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§0. INTRODUCTION 
 

The aim of this paper is to describe some geometric examples of non commutative and 

cyclic phase spaces, filling a gap in the literature and developing the project of 

geometrization of semantics for linear logics started in [12]. Besides, we present an 

algebraic semantics for non commutative linear logic with exponentials (NLL), that is the 

logic obtained from a sequent formulation of classical logic by rejecting and recovering all 

structural rules (weakening, contration and exchange). Moreover we sketch how this 

semantics is uniform over related logics with exponentials, such as: i) cyclic linear logic 

with (CyLL), a variant of non commutative linear logic in which a restricted form of 

exchange, cyclic exchange, is allowed; ii) linear logic (LL), which rejects and recovers 

weakening and contraction rules; iii) affine linear logic (AL), which lacks contraction rules. 

Since in all these logics the exponentials play the crucial role of recovering and controlling 

the logical power of the dismissed structural rules, we avoid to use the misleading term 

"substructural" for this class of logics.  

It is well-known that an algebraic semantics for a logical calculus ensures that the 

notion of truth, which is infinite and static in character, and the notion of provability, which 

is finite and dynamic, correspond to each other. In order to build a "bridge" between these 

two notions, an infinite class of algebraic structures (models) is introduced, which is – 

hopefully – as "culturally distant" from its syntactical counterpart as possible. By virtue of 

this correspondence, using the machinery of algebra, we can state syntactical properties 

relative to provability; and, vice versa, provable logical principles lead to algebraic 
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properties, i.e. properties of the models. In particular, in order to prove that a formula A is 

unprovable, it suffices to exhibit a model in which A is not valid. If our semantics is based 

on mathematical structures that are simple and traditionally known, then the search of 

suitable models becomes easier. The semantics we present is a development of the phase 

semantics introduced by Girard for linear logic [4, 5]. The crucial difference lies in the fact 

that a Girardian phase space consists simply of a monoid M and a subset ⊥ of M (without 

provisos on M and ⊥), whereas now it is imposed a preorder on M. In particular, one 

requires that the monoid operation • be monotone and that ∀x, y ∈ M:  

i) if  x ≤ y  and  y ∈ ⊥, then x ∈ ⊥;  

ii) σ(x•y) = σ(x) • σ(y), σ(u)=u, where σ : M → M is a bijection;  

iii) x ≤ y iff σ(x) ≤ σ(y).  

Then, by introducing a special subset of M – the set K = {x: ∀y ∈ M x•y ≤ y• x and             

y• x ≤ x• y, x ≤ u, x ≤ x• x} – it is possible to define in a natural way the exponentials. The 

motivation for enriching Girard's phase space with preorders comes from the goal to find a 

semantical framework which is common to different, but correlated logics. For a general 

introduction to the substructural landscape see [11]. 
 

 

 
§1. PHASE SPACES AND PHASE SPACES WITH PREORDERS 
 
 

1.1. PRELIMINARIES: NON COMMUTATIVE PHASE SPACES 
 
(Commutative) phase spaces are introduced by J.Y. Girard in order to modelize LL [4, 5]. 

Non commutative and cyclic phase spaces play an analogous role with respect to NLL 

[1,14] and CyLL [16]. Genuine (mathematical) examples of non commutative and cyclic 

phase spaces are given in subsection 1.2. 
 

Definition 1.1. By non commutative phase space, we mean every structure (M, •, u, σ, ⊥) 
where: 

(i)  (M, •, u) is a monoid; 

(ii)  σ : M  →  M is a bijection; 

(iii) ⊥ ⊆ M; 

(iv) ∀x, y ∈ M: x • y ∈ ⊥ if and only if y• σ(x) ∈ ⊥ (σ-cyclicity).   
 

A non commutative phase space (M, •, u, σ, ⊥) will be simply indicated with (M, σ, ⊥). 

Examples 1.1.1. Every structure (G, (_)–1, H), where G is a monoid reduct of a group and H 

a subset of G s.t. 

      (*)  ∀y ∈ G: y•H•y ⊆ H,  
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is a non commutative phase space. In fact: if x•y∈ H, then x–1•x•y•x–1 = y•x–1∈ H. Vice 

versa, if y• x–1∈ H, then x•y•x–1•x = x•y∈ H. Given a group G, a subset H with the property 

(*) always exists. To show that, we posit for every n ≥1: 

Hn = {x1• x2•...• xn–1• xn• xn• xn–1•...•x2• x1: x1, x2,..., xn–1, xn∈G}  

(For instance, H2 is the subset of the squares). The subset H defined in this way: �H = U  Mn 

                                                                                                                                                                                                    n ∈ M  

is a non commutative phase space. 

 

Definition 1.1.2 A non commutative phase space (M, σ, ⊥) is called cyclic phase space if    

σ = idM. That is, ∀x, y ∈ M, x•y ∈⊥ if and only if y•x ∈⊥ (cyclicity). 

A cyclic phase space will be simply indicated with (M, ⊥). 

 

Examples 1.1.3. I) Let G be a group with an element x0 s. t. ∀y ∈ G: x0•y = y•x0. Then, the 

structure (G, {x0}) is a cyclic phase space. II) More generally, every structure (G, H), where 

G is a group and H is any of its normal subgroups, is a cyclic phase space. 
  
 

1.2. A GEOMETRICAL CONSTRUCTION 

I). Let A denote the finite sequence of intervals of the real line: 
         

                                                [a1,b1), [a2,b2),..., [an,bn)  

where  di = bi – ai  > 0,   ∀i =1,..., n.   

We consider the function  γA : [0, d1+d2+...+dn) → IR  defined in the following way:  

 

�

γA(t) =  

��
�
��

t+a1                     0 ≤ t ≤ d1,t + d2–d1                  d1≤ t ≤ d1+d2

.                    .

.                    .

.                    .

  t + dn–(d1+d2+...+dn)        d1+ d2+...+dn–1≤ t ≤ d1+d2+...+dn

    

 

Let  h  be the function:    h : IR → IR3  

                                 u   (cos(u), sin(u), u)  

The function h describes a cylindrical helix of radius 1 and axis coinciding with the axis z. 
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Then, we can associate with every finite sequence A ≡ [a1,b1), [a2,b2),..., [an,bn) the 

function: 

     hA : [0, d1+d2+...+dn) → IR3 

where hA≡ h o γA. Such a function describes a finite sequence of tracts of the circular helix. 

Now, let M = {hA: A finite sequence of intervals}. Notice that the empty function he 

associated with the empty sequence e is contained in M.  

In M, a binary operation • may be trivially defined as follows: ∀A, B, hA• hB ≡ hAB where AB 

is the concatenation of A and B. It easy provable that if hA≡ hA'  and  hB ≡ hB', then           

hAB ≡ hA'B'. Therefore it follows that the structure (M, •, he)  is a (non commutative) monoid. 

Let us consider the function  σ : M → M, given by σ(hA) = σ(hA–2π). It is easy to show that σ 

is bijective.  

Finally, we posit  ⊥ = {hA: hA is continuous and prx,y (Im(hA)) = C}, where C is the circle of 

the plane xy of center (0,0,0) and radius 1. It is easy to observe that the structure (M, σ, ⊥) 

is a non commutative phase space.  

Remark 1.2.1. In such a structure the following property does not hold: 

       ∀hA,hB ∈ M,    hA• hB ∈ ⊥   implies   hB• hA ∈⊥. 

In fact, in general, when hA• hB is a continuous function, hB•hA need not to be continuous.         

 

II). As before, let A denote the finite sequence of intervals of the real line: 

              [a1,b1), [a2,b2),..., [an,bn)  

 

where ∀ i =1,...,n    di = bi  – ai  > 0. We consider the same function defined above:  

 

   γA: [0, d1+d2+...+dn)  IR 

Let  h  be now the function: h: IR → IR2  

        u   (cos(u), sin(u))  
 

The function h describes the (oriented) circle C of radius 1 and center n in the origin. We 

can associate with any finite sequence A ≡ [a1,b1), [a2,b2),..., [an,bn) the function           

hA≡ h o γA. 
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This function describes a finite sequence of oriented arcs of the circle C. 

Let  M = {hA: A is a finite sequence of intervals}. We define in M the binary operation •: 

∀A,B, hA• hB ≡ hAB, where AB is the concatenation of A and B. It can be easily shown that 

if hA≡ hA' and hB≡ hB', then hAB ≡ hA'B'. Hence, it follows that the structure (M, •, he) is a 

(non commutative) monoid. Finally, we posit  ⊥ = {hA: hA is continuous  and  Im(hA) = C}. 

It is easy to see that the structure (M, ⊥) is a cyclic phase space.  

 

 

1.3. OPERATIONS ON THE POWER SET OF THE MONOID AND FACTS 
 

Definition 1.3.1. Given a non commutative phase space  (M, σ, ⊥), we define the following 

operations on the power set P(M). Given A, B⊆M: 

A • B = {a • b: a ∈ A and  b ∈ B };  

A → r B = {x: ∀a∈A  a•x ∈B };  

A → l B = {x: ∀a∈A  x•a ∈B };  

A⊥ = A →r ⊥= {x: ∀a ∈A  a•x ∈⊥};  

⊥A = A → l ⊥= {x: ∀a ∈A  x•a ∈⊥}.  

By fact, we mean every A⊆M such that A = ⊥A⊥. It easy to show that  A⊆M  is a fact iff 

∃ B⊆M such that  A = B⊥ or A = ⊥B . The following subsets of M: ⊥ ; 1 = ⊥{u}⊥; 0 = ⊥∅⊥; T = M 

are all facts. 

 

Proposition 1.3.2. In every non commutative phase space (M, σ, ⊥), for any A, B⊆M:    

(i)  if A⊆B  then  B⊥⊆ A⊥  and  ⊥B⊆⊥A; 

(ii) ⊥(A⊥) = (⊥A)⊥. 

 

Proof: left as exercise. 
 

Proposition 1.3.3. In every non commutative phase space (M, σ, ⊥) the function:  

                                        ⊥(_)⊥: P(M) → P(M) 
        

satisfies the following properties:    
 

(i)  for any A ⊆M:   A ⊆⊥A⊥; 

(ii)  for any A, B ⊆M:   if A ⊆B  then ⊥A⊥ ⊆ ⊥B⊥; 

(iii)  for any A⊆M:   ⊥⊥A⊥⊥ ⊆ ⊥A⊥;  

  

Proof: left as exercise. 
 

Definition 1.3.4. Given a non commutative phase space (M, σ, ⊥) for every pair of facts A, 

B, we posit: 
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(i) A⊗B = ⊥(A⊗B)⊥; 

(ii) A℘B = (⊥B⊗⊥A)⊥ = ⊥(B⊥⊗A⊥); 

(iii) A⊕B  = ⊥(A⊕B)⊥; 

(iv) A&B = A∩B.     

 

Proposition 1.3.5. The set of facts is closed with respect to the operations: →r , →l , (-)⊥,  

⊥(-), ⊗, ⊕, , &,℘. Moreover, A→r B = A⊥℘B  and A→lB = B℘⊥A. It easy to check that De 

Morgan Laws hold. Moreover, for every fact A, B, C and D: 
 

(i) (A⊗B) ⊗C=A⊗ (B⊗C); (i)*     (A℘B)℘C=A℘(B℘C); 

(ii) A⊗1=A=1⊗A; (ii)*     A℘⊥=A=⊥℘A; 

(iii) A⊆ B  and C⊆D implies � �A⊗C⊆B⊗D; (iii)*     A⊆B  and C ⊆ D implies A℘C ⊆B℘D; 

(iv) (A&B)&C=A&(B&C); (iv)*      (A⊕B)�⊕ �C=A⊕(B⊕C); 

(v) A&T=A=T&A; (v)*       A⊕0=A=0⊕A; 

(vi) A&B⊆A  and A&B⊆B; (vi)*       A ⊆A⊕B  and  B⊆A⊕B; 

(vii) C ⊆A  and C ⊆B implies �� C ⊆A&B; (vii)*     A ⊆C  and B⊆C implies��� A⊕B ⊆C; 

(viii) A⊆B  and C ⊆D implies ��A&C ⊆B&D;     (viii)*    A ⊆B  and C⊆D implies ��� A⊕C⊆ B⊕D; 

(ix) A&B=B&A; (ix)*      A⊕B=B⊕A; 

(x) A⊗0=0=0⊗A; (x)*       A℘T=T=T℘A; 

(xi) A⊗(B⊕C)=(A⊗B)�⊕ (A⊗C); (xi)*       A℘(B&C)=(A℘B)&(A℘C); 

(xii) (B⊕C)�⊗A=(B⊗A)�⊕ (C⊗A); (xii)* (B&C)℘A=(B℘A)&(C℘A);  

(xiii) A⊗(B℘C) ⊆ (A⊗B) ℘C; (xiii)* (A℘B)�⊗C ⊆ A℘(B⊗C); 

(xiv) A⊗(B&C) ⊆ (A⊗B)&(A⊗C); (xiv)* (A℘B)�⊕ (A℘C) ⊆A℘(B⊕C); 

(xv) (B&C)⊗A ⊆ (B⊗A)℘(C⊗A); (xv)* (B℘A)�⊕ (C℘A) ⊆ (B⊕C)℘A. 
 
 

Proof: exercise.  
 

 
1.4. PHASE SPACES WITH PREORDERS  
 

Definition 1.4.1. A preordered monoid is a structure (M, •, u, ≤) where: 

(i)   (M, •, u) is a monoid; 

(ii)  (M, ≤) is a preordered set (that is, ≤  is reflexive and  transitive) ; 

(iii) ∀ x, y, x', y' ∈ M, if  x ≤ y  and   x' ≤ y'  then   x•x' ≤ y• y'  (• is monotone). 

 

Examples 1.4.2. A partially ordered group is a structure (G, •, (-)-1, u, ≤) where (G, •, (-)-1, 

u) is a group, (G, ≤) is a partially ordered set and the operation • is monotone. If G is 

commutative, then the ordered group is called abelian; if (G, ≤) is a (conditionally complete) 

lattice, then the partially ordered group is called (complete) l-group. Any ordered group is 

an example of preordered monoid.   

 

Definition 1.4.3. A preordered phase space is a structure (M, σ, ⊥, ≤) where: 

(i)   (M, σ, ⊥) is a non commutative phase space; 
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(ii)  (M, ≤) is a preordered monoid; 

(iii) ∀x, y ∈ M,  if  x ≤ y  and  y ∈⊥   then  x ∈⊥  (M is downward closed); 

(iv) ∀x,y ∈M,  σ(x• y) = σ(x) •σ(y),  σ(u)=u; 

(v)  ∀x,y∈M,   x ≤ y    iff   σ(x) ≤ σ(y). 

If (M, ⊥) is a cyclic phase space, then the preordered phase space (M, ⊥, ≤) is called cyclic 

phase space; a cyclic phase space is called preordered symmetric phase space if ∀ x, 

y∈M, x•y ≤ y•x (e-property); a preordered symmetric phase space (M, ⊥, ≤) is called 

preordered affine phase space  if ∀x∈ M,  x ≤ u  (w-property); a preordered affine phase 

space is called preordered classical phase space  if ∀ x ∈ M, x ≤  x• x  (c-property). Note 

that in preordered phase spaces, for every pair of facts A and B: 

 

(∀a∈A  ∃ b ∈B  s.t.  a ≤ b)  →  A ⊆⊥B⊥.  

 

Example 1.4.4. Given a totally ordered abelian group (G, ≤) and an element x0∈G we posit:  

⊥= { x : x ≤ x0}. Then,  (G, ⊥, ≤) is preordered cyclic and symmetric phase space. 

 
 

1.5. CANONICAL BASIS AND EXPONENTIALS 
 

Definition 1.5.1. Given a preordered phase space (M, σ, ⊥, ≤) we indicate with K the 

following subset of M : 
 

K = { x : ∀y∈ M   x• y ≤ y• x  and  y• x ≤ x• y,  x ≤ u,  x ≤ x• x }  (canonical basis of M).    
 

Proposition 1.5.2. Given a preordered phase space (M, σ, ⊥, ≤ )  one has : 

(i)  K is a submonoid of M; 

(ii)  ∀ A ⊆ M :  (A⊥∩K)⊥ 

(ii)  ∀ x∈ M :   x∈K    iff     σ(x) ∈ K     iff    σ-1(x) ∈K; 

(iii) ∀ A ⊆M :   ⊥(A⊥∩K) = (⊥A∩K)⊥. 

Proof : left to the reader. 
 

Definition 1.5.3 (exponentials). Given a preordered phase space (M, σ, ⊥, ≤ ), we define 

the exponentials operators in the following way  : 

(i)   !A = ⊥(A∩K)⊥; 

(ii)  ?A = ⊥(A⊥∩K) = (⊥A∩K)⊥. 

  

Proposition 1.5.4. In every preordered phase space (M, σ, ⊥, ≤ ), for every fact A we have 

that: 

(i)   (!A)⊥ =?A⊥; (ii)  ⊥(!A) = ?⊥A;  

(iii)   (?A)⊥ =!A⊥; (iv)  ⊥(?A) =!⊥A .  
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Proof: (i)  (!A)⊥ = ⊥(A∩K)⊥⊥ = (A∩K)⊥ = (⊥(A⊥)∩K)⊥ =?A⊥ ; (ii), (iii) and (iv): analogously. 

 

Proposition 1.5.5. In every preordered phase space (M, ⊥, ≤ ), for every pair of facts A and 

B we have:  
 

(i) A⊆B   →   !A⊆!B; (i)* A ⊆B   →   ?A⊆?B; 

(ii) !A⊆A; (ii)* A ⊆?A; 

(iii) !A⊆!!A;                     (iii)* ??A ⊆?A; 

(iv) !A⊗B =B⊗!A;      (iv)* ?A℘B =B℘?A;   

(v) !A⊗!B⊆!(A&B);     !T⊆1;   (v)* ?(A⊕B) ⊆?A℘?B; ⊥⊆?0; 

(vi) !(A&B) ⊆!A⊗!B;    1⊆!T;   (vi)* ?A℘?B⊆?(A⊕B);  ?0⊆⊥; 

(vii) !A⊆1;                                (vii)* ⊥⊆?A; 

(viii) !A⊆!A⊗!A;                 (viii)* ?A℘?A⊆?A .  
 

Proof : exercise. 
 

 
§2. ALGEBRAIC STRUCTURE OF THE SEQUENT CALCULUS FOR  NLL. 
 

In this section, the approach is close to the spirit of [2], [3], [13], [15] where syntactical 

objects and manipulations in relation to sequent calculus are handled in purely algebraic 

terms. The syntax of NLL is presented in the appendix. For a matter of convenience, 

structural rules are expressed in terms of sequence of formulas rather than, as usual, in 

terms of occurrences of formulas.  

Proposition 2.1. The structure (L*, •, e)  where: L* is the set of the sequences of formulas 

of L(NLL), • is the concatenation operation, and e is the empty sequence, is a monoid, 

called syntactic monoid of NLL.  

Proof : Immediate.  

 

Note also that the function:  (-)2⊥ : L* → L* (C | →  C2⊥) is a bijection. Moreover, the 

structure  (L* , (-)2⊥, ⊥)  is a non commutative phase space. 

 

Definition 2.2. We posit ⊥ = {C: �  � C
op

}, where C
op

 ≡  An, An-1,…, A2, A1, if C is the 

sequence A1, A2,…, An-1, An.  ⊥ is called provability of NLL. 

 

Proposition 2.3. Let us consider the relation  ≤  on  (L*, •, e) and posit C ≤ D when there 

exists in NLL a derivation λ from  � D  to  � C in which only the rules (?E+), (?E-), (?W) 

and (?C) are applied. Then, ≤ is a  preorder. 

Proof : trivial. 

Proposition 2.4. The structure  (L*, (_)2⊥, ⊥, ≤ ) is a preordered phase space and its 

canonical basis K is given by K={?D : D ∈ L* } 
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Proof : Clearly, if C ∈ K, then C ≤  e. Then, C is obtained from the empty sequence by the 

application of the rules (?E+), (?E-), (?W) and (?C). It follows that C ≡ ?D, for some 

sequence D. Vice versa, if C ≡ ?D, by means of the rules (?E+), (?E-), (?W) and (?C), one 

has that ∀F∈ L*, F, C ≤  C, F and C, F ≤  F, C;  C ≤ e and C, C ≤  C. 
 
 

Definition 2.5.  For every formula A, we  posit : PR(A) = {C: �  � C
op

, A }. PR(A) is called 

the set of provability of A.  

Note that for every formula A, PR(A) is a fact. It is easy to show that: 

(i) PR(A⊗B) = PR(A)⊗PR(B); (i)*  PR(A℘B) = PR(A)℘PR(B); 

(ii) PR(A&B) = PR(A)&PR(B); (ii)* PR(A⊕B) = PR(A)⊕PR(B); 

(iii) PR(!A) = !PR(A); (iii)*   PR(?A) = ?PR(A) . 

(iv) PR(1) = 1; (iv)* PR(⊥) = ⊥ ; 

(v) PR(T) = T; (v)*  PR(0) = 0. 

Definition 2.6.  A NLL-Interpretation is an ordered pair (S, α) where  

(i)    S  is a preordered phase space; 

(ii)   α : VP0  → Facts   

where VP0 is the set of elementary propositional variables of L(NLL). One then defines by 

induction the function:  S
α

 : L  → Facts    
 

• S
α
(p) = α(p); 

• S
α
(pn+1⊥) = (α(pn⊥))⊥ ; • S

α
(p

_ (n+1)⊥) = ⊥(α(p
_n⊥)); 

• S
α
(1) = 1; • S

α
(⊥) = ⊥; 

• S
α
(T) = T; • S

α
(0) = 0; 

• S
α
(B⊗C) = S

α
(B) ⊗S

α
(C); • S

α
(B℘C) = S

α
(B)℘S

α
(C); 

• S
α
 (B&C) = S

α
(B)&S

α
(C); • S

α
(B⊕C) = S

α
(B)⊕S

α
(C); 

• S
α
 (!B) = !S

α
(B); • S

α
(?B) = ?S

α
 (B). 

 

A sequent  � C  is valid in (S, α)  if: 

i) 1⊆S
α
(℘C), if C ≠ e;   

ii) 1⊆ ⊥,  if C =e.  

A sequent  � C  is valid  if it is valid in every NLL-interpretation. In this case, we write 

�  � C. 

 

Proposition 2.7. Let consider the NLL-interpretation (S, α) where: 

(i)   S  is the preordered syntactic phase space of AL;  

(ii)  α : VP0 →  Facts       

Then, for every formula  A, S
α
(A) = PR(A). 

 

Proof : by induction on the complexity of A. 
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Now we are in position to prove the routine soundness/completeness theorem. 

 

Soundness theorem. For every sequent C of NLL,   if �  � C    then   �  � C.   

Proof : by induction on the number of applied rules in the proof of � C by using the 

properties of the facts in the preordered phase space and the operations defined on them.  

 

Completeness theorem. For every formula A of NLL,   if �    � A    then    �  � A.   

Let the formula A be such that �  � A. Then, in particular, A is valid in the NLL-

interpretation of Prop. 2.7. It readily follows that 1⊆ S
α
(A) and  PR(1) ⊆ PR(A). Finally, 

since e ∈ PR(1), one has that  �  � A. 
 
 

§3. CONCLUSION  
 

It is evident in which sense the semantics for NLL is meant to be uniform over different but 

related logics (classical, affine, linear), determinated by the set of structural rules. Indeed, if 

we are in cyclic linear logic, we can consider the preordered cyclic phase space and its 

canonical basis K= {?C: C∈L*}, if we are in linear logic, we can consider the preordered 

symmetric phase space and its canonical basis, and finally if we are in classical logic we 

can consider the preordered classical phase space (cf. Definition 1.4.3).  

Classical sequent calculus without contraction and related semantics have been 

investigated in [6, 7] (see also Ono [10] for a comprehensive account of algebraic 

semantics for various "substructural logics"). More recently, Lafont [9] introduces a phase 

semantics for affine logic and proves soundness/completeness theorem by the standard 

method. The semantics he gives does not require any preorder. Nevertheless – as 

stressed for the first time by Castellan – the constrain of preorder is more convenient in the 

non commutative case and it has the advantage to providing a general context in which to 

approach to different, but close in spirit, logics. This kind of approach may be called 

modular since we can shift from non commutative linear logic (absence of all structural 

rules) to classical logic (presence of all structural rules), moving ourselves in the same 

semantical landscape. This obeys the methodological principle that a completeness 

theorem for related logics must have the same form. In other words, semantics non facit 

saltus. 

 

 

APPENDIX 

Definition 1. The language L(NLL) of the one-sided sequent calculus for NLL is defined 

as follows.  

(i) The alphabet consists of the following symbols: propositional variables: {pn⊥: n∈ Z}. We 

will indicate with VP0 the propositional variables of type: p0⊥ (elementary propositional 
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variables). Propositional constant: ⊥,1, 0, T; the binary connectives ⊕, ℘, &, ⊗; the 

exponentials !, ?;  the sequent arrow  �; and the usual auxiliary symbols. 

(ii) Formulas are defined inductively as follows: every propositional variable is a formula; 

every propositional constant is a formula; if A and B are formulas, then A⊗B, A℘B, A&B 

and A⊕B are formulas; if A is a formula, then !A and ?A are formulas; nothing else is a 

formula. 

(iii) The sequents are defined as follows: � C, where is a finite sequence of formulas of the 

language.  
 

Definition 2. For every formula A and for any n ∈ Z the formula An⊥ is defined by induction 

on the  complexity of A. For any m ∈ Z:   (pm⊥)n⊥ ≡ pm+n⊥;  

if n =2k:                                                  if  n =2k+1:    
       

(1)2k⊥ ≡ 1 ;  (1)2k+1⊥ ≡ ⊥;  

(⊥)2k⊥ ≡ ⊥ ;  (⊥)2k+1⊥ ≡ 1 ;  

(T)2k⊥ ≡ T ;  (T)2k+1⊥ ≡ 0 ;  

(0)2k⊥ ≡ 0 ;  (0)2k+1⊥ ≡ T ;  

(B⊗C)2k⊥ ≡ B2k⊥⊗C2k⊥ ;            (B⊗C)2k+1⊥ ≡ C2k+1⊥℘B2k+1⊥  

(B℘C)2k⊥ ≡ B2k⊥℘C2k⊥ ;            (B℘C) 2k+1⊥ ≡ C2k+1⊥ ⊗B2k+1⊥  

(B&C)2k⊥ ≡ B2k⊥&C2k⊥ ;            (B&C)2k+1⊥ ≡ B2k+1⊥ ⊕C2k+1⊥  

(B⊕C)2k⊥ ≡ B2k⊥⊕C2k⊥ ;            (B⊕C)2k+1⊥ ≡ B2k+1⊥ &C2k+1⊥  

(!A)2k⊥ ≡ !A2k⊥ ;   (!A) 2k+1⊥ ≡ ?A2k+1⊥ ;  

(?A)2k⊥ ≡ ?A2k⊥ ;   (?A)2k+1⊥  ≡ !A2k+1⊥    .  
 

We shall indicate the formulas A1⊥ and  A
_1⊥ with  A⊥ and  A

_⊥  respectively. We observe 

that for every formula A:  A0⊥ = A;  and for every  m, n ∈ Z:  (Am⊥)n⊥ ≡ Am+n⊥ . 
 

Definition 3. The one-sided sequent calculus for NLL is given by the following rules 

concerning the sequents of L(NLL). 

 

Identity and cut rules: 

                                                    

                      (ax)                � C,  A        � D,  A⊥   (cut)                                                                   

 � A⊥,  A                                      � C, D 

 

Cyclic rules: 

 

 � C, D        ((-)2⊥)              � C, D     ((-)
_2⊥)              

 � D2⊥,C                              � D, C
_2⊥  
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Rules and axioms for the constants: 

 

            (1)                            � C        (⊥) 

 � 1                                    � C, ⊥ 

          

                 (T)  

 � C, T 

 
 

Multiplicative logical rules: 
 

                                                   

 � C,  A        � D,  B     (⊗)                              �  C, A, B    (℘) 

      � D, C, A ⊗ B                                             �  C, A℘B 

 
 

Additive logical rules: 
 

                                                  

� C,  A        � C,  B      (&)                            �  C, A         (⊕1)                    �  C, B         (⊕2) 

      � C, A & B                                                 �  C, A⊕B                              �  C, A⊕B 

  

Exponential structural rules:
 

 

   � C, E       (?W)         � C, ?D ,?D , E   (?C) 

 �  C, ?D ,E                     �  C, ?D, E  

 

 � C, ?D , E , F   (?E+)            � C, D ,?E , F   (?E-) 

 �  C, E, ?D ,F                            � C, ?E , D , F 

 

 

Exponential contextual and dereliction rules: 
 

 

 �  ? C, A    (!)                            �  C, A     (?) 

 �  ?C,  !A                                  �  C, ?A 

 

 

Acknowledgements: I wish to thank Francesco Paoli for his comments. 
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