prediction, allow one to retract learning hypotheses and to
revise background theories.

The present approach conflicts with the rather common view that non-
monotonic inference falls outside the realm of deductive reasoning. Indeed,
non-monotonic inference is occasionally dubbed as“quasi-deductive” [9], and
more customarily as an outright non-deductive mode of inference, – the latter
classification being based on the traditional partition of the domain of infer-
ence into deductive and non-deductive.8 In particular, the present account

8This partition is assumed, for example, in a recent collection of cognitive science studies
on human rationality:

Other models of reasoning, which are not deductively valid, are “non-
monotonic” –adding premises can lead to conclusions being withdrawn. An
important example is induction, in which general laws or regularities are in-
ferred from particular observations. [. . . ] Another example is abduction, which
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challenges the view that non-monotonic inference, unlike deduction, fails to
capture “sound inference”. In fact, the non-monotonic rules of inference dis-
cussed below, when interpreted on the basis of appropriate semantic notions,
are provably sound, just like the inference rules of classical logic: in each of
these rules, in fact, the truth of the premises (classically) implies the truth of
the conclusion.9

A bit of formal setting is needed to proceed further on in our discussion.
Let SL be the set of sentences built up from a classical propositional language
L in the usual way. We use small Greek letters for elements of SL and block
capital Greek letters for subsets of SL. We denote by 2L the set of classical
valuations on L, that is the set of all maps from L to 2 = {0, 1}. Valuations
extend uniquely to SL in the usual, recursive way. We write, as usual, Cn
for the classical consequence operation (sometimes called Tarskian), namely,
an operation which is reflexive, transitive, and monotonic, the corresponding
notation for the classical consequence relation being `. As we shall be con-
cerned with finitary consequence only (i.e. with premises being finite sets of
SL) we adopt the usual convention of freely swapping the notions of con-
sequence operation and consequence relations.10 Hence Cn and ` represent
classical logical inference which we assume to be deductive. Consequence
relations on 2SL × SL other than the classical one will be denoted by |∼,
possibly with decorations. Note that all consequence relations we are going
to consider below rest on the same underlying language L.

Let us now begin our logical analysis from an examination of what is bad
and what is good in monotonic reasoning, as far as the reasoning of AI agents
is concerned.

If one assumes that subsets of SL represent agents’ information, then

typically involves inferring causes from their effects. [. . . ] Thus, abduction is
also nonmonotonic and hence not deductive. ([33] p.176)

9It is easily shown, though space constraints prevent us from delving into the details here,
that semantically, non-monotonic consequence relations arise naturally from considerations of
truth-preservance that generalize those introduced by A. Tarski in the 1930’s, the back-bone
of the formal characterization of deduction. We will cursorily say something more about the
semantics of non-monotonic reasoning below.

10Indeed, given Γ ⊆ SL, θ ∈ SL and the operation Cn, one can define a relation `⊆
2SL × SL as the set of ordered pairs 〈Γ, θ〉 such that θ ∈ Cn(Γ), and conversely Cn(Γ) =
{θ | Γ ` θ}.
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monotonicity just says that the introduction of additional information to the
premises of some derivation does not force one to reject any of the conclu-
sions previously drawn from the initial set of premises, no matter what this
new information turns out to be. More compactly:

if θ ∈ Cn(Γ) then θ ∈ Cn(Γ ∪∆). (MON)

The emphasized lack of qualification is an immediate consequence of the fact
that no formal constraint is imposed on the additional set ∆. We call this the
unconstrained form of monotonicity.

Since monotonicity does not impose any constraint on the enlargement of
the set of premises, ∆ can indeed be any subset of SL. Hence, any possible
addition to Γ will be a priori irrelevant. To put it into more graphic terms,
once a monotonic agent draws a conclusion from a given set of premises,
nothing the agent might possibly come to learn will cause it changing its
mind. In realistic (i.e. “world-like”) environments, however, agents do change
their mind.

Still, as far as the characterization of intelligent reasoning is concerned,
monotonic patterns of reasoning have a number of desirable properties, so
that throwing away monotonicity as a whole will not do. A purely anti-
monotonic agent, indeed, would waste an enormous amount of resources
questioning over and over again each of the previously drawn conclusions.
Thus, precepts of informational economy suggest a sensible balance between
unconstrained monotonicity and anti-monotonic behaviours: agents should
not change their mind unless they have good reasons to do so.11

The approach to nonmonotonic reasoning based on consequence relations
focuses precisely on the characterization of suitable constraints which capture
intuitively appealing precepts of informational economy. The seminal papers
by Gabbay [12], Makinson [26] and Kraus, Lehmann and Magidor [23] have
provided an abstract (proof-theoretic and model-theoretic) framework, suited
for the logical investigation of nonmonotonic inference in general, and non-
monotonic consequence relations in particular.

A crucial difference between monotonic and nonmonotonic logics, as far
as consequence relations are concerned, is that the latter admit no “smallest”

11In the literature on Belief Revision, informational economy (see e.g. [14]) requires that
the revision of a belief set should preserve old beliefs “as much as possible”.
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consequence relation: various notions of nonmonotonic consequence arise as
soon as certain conditions are fixed.12 However, this distinguishing feature
of nonmonotonic logics, and the corresponding variety of formal develop-
ments, are not symptomatic of a lack of shared underlying intuitions about
core features of nonmonotonic reasoning. On the contrary, there is wide con-
sensus that formal systems like the one based on Preferential consequence
relations (so-called system P [23] or, after the initials of its authors’ names,
system KLM) do capture key features of nonmonotonic reasoning.13 In the
first place, the intuitive justification of KLM-like formal constraints (to be
briefly presented below) in terms of “rationality”, “minimality” and “infor-
mational economy” connects the investigations on constrained monotonicity
to commonsense approaches to uncertain reasoning (see, e.g. [34, 35]), where
rational reasoning under imperfect information is mathematically character-
ized as obedience to “common-sense” principles, some of which turn out to
be remarkably close the KLM rules/conditions.14 Moreover, the KLM sys-
tem can be proved to be sound and complete with respect to various semantic
interpretations of reasoning, respectively based on usualness, typicality, nor-
mality, very high probability, and so on.15 Finally, there is a tight connection,
indeed a genuine translation, between non-monotonic rules of inference and
the classic postulates for Belief Revision introduced in [1].16

Let us now briefly recall the formal rules/conditions characterizing pref-
erential consequence relations.17 The inference system is presented here, as

12(with the remarkable property, however, that the intersection of those various relations
brings one back to classical monotonic logic [27, 28], the logic used in metatheoretic investi-
gations of nonmonotonic logics.)

13For detailed treatments, the interested reader is referred to [4, 40, 21].
14The first formal aspects of this connection have been put forward by relating non-

monotonic logics to maximum entropy reasoning. See e.g. [21, 17].
15Friedman and Halpern recently suggested a formal explanation of this deep connection

between the proof-theoretic characterization and a wide class of semantics for which non-
monotonic consequence is complete, based on the general framework of plausibility measures
[11]. Particularly relevant to us is the semantical interpretation according to which the rela-
tion θ |∼P φ holds if φ is (classically) satisfied in all the most preferred worlds in which θ is
(classically) satisfied.

16The main idea underlying this translation is the so-called Makinson-Gärdenfors Identity,
according to which inferring nonmonotonically a conclusion from a sentence θ amounts to
revising a certain set of background assumptions by θ. For details, see [29, 15, 40, 21, 4].

17Note that the following rules of inference are generally understood also as constraints that
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usual, as a Gentzen-style system with individual sentences as arguments of
the consequence relations.18 Relations satisfying the following conditions
are called rational consequence relations, whereas relations satisfying all but
condition RMO are called preferential consequence relations.

Reflexivity is the only axiom scheme:

θ |∼ θ (REF).

Three kinds of rules (or conditions) are imposed on relation |∼. Rules
of the first kind are “pure conditions”: Left Logical Equivalence and Right
Weakening:19

` θ ↔ φ, θ |∼ ψ

φ |∼ ψ
(LLE)

θ |∼ φ, φ ` ψ
θ |∼ ψ

(RWE)

Rules of the second kind are the usual Conjunction in the conclusions and
Disjunction in the premises:

θ |∼ φ, θ |∼ ψ

θ |∼ φ ∧ ψ
(AND)

θ |∼ ψ, φ |∼ ψ

θ ∨ φ |∼ ψ
(OR)

Rules of third kind express the formal constraints on monotonicity. These are
Cautious Monotonicity and Rational Monotonicity:

consequence relations should satisfy in order to account for sensible patterns of reasoning. The
latter being their intended interpretation as far as their justification is concerned.

18The first generalization to the infinitary case was studied in [10].
19Note that any consequence relation |∼∗ such that `⊆ |∼∗ is called supraclassical, and

Reflexivity and Right Weakening entail that. Intuitively then, a supraclassical consequence
relation extends the deductive power of classical reasoning. Very roughly, the desirability
of this property is a consequence of the intuition that reasoning under perfect information is
just a limiting case of reasoning under uncertainty. This extension, however, is not priceless.
Supraclassical relations, in fact, generally have a “less regular behaviour”, in Makinson’s
phraseology. See [28, 40] for more on this.
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θ |∼ φ, θ |∼ ψ

θ ∧ φ |∼ ψ
(CMO)

θ |∼ φ, θ 6 |∼¬ψ
θ ∧ ψ |∼ φ

(RMO)

Cautious monotonicity puts a very natural condition on the application
of monotonicity: the addition of a sentence that was previously derived from
some given premise should not induce one to abandon any consequence of
that premise only. This is an important conservative feature of monotonicity
that need not be rejected in characterizations of sensible reasoning.20 Ra-
tional Monotonicity puts much a stronger constraint on the applicability of
monotonicity. CMO is meant to filter out “irrelevant information”, where an
irrelevant sentence is understood, roughly speaking, as a sentence added to
given premises which does not invalidate any of the conclusions drawn from
those premises. A different interpretation of what it means for a sentence (ψ)
to be irrelevant is provided by the requirement that one should rule out the
possibility for the added hypothesis (ψ) to clash with conclusion (φ). This is
accomplished, as far as RMO is concerned, by requiring that ¬ψ cannot be
(nonmonotonically) proved from θ.21

For the purpose of illustrating how the reasoning of autonomous learn-
ing agents can be interpreted in the light of these nonmonotonic consequence

20More extended discussion of Cautious Monotonicity, or Rational Monotonicity (see be-
low), falls outside the scope of this paper. The interested reader is referred to [23, 24] for
underlying motivations and justifications, and to [40, 21, 4] for general surveys of principles
of nonmonotonic inference. [13] emphasizes (see especially chapter 3) the benefits of conser-
vative reasoning for realistic agents.

21There is a widespread orientation, however, that weaker conditions might capture more
adequately this idea of relevance. Rational Monotonicity is often criticized (see, e.g. [27, 40])
on the grounds that it fails to be a Horn-condition, thus preventing the resulting consequence
relation from being closed under intersection. There are also concerns on the semantics of
rational consequence relations which require a total ordering (or equivalent conditions) among
preferences in order to yield soundness and completeness results for the axiom system. (See
the seminal [23, 24] for a fully detailed account on (the semantics of) rational consequence
relations). As far as “positive” consequence of “positive” knowledge is concerned, however,
the significance of the latter concern is undermined by the characterization results by Lehmann
and Magidor [24] according to which preferential and rational consequence relations are in
fact equivalent. See [5] for more on this.
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relations, we consider now Makinson’s approach to bridging classical and
(various) nonmonotonic consequence relations arising from the imposition
of suitable constraints on monotonicity.22 In particular, we focus on Makin-
son’s method of generating nonmonotonic consequence relations from the
monotonic, pivotal-assumption consequence relation.

Suppose that a distinguished subset of SL –K– sums up an agent back-
ground assumptions. We could intuitively think of K as to the corpus of
sentences which is taken for granted by the agent when deriving a certain
conclusion from an explicit set of premises. The pivotal-assumption con-
sequence relation is constructed by reserving to the distinguished set K a
special role. Indeed, it is just a classical consequence relation modulo K.
Formally:

∆ `K φ iff for no v ∈ 2L, v(∆ ∪K) = 1 and v(φ) = 0.

In other words, φ is a pivotal-assumption consequence of the set ∆ relative
to the pivotal set K, just if φ is a classical consequence of ∆ ∪ K. Thus,
a consequence relation is called a pivotal-assumption consequence if it is of
the form `K for some K ⊆ SL. 23

22In [28], D. Makinson examines three (monotonic) consequence relations which naturally
provide such connection. More precisely, Makinson examines

three different ways of getting out of a set of premises more than is authorized
by straightforward application of classical consequence, without amplifying
the language in which these premises are stated, which remains that of classical
logic. ([28], p.74).

Another interesting example is discussed by Beirle and Kern-Isberner [3] who investigate the
relation between classical and nonmonotonic reasoning (where the latter is mainly discussed
through conditionals and probabilistic semantics) within the category-theoretic context of in-
stitutions.

23An important observation about pivotal-assumption consequence relations is that they
behave in a decidedly classical way to the effect that the logico-mathematical properties of
`K cast no doubts about its deductive nature. Indeed, as determined by a characterization
theorem due to Rott ([40], p.117), any closure operation which is also supraclassical, compact
and satisfies the classical “disjunction in the premises” is a pivotal-assumption consequence.
Note however that pivotal-assumption consequence differ from the classical one in that the
former need not satisfy uniform substitution of arbitrary formulae for the elementary letters
in a formula. Such consequences relations are called paraclassical by Makinson. See [28]
for fuller details. Hence this relation provides a deductive bridge between monotonic and
non-monotonic reasoning.
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According to Makinson, the relation based on `K allows one “to take
some of the mystery out of what is known as nonmonotonic logic”, and to
reach an unprecedented understanding of nonmonotonic consequence rela-
tions.

A crucial motivation underlying the idea of markingK as a distinguished
subset of SL is that of reserving to K the special role of a relatively en-
trenched set of background assumptions (the general heuristics or inductive
bias for constructing any ID3-learning trees being a case in point in view
of their independence of local information about particular target concepts).
The set on the left of `K is the set of “local” assumptions (or hypotheses),
that is, information specific to a certain situation, choice, decision, etc.. (in
ID3-learning, this role is played by specific training sets). A characteristic
feature of `K , then, is that the set of background assumptions is assumed
not to vary in relation to the local assumptions. This follows from the fact
that each K determines a distinct relation `K . Up to suitable abstraction, `K

characterizes any agent whose behaviour is stricly determined by heuristics
that are invariant over sets of local assumptions. In case of ID3, for exam-
ple, a change of training set for concept c determined by a revision of local
assumptions about the more representative training data for c does not affect
the inductive bias of ID3 proper.

So far we have focused only on monotonic, assumption-based reasoning,
which is characterized by assigning a special status to some unchanging set of
background assumptions K. Far more interesting, however, are learning sys-
tems that adapt the set of background assumptions according to their actual
“experience”. These systems would qualify as more flexible and adaptable
learners. And yet, under certain formal conditions, adaptable learners of this
kind do not trespass the boundaries of deductive inference. This is indeed the
scenario in which constrained-monotonic inference is at its best. The non-
monotonic consequence relation |∼K , in fact, can be derived from `K just
by allowing the set of background assumptions to vary according to the local
assumptions. This “small” variation is all that there is between monotonic
and non-monotonic consequence relations.

The main rationale for allowing the set of background assumptions to
vary according to “experience” is that a certain set of local hypotheses ∆
might be logically inconsistent with K. Consider the case of a behaviour-
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based system which is capable of detecting that current perceptual data clash
with some background hypothesis driving its learning procedure, say, with
the hypothesis that the environment is cluttered with obstacles. If such in-
consistencies arise, |∼K behaves non-monotonically by adjusting K so as to
remove the inconsistency with local premises. The idea of default assump-
tion consequences, thus, is that K should be replaced by its maximal subsets
consistent with ∆.24 Formally:

∆ |∼K φ iff K ′∪∆ ` φ, ∀K ′ ⊆ K which is maxiconsistent with ∆.

Among the various properties of |∼K , of particular interest to us is the fact
that it satisfies Cautious Monotonicity, i.e. what is usually regarded as the
key ingredient of “core” nonmonotonic reasoning.25 Subsequent expansions
of K ′ (say, for effective learning by the above behaviour-based system in an
uncluttered environment) should be taken care of by means of appropriate
heuristics.

In conclusion, the general notion of an autonomous learning system which,
in addition to advancing learning hypotheses, is capable of retracting em-
pirically inadequate hypotheses and revising its background knowledge base
accordingly, does not require one to introduce notions of consequence that
exceed or otherwise cannot be captured within the framework of deductive
reasoning. And indeed, it is precisely the extra-logical consideration about
the certainty, or the lack thereof, of information that underlies what is tradi-
tionally seen as a logical difference between classical deduction and various
forms of uncertain reasoning. In the case of the classical consequence re-
lation, what warrants the validity of the inference is its truth-preservation,
or more precisely the preservation of the postulated truth of the initial state-
ments. The same can –and ought to– be required from logical systems which
are intended to capture patterns of reasoning in which the premises are not

24A subset Y ⊆ X is maximal if and only if for all Z ⊆ X , Y ⊆ Z implies Y = Z.
25Preferential reasoning is accounted for also semantically by means of paraclassical,

monotonic bridges, and in particular the pivotal-valuation consequence discussed in section 3
of [28].
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necessarily taken as stable truths, but only as elements of a revisable body
of knowledge. This fact changes –and usually considerably complicates– the
sort of constraints that are to be formalized, yet it does not change the logical
form of the problem.26
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