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ABSTRACT. This paper has a survey-character and studies many-valued
logic endowed with two different kinds of implication: Łukasiewicz’s im-
plication and Gödel’s implication. We focus on the class of algebras con-
taining the algebraic counterpart of this new logic: the class of Heyting
Wajsberg algebras. We introduce a new direct Chang-style proof of sub-
direct representation and standard algebraic completeness theorem.
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1. Introduction

The contribution of this paper is mainly taxonomic and aims to complete the
study of Gödel Łukasiewicz Logic in [13]. There is an important connection
between any logical calculus S and the class of adequate models for it – i.e. the
class of algebraic structures which verify exactly the provable formulae of S.
For instance Boolean algebras are the algebraic counterpart of classical proposi-
tional logic and Heyting algebras correspond to intuitionistic propositional logic
(see pp. 380-3 in [10]).
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Heyting Wajsberg algebras were introduced by Giampiero Cattaneo and Da-
vide Ciucci in [2] and have two different implications as primitive operators:
Łukasiewicz’s implication and Gödel’s implication [11]. By the composition of
the two primitive operators with the 0-element it is possible to define two dif-
ferent negations and the modal operators of necessity and possibility. Moreover
the equational theory of the variety of Heyting Wajsberg algebras is capable
to contain both the equational theory of Heyting algebras and the one of Wa-
jsberg algebras [13]. Wajsberg algebras are proven to be termwise equivalent
to MV-algebras (section 4.2 in [9]). Then the logical calculus whose algebraic
counterpart is the class of Heyting Wajsberg algebras (i.e. Gödel Łukasiewicz
Logic [13]) results to be an extension of both intuitionistic logic and of Łuka-
siewicz many-valued logic (i.e. the logical systems arising from Heyting and
MV-algebras). Furthermore, in [13] Gödel Łukasiewicz Logic is shown to be
decidable, to have the deduction-detachment theorem and to be strongly com-
plete.

All these results hold with the necessary support of the standard complete-
ness theorem. Up to now, the standard completeness of Heyting Wajsberg al-
gebras has been obtained indirectly by the equivalence proven in [4] between
Heyting Wajsberg algebras and other algebraic structures, for instance MV∆-
algebras (Theorem 3.2.13 in [12]). The main contribution of this paper is to
give a direct proof of the standard completeness theorem for Heyting Wajsberg
algebras in a traditional Chang-like style.

In section 2 the basic notions and properties of this algebraic structure are
introduced. In section 3 I introduce a suitable extension of the definition of
implicative filter and show that any Heyting Wajsberg algebra is isomorphic to
a subdirect product of linear Heyting Wajsberg algebras. Finally, in section 4
I prove the whole variety of Heyting Wajsberg algebras to be generated by the
real unit interval model. It is worth reminding that from the logical point of view
this result entails that in Gödel Łukasiewicz Logic any tautology is provable.

2. Basic notions

Definition 2.1. Let A = 〈A,→L,→G,0〉 be an algebraic structure of type 〈2,2,0〉.
A is a Heyting Wajsberg algebra (briefly HW-algebra) if for any x,y,z∈A, once
defined
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¬x := x→L 0
∼ x := x→G 0

x∧ y := ¬((¬x→L ¬y)→L ¬y)
x∨ y := (x→L y)→L y

1 := ¬0

the following identities are satisfied:

(HW1) x→G x = 1
(HW2) x→G (y∧ z) = (x→G z)∧ (x→G y)

(HW3) x∧ (x→G y) = x∧ y

(HW4) (x∨ y)→G z = (x→G z)∧ (y→G z)

(HW5) 1→L x = x

(HW6) x→L (y→L z) = ¬(x→L z)→L ¬y

(HW7) ¬ ∼ x→L∼∼ x = 1
(HW8) (x→G y)→L (x→L y) = 1

It is useful to define also the following operators:

x⊕ y := ¬x→L y
x� y := ¬(¬x⊕¬y)

[x := ¬ ∼ ¬x
x� y := x⊕¬y

We assume familiarity with the basic notions of MV-algebra and its main prop-
erties. Any of them can be found by the readers in [9]. Moreover any HW-
algebra A = 〈A,→L,→G,0〉 has the MV-algebra A ? = 〈A,⊕,¬,0〉 as term
reduct and any HW-algebra A = 〈A,→L,→G,0〉 has the bounded distributive
lattice A ?? = 〈A,∧,∨,0,1〉 as term reduct ([4],[3]).

It is also shown in [4] (proposition 1.1) that the natural partial order ≤ de-
fined by ∧ or ∨ (i.e. x≤ y := x∧ y = x or x≤ y := x∨ y = y) has the following
property:

x≤ y⇔ x→L y = 1⇔ x→G y = 1

Remark 1. Any linear MV-algebra can be enriched in a natural way with a new
unary operator in order to have a HW-algebra term reduct.
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Proof. By [4] any HW-algebra is termwise equivalent to a Stonean MV-algebra.
An MV-algebra is Stonean when there can be defined a Stonean negation (see
also [5]). Any linear MV-algebra is trivially Stonean once defined the Stonean
negation ∼:

∼ x =
{0 if x 6= 0

1 if x = 0
Then any linear MV-algebra enriched in such a way has a HW-algebra term
reduct.

In the sequel we’ll adopt the following notation. Given a HW-algebra A , ∀x∈A
and ∀n ∈ N:

nx =


0 if n = 0
x if n = 1
x⊕ . . .⊕ x︸ ︷︷ ︸

n−times

, if 2≤ n ∈ N

and

xn =


1 if n = 0
x if n = 1
x� . . .� x︸ ︷︷ ︸

n−times

, if 2≤ n ∈ N

A HW-algebra A is linear (or totally ordered) iff for any pair of elements x,y ∈
A, either x≤ y or y≤ x.

Now we introduce the most important example of HW-algebra, the model
we will prove at the end of this article to generate the whole variety of HW-
algebras.

Example 1 (Standard HW-algebra). A [0,1] = 〈[0,1],→L,→G,0〉 where:

[0,1]⊂ R,

x→L y :=
{

1 if x≤ y
1− x+ y otherwise

,

and

x→G y :=
{

1 if x≤ y
y otherwise

.
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We recall some important basic results that will be useful in the sequel below.

Lemma 2.1. Let A be a HW-algebra and x ∈ A. Then
(i) ∼∼ x = ¬ ∼ x
(ii) x∧ ∼ x = 0 x∨ [x = 1
(iii) x≤∼∼ x [[x≤ x
(iv) x≤ y ⇒ ∼ y≤∼ x, [y≤ [x

Proof. (i) is the interconnection rule ((in)p. 336 in [3]) and can be derived from
(HW7) and (HW8) (see Proposition 4.6 in [3]). In (ii) we find B3 (p. 336) and
its dual AB4 (p.337) of [3]. (iii) is SBL¬2 (p. 347, [3]) and AB1 (p. 337, [3]).
(iv) is (B2b) p. 335 in [3] and its dual.

Lemma 2.2. Let A be a HW-algebra and x,y ∈ A. Then
(i) ∼ (x∧ y) =∼ x∨ ∼ y [(x∨ y) = [x∧ [y
(ii) ∼ (x∨ y) =∼ x∧ ∼ y [(x∧ y) = [x∨ [y

Proof. (i) is reported B2a (p. 335) and its dual AB3 (p. 337) in [3]. (ii) is B2
(p. 335) and its dual AB2 (p. 337) in [3].

Lemma 2.3. Let A be a HW-algebra and x,y ∈ A. Then
(i) ∼ (x⊕ y) =∼ x�∼ y [(x� y) = [x⊕ [y
(ii) x∧ ∼ y = x�∼ y x∨ [y = x⊕ [y
(iii) x∨ ∼ y = x⊕∼ y x∧ [y = x� [y
(iv) ∼ x⊕∼ x =∼ x�∼ x =∼ x

Proof. (i), (ii) and (ii) are (v) and (iii) with duals in Lemma 1.1, p. 361 in [4].
(iv) follows directly from (iii).

Corollary 2.1. Let A be a HW-algebra and x,y ∈ A. Then
(i) ∼∼ (x⊕ y) =∼ (∼ x�∼ y) =∼∼ x⊕∼∼ y
(ii) [[(x� y) = [([x⊕ [y) = [[x� [[y

Proof. (ii) By Lemma 2.3 (i) [[(x� y) = [([x⊕ [y). By Lemma 2.3 (ii),(iii)
and Lemma 2.2 (i), [([x⊕ [y) = [([x∨ [y) = [[x∧ [[y = [[x� [[y. (i) is dual.
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3. Subdirect representation

Definition 3.1. A filter F of a HW-algebra A is a subset of A which satisfies
the following conditions:

(F1) 1∈ F
(F2) if x ∈ F and x≤ y, then y ∈ F
(F3) if x ∈ F and y ∈ F , then x� y ∈ F
(F4) if x ∈ F then [[x ∈ F

Notice that the filter defined above is an implicative MV-filter (Definition 4.2.6,
p. 86 [9]) plus the additional condition F4. Then any MV-filter F can be ex-
tended naturally in a filter F? in the following trivial way:

F? := {x ∈ A | ∃y ∈ F : x≥ [[y}

It has to be also noticed that F? is trivially the smallest HW-filter containing F .

Definition 3.2. A filter F of a HW-algebra A is proper iff 0 /∈ F .

Definition 3.3. Let A =〈A,→L,→G,0〉 be a HW-algebra, let F be a filter of A
and x ∈ F . We introduce the definition of filter generated by F ∪{x}, denoted
Fi(F ∪{x}) := {y ∈ A | y≤ i�xn, for some i ∈ F and some n ∈ N}. Further the
filter generated by x, denoted Fi(x) := the filter generated by {1}∪{x}.

Definition 3.4. A filter J of a HW-algebra A is maximal iff it is proper and for
any filter F of A s.t. J ⊆ F , either F = J or F = A.

Definition 3.5. A filter J of a HW-algebra A is prime iff it is proper and if for
any pair of elements x,y ∈ A, either x� y ∈ J or y� x ∈ J.

It can be noticed that in general {1} is a non-prime filter.

Definition 3.6 (Distance function on a HW-algebra A ). Let x,y ∈ A, q(x,y) :=
(x� y)� (y� x).

Definition 3.7. Let F be a filter of a HW-algebra A , ∀x,y ∈ A:
x≡F y⇔ q(x,y) ∈ F .

In order to prove≡F to be a congruence relation we need to prove the following
lemma.

20



A SELF-CONTAINED PROOF OF THE STANDARD COMPLETENESS IN HW-ALGEBRAS

Lemma 3.1. Let F be a filter of a HW-algebra A and let x,y ∈ A, if x⊕ y ∈ F
then [[x⊕ [¬y ∈ F .

Proof. By Lemma 2.1 (i) and (iii) y≤∼∼ y = ¬∼ y = [¬y and thus, by mono-
tonicity, x⊕ y≤ x⊕ [¬y ∈ F . By Lemma 2.3 (ii) x⊕ [¬y = x∨ [¬y ∈ F . By F4
[[(x∨[¬y)∈ F . Hence, by Lemma 2.2 (i) and (ii), [[x∨[[[¬y = [[x∨[¬y ∈ F .
Since in any MV-algebra and then in any HW-algebra x∨ y ≤ x⊕ y we obtain
[[x⊕ [¬y ∈ F .

Theorem 3.1. Let F be a filter of a HW-algebra A , ∀x,y ∈ A: x ≡F y is a
congruence relation on A .

Proof. First we prove that ≡F is an equivalence relation. ≡F is trivially sym-
metric and since any HW-algebra defines an MV-algebra A ?=〈A,⊕,¬,0〉 and
in any MV-algebra x⊕¬x = 1 = 1�1∈ F we have ≡F is reflexive. To prove
transitivity we have just to prove q(x,z) ≥ q(x,y)� q(y,z). We assume famil-
iarity with MV-algebra and lattice properties. 0= y�¬y ≥ (y ∧ z)� (¬y ∧
¬x) = z� (¬z⊕ y)�¬x� (x⊕¬y). Thus ¬(x� z)� (x� y)� (y� z) = 0.
By Lemma 1.1.2 in [9] (p. 9) in any MV-algebra and then in any HW-algebra
¬y�x = 0⇔ y≥ x. It follows (x�z)≥ (x�y)�(y�z). Analogously we obtain
(z� x) ≥ (y� x)� (z� y). Then by monotonicity we have (x� z)� (z� x) ≥
(x�y)� (y� z)� (y�x)� (z�y) that is q(x,z)≥ q(x,y)�q(y,z). Since in [4]
(Theorem 2.5 and 2.6) it is proven x→G y =∼ (x�¬y)⊕y, x→L y = ¬x⊕y =
¬(x�¬y) and since ∼ x = ¬[¬x, in order to prove ≡F preserves→G and→L

we have just to show that ≡F preserves ¬, [ and �. By ¬¬x = x we have triv-
ially that q(x,y) = q(¬x,¬y) and ≡F preserves ¬. About � to prove x ≡F y
and s ≡F t implies x� s ≡F y� t, by F2 and F3 we have just to show that
q(x�s,y� t)≥ q(x,y)�q(s, t). 0= x�s�¬(x�s)≥¬(x�s)�x�(¬x⊕y)�
s�(¬s⊕t)=¬(x�s)�(x∧y)�(s∧t)=¬(x�s)�y�(¬y⊕x)�t�(¬t⊕s)=
¬(x� s)�y� t� (x�y)� (s� t) = ¬((x� s)� (y� t))� (x�y)� (s� t) = 0.
By Lemma 1.1.2 in [9] (p.9) in any MV-algebra and then in any HW-algebra
¬y� x = 0⇔ y ≥ x. This means (x� s)� (y� t) ≥ (x� y)� (s� t). Anal-
ogously we obtain (y� t)� (x� s) ≥ (y� x)� (t � s). By monotonicity we
have q(x� s,y� t) ≥ q(x,y)� q(s, t). Now we show how ≡F preserves [:
q(x,y) ∈ F ⇒ q([x, [y) ∈ F . If (x� y)� (y� x) ∈ F then (x⊕¬y) ∈ F and
(y⊕¬x) ∈ F . By Lemma 3.1 we have ([[x⊕ [¬¬y) ∈ F and ([[y⊕ [¬¬x) ∈ F .
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By F4 and Lemma 2.1 (i), it follows (¬[x⊕ [y)� (¬[y⊕ [x) ∈ F . Thus ≡F is a
congruence relation and it induces a quotient HW-algebra A /F homomorphic
to the original A (for general concepts of universal algebra see [1]).

Moreover, by duality on Chen Chung Chang’s result on MV-algebras [6] with
ideals, if F is a prime MV-filter, then the quotient MV-algebra A /F is linear.
It follows that if F is prime, then the quotient HW-algebras A /F is linear.
Let us now define the last main concepts necessary to present the subdirect
representation Theorem.

Definition 3.8. A direct product of a given family of HW-algebras {A i | i ∈ I}
is a HW-algebra Πi∈IA i= 〈Πi∈IAi,→L,→G,0〉 where Πi∈IAi := the cartesian
product of {Ai | i ∈ I} and the operators are defined componentwise as the oper-
ators of each original MV-algebra A i. The 0-element is obviously the sequence
of all the 0-elements of {Ai | i ∈ I}.

Every element x of a direct product Πi∈IA i of HW-algebras {A i | i ∈ I} is
expressed in the following way: x = 〈x1, ...,xn, ..〉 where each xi belongs to each
HW-algebra A i of Πi∈IA i.

Definition 3.9. Let a HW-algebra Πi∈IA i be a direct product of a family of
HW-algebras {A i | i ∈ I} and j ∈ I. Let π j : Πi∈IAi 7→ A j be the j-th projection
function s.t. ∀x = 〈x1, ...,xn, ..〉 ∈ Πi∈IAi, π j(x) := x j. A HW-algebra A is a
subdirect product of a given family of HW-algebras {A i | i ∈ I} iff there exists
a one-one homomorphism h : A 7→Πi∈IA i such that for any j ∈ I, the compose
map π j ◦h is a homomorphism onto A j.

Obviously every subdirect product of a family of HW-algebras {A i | i ∈ I} is a
subalgebra of the direct product of the same family of HW-algebras.

Theorem 3.2. A HW-algebra A is isomorphic to a subdirect product of a family
of linear HW-algebras if there is a family of prime filters {Fi | i ∈ I} of A such
that

⋂
Fi = {1}.

Proof. By duality to Theorem 1.3.2 in [9].

Remark 2. Given a HW-algebra A = 〈A,→L,→G,0〉, {1} is trivially a HW-
filter of A .
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To prove the next theorem we need the following three lemmas.

Lemma 3.2. In any HW-algebra A , ∀a,x,y,z ∈ A, a ≥ x� y,a ≥ x� z⇒ a ≥
x� (y∨ z).

Proof. By duality to Theorem 1.5 in [6] and axiom 11 of [7] we have a= a∨a≥
(x� y)∨ (x� z) = x� (y∨ z).

Lemma 3.3. In any HW-algebra A , ∀x,y ∈ A, ∀m ∈ N, (x�y)m∨ (y�y)m = 1.

Proof. This lemma is Theorem 3.7 in [6].

Lemma 3.4. In any HW-algebra A , ∀x,y,∈ A, x∨ y = 1⇒ [[x∨ [[y = 1.

Proof. By Lemma 2.1 (i) and (iii), 0≥ [[0= ¬∼ 0=∼ 1. Thus if x∨y = 1 then
[[(x∨ y) =∼ ¬(x∨ y) = 1. By Lemma 2.2 (i) we have [([x∧ [y) = 1. Then, by
Lemma 2.2 (ii), [[x∨ [[y = 1.

Theorem 3.3. Let A be a HW-algebra. For any z ∈ A,z 6= 1, there is a prime
HW-filter F ⊆ A such that z /∈ F .

Proof. {1} is trivially a HW-filter of A and a MV-filter of its MV-algebra term
reduct A ?. Suppose z 6= 1. By the duality between filters and ideals with a
routine application of Zorn’s lemma {1} can be extended into a HW-filter F
which is maximal with respect to the property “z /∈F”. We show that F is prime:
suppose, by ctr., ∃x,y∈A s.t. x�y /∈F and y�y /∈F . We define for any x,y∈A,
F?

x�y := (Fi(F∪{x�y}))?. F?
x�y and F?

y�x are HW-filters containing Fi(F∪{x�
y}) and Fi(F ∪{y� x}). By maximality of F with respect to “z /∈ F”, z ∈ F?

x�y
and z∈F?

y�x. Thus, ∃r∈Fi(F∪{x�y}) and ∃s∈Fi(F∪{y�x}) s.t. z≥ [[r and
z≥ [[s. Now r = i�(x�y)n for some i∈ F and n∈N, s= j�(x�x)m for some
j ∈ F and m ∈ N. Then, by Corollary 2.1, we have that z ≥ [[(i� (x� y)n) =
[[i� [[((x� y)n) and z ≥ [[( j� (y� x)m) = [[ j� [[((y� x)m). It is important
to remind that by two application of Lemma 2.1 (iv), if x ≤ y then [[x ≤ [[y.
Hence, let k = max{n,m}, by monotonicity z ≥ ([[i� [[ j)� [[((x� y)k) and
z≥ ([[i� [[ j)� [[((x�y)k). By Lemma 3.2 we have z≥ ([[i� [[ j)� ([[((x�
y)k)∨ [[((y� x)k)). By Lemma 3.3 (x� y)k ∨ (y� x)k = 1. By Lemma 3.4
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[[((x� y)k)∨ [[((y� x)k) = 1. Hence z≥ [[i� [[ j. Since F is a HW-filter and
i, j ∈ F , by F4 [[i ∈ F and [[ j ∈ F . Thus [[i� [[ j ∈ F . By F2 we have z ∈ F ,
against our ab absurdo hypothesis. Then F is a prime HW-filter.

Now we can state the subdirect representation theorem.

Theorem 3.4. Any HW-algebra A is isomorphic to a subdirect product of a
family of linear HW-algebras.

Proof. We have already all the ingredients. Since for any z ∈ A, {1} can be
extended in a prime HW-filter F such that z /∈ F , we have that {1} =

⋂
{Fi |

Fi is a maximal prime filter of A }. By Theorem 3.2 and Theorem 3.3 we
have the thesis.

4. Standard algebraic completeness

We will prove that an equation defined on the language of the HW-algebras
holds in any HW-algebra if it holds in the standard HW-algebra. We will follow
the track of Chang’s standard completeness theorem for MV-algebras [7]. Then
we assume familiarity with this proof and with all the results utilized to pursue it
(see also [8]). Chang’s proof exploits the completeness of the first order theory
of divisible totally ordered Abelian groups (Chang’s references are [14] and [15]
but, as reported in footnote at page 79 [7], Tarski’s proof has never appeared
explicitly, then for a clear presentation of this result we advise the readers to
consult appendix at page 91 of [8]). As a fundamental step of his proof, Chang
had build a totally ordered abelian group made of infinite copies of an MV-
algebra. Since any HW-algebra has an MV-algebra term reduct we can exploit
the same argument. We introduce this expedient:

Definition 4.1. Let A be a linear HW-algebra. The algebraic structure G A is
defined in the following way, GA := {(n,x) | n ∈ Z,x ∈ A−{1}}. Its operators
are defined as:

(m,x)+(n,y) :=


(n+m,x⊕ y) if x⊕ y 6= 1

(n+m+1,x� y) if x⊕ y = 1
24
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−(n,x) :=


(−n,0) if x = 0

(−(n+1),¬x) if 0 6= x 6= 1

and its related order relation is

(n,x)v (m,y) := n < m or, n = m and x≤ y

Chang in [9] proved that GA = 〈GA,+,−,v,(0,0)〉 is a totally ordered abelian
group. Moreover if we define:

Definition 4.2. Let G =〈G,+,−,0,v〉 be a totally ordered abelian group and
u ∈ G :

Γ(G,u) := {x ∈ G | 0v xv u}
¬x := u− x

x⊕ y := min{u,x+ y}

we can immediately verify that Γ(G ,u) = 〈Γ(G,u),⊕,¬,0〉 is a linear MV-
algebra. By Remark 1, once defined

∼ x :=
{0 if x 6= 0

1 if x = 0

the arising structure Γ(G ,u)?= 〈Γ(G,u),→L,→G,0〉, where for any x,y∈Γ(G,u),

x→L y := ¬x⊕ y and
x→G y :=∼ ¬(¬x⊕ y)⊕ y

is a linear HW-algebra.

Remark 3. The above definition of Gödel implication introduced in [4] (see
Theorem 2.5 and 2.6) is given in terms of∼, ¬ and⊕. It is worth to be observed
that by linearity since in any linear MV-algebra and then in any linear HW-
algebra ¬(¬x⊕y) = x�¬y = 0 if and only if x≤ y, we obtain that in any linear
HW-algebra

x→G y =
{

1 if x≤ y
y otherwise
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We recall that u ∈ G is a strong unit iff for any x ∈ G there exists an n ∈ N s.t.
xv nu. GA is composed of infinite copies of A ; Γ(GA,(1,0))? belongs to them,
then we have:

Theorem 4.1. If A is a linear HW-algebra, Γ(GA,(1,0))? is isomorphic to A .

This result can be generalized to:

Theorem 4.2. If u is the strong unit of a totally ordered abelian group G , there
exists an isomorphism f from G onto H = G Γ,(G,u)? :

i) f (u) = (1,0)
ii) xv y in G ⇔ f (x)v f (y) in H

Proof. It follows either Theorem 2.4.10 in [8] or [7].

The first order language of totally ordered abelian groups theory L′ is composed
by the usual logic symbols and 0,+,-,u,t with their traditional meaning. We
have to fix their corresponding definitions:

Definition 4.3. A language L of a HW-algebra A is composed by:
0 : costant
x1, ...,xn, .. : variables
→L : binary functor
→G : binary functor.

We define inductively a HW-term:
1) 0, x1, ...,xn, .. are HW-terms.
2) If xi and x j are HW-terms, then xi→G x j is a HW-term.
3) If xi and x j are HW-terms, then xi→L x j is a HW-term.

Let p be a HW-term containing the variables x1, ...,xt and assume a1, ...,at are
elements of A . Substituting an element ai ∈A for all occurrences of the variable
xi in p, for i = 1, ..., t, by the above rules 1)-3) and interpreting the symbols
0,→L and→G as the corresponding operations in A , we obtain an element of A,
denoted pA (a1, ...,at). In more detail, proceeding by induction on the number
of operation symbols occurring in p, we define pA (a1, ...,at) as follows:

i) xA
i = ai, for each i = 1, ..., t;

ii) (p→L q)A = (pA →L qA );
iii) (p→G q)A = (pA →G qA );
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By the above definition, given any HW-algebra A we can associate each HW-
term in the variables x1, ...,xn with a function pA : An 7→ A. These functions are
called term functions on A.

A HW-equation on variables x1, ...,xt is an expression p = q, where p and
q are HW-term containing at most the variables x1, ...,xt . We say that a HW-
algebra A satisfies a HW-equation p = q (we write A |= p = q) if and only if
for any sequence of elements (a1, ...,at) ∈ A, pA (a1, ...,at) = qA (a1, ...,at).

Theorem 4.3. If a HW-algebra A is a subdirect product of a family of linear
HW-algebras {A i | i ∈ I}, then A |= p = q⇔ for any i A i |= p = q.

Proof. In the subdirect representation theorem (Theorem 3.4) there is a homo-
morphism from A onto any linear HW-algebra of its subdirect product: the
Łukasiewicz implication operator →L and the Gödel implication operator →G

are preserved into these structures; then every HW-equation continues to hold
in any A i. Vice versa if a HW-equation holds in any A i, it holds in their direct
product Πi∈IA i. Since A is isomorphic to a subalgebra of Πi∈IA i, it holds in
A .

Corollary 4.1. A HW-equation is satisfied in any HW-algebras if and only if it
is satisfied in any linear HW-algebra.

We will report in the following steps Chang’s standard completeness proof, as
it has been presented in [8], to check its validity with respect to the Heyting
Wajsberg algebras case. Every totally ordered abelian group can be embedded
into a divisible totally ordered abelian group. From the completeness of the first
order theory of these last structures it follows that every universal sentence of
the first order theory of totally ordered abelian groups is satisfied in the additive
group Q of rational numbers if and only if it is satisfied in any totally ordered
abelian group [7]. Then any HW-equation has to be associated to an universal
sentence of the first order language of totally ordered abelian groups theory L′ to
exploit its completeness. We will do it by induction on the degree of complexity
of a HW-term.

Definition 4.4. The degree of complexity of a HW-term p: d(p):= the number
of times that symbols→L and→G appear in p.
We associate to any HW-term p a term p′ ∈ L′ by induction on the degree of
complexity of p:
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If d(p)=0 (p=0 or p = xi) then p′ = p.
We suppose to have associated HW-terms until degree of complex-
ity n; then if d(p)=n+1, we can have either:
1) p = q→L r with d(q)≤ n and d(r)≤ n or
2) p = q→G r with d(q)≤ n and d(r)≤ n.
Let z be a free variable that belongs to L′, we define, fir case 1 and
2 respectively:
1) p′ = zu (z−q′+ r′);

2) p′ =

{z if q′ v r′

r′ otherwise
Then we define αpq := ∀x1, ...,xn(0v xi v z

∧
, ...,

∧
0v xn v z)→

p′ = q′.

As a routine it can be checked, by the way G A has been built, that the following
sentence holds:

Proposition 4.1. Let A be a linear HW-algebra, let p = q be a HW-equation;
A |= p = q⇔ αpq(z) is true in G A when we attribute to z the value (1,0).

At last we can introduce:

Theorem 4.4 (Standard Completeness Theorem). A HW-equation is satisfied in
any HW-algebra if and only if it is satisfied in the standard HW-algebra A [0,1].

Proof. ⇐ (not trivial) : By contradiction we suppose there is a HW-algebra
A such that A 6|= p = q. From Corollary 4.1 we infer that there is a linear
HW-algebra B s.t. B 6|= p = q. By Proposition 4.1 above there is an universal
sentence β of the 1o order theory of the totally ordered Abelian groups, β =∀z>
0 αpq(z) s.t. β is false in G B, and hence, by the completeness of totally ordered
abelian groups, β is false in Q (group of rational numbers with usual operations).
It means that there is a c > 0,c ∈ Q s.t. c does not verify β in Q. Let’s consider
f : Q 7→Q defined by f (x) := c−1x. f (c) = 1. f is an isomorphism from Q onto
itself (antiautomorphism), then f preserves falsity of sentences and therefore
β is false in Q when we attribute to z the value 1 ∈ Q. By Theorem 4.2 Q is
isomorphic to G Γ(Q,1)? . Thus β is false in G Γ(Q,1)? with z= 1 and, by Proposition
4.1, Γ(Q,1)? = A [0,1] 6|= p = q.
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