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Abstract

An undirected graph is commonly represented as a set of vertices and a set of doubletons of
vertices; but one can also represent vertices by finite sets so as to ensure that membership mimics,
over those sets, the edge relation of the graph. This alternative modeling, applied to connected
claw-free graphs, recently gave crucial clues for obtaining simpler proofs of some of their properties
(e.g., Hamiltonicity of the square of the graph).

This paper adds a computer-checked contribution. On the one hand we discuss our development,
by means of the Ref verifier, of two theorems on representing graphs by families of finite sets: a weaker
theorem pertains to general graphs, and a stronger one to connected claw-free graphs. Before proving
those theorems, we must show that every graph admits an acyclic, weakly extensional orientation,
which becomes fully extensional when connectivity and claw-freeness are met. This preliminary work
enables injective decoration, à la Mostowski, of the vertices by the sought-for finite sets. By this new
scenario, we complement our earlier formalization with Ref of two classical properties of connected
claw-free graphs. On the other hand, our present work provides another example of the ease with
which graph-theoretic results are proved with the Ref verifier. For example, we managed to define
and exploit the notion of connected graph without resorting to the notion of path.

Key words: Theory-based automated reasoning; proof checking; Referee aka ÆtnaNova; graphs
and digraphs; Mostowski’s decoration.

1 Can graphs be represented as membership digraphs?

One usually views the edges of a graph1 as vertex doubletons; but various ways of representing graphs
can be devised (as quickly surveyed in [10, end of Sec. 2]). Thanks to a convenient choice on how to
represent connected claw-free graphs,2 Milanič and Tomescu [5] proved with relative ease two classical
propositions on graphs of that kind, namely that any such graph owns a near-perfect matching and has a
Hamiltonian cycle in its square; a proof of the somewhat deeper theorem [4] that all connected claw-free
graphs have a vertex-pancyclic square was also attained cheaply through the same representation [13].
Specifically, the facilitation stems from transferring those results to the special class of the membership
digraphs, whose set of vertices is a hereditarily finite set and whose arcs precisely reflect the membership
relation between vertices. Under this change of perspective, a fully formal reconstruction of the first two
results became affordable and, once carried out, was certified correct with the Ref proof-checker [8, 9, 10].

Can we, with equal ease, formalize in Ref the Milanič-Tomescu representation result per se? This
paper provides a positive answer, thus achieving one of the continuations of [10] envisaged in [9, Sec. A.10].

We started with a wide-scope formalization task, by proving with Ref that a graph G whatsoever
admits a set νG of finite sets and an injection f from the vertices of G onto νG such that {x, y} is an
edge of G if and only if either fx ∈ fy or fy ∈ fx holds. The proof articulates as follows:

1We call undirected graphs simply graphs, and directed graphs, digraphs.
2A graph is said to be claw-free if no induced subgraph of its is isomorphic to the graph K1,3, called the claw, depicted

in Fig. 14 of this paper.
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1. For any G = (V,E), there is a D ⊆ V × V s.t. E =
{
{x, y} : [x, y] ∈ D

}
and (V,D) is an acyclic

digraph which is weakly extensional : i.e., any two vertices that share the same out-neighbors have no
out-neighbors.

2. We injectively decorate vertices by putting f v = {f w : [v, w] ∈ D } for each v ∈ V endowed with
out-neighbors, f z = ∅ for one sink z, and by assigning suitable non-null values f u to all sinks u 6= z
in order that weak extensionality ensure the injectivity of f . Note that acyclicity ensures that the
recursive characterization of f makes sense.

The more specific Milanič–Tomescu representation theorem insists, for a connected claw-free graph
G, on the condition

⋃
νG ⊆ νG, which is crucial in the exploitation of the theorem. The new condition

means transitivity, i.e. that x ∈ y ∈ νG must imply x ∈ νG; moreover, it implies that νG is hereditarily
finite. The proof now articulates as follows:

1′. One shows that for any graph G = (V,E) as said, there is a D ⊆ V × V such that E =
{
{x, y} :

[x, y] ∈ D
}

and (V,D) is an acyclic digraph which is extensional : i.e., no two vertices in V have the
same out-neighbors.

2′. One decorates vertices by putting f v = {f w : [v, w] ∈ D } à la Mostowski, for all v ∈ V .
Extensionality ensures the injectivity of f .

(Notice that 2. subsumes 2′. altogether, because an extensional digraph has exactly one sink.)

It was proved in [5] that other classes of graphs admit such a representation by hereditarily finite sets,
for example graphs with a Hamiltonian path. However, it is an NP-complete problem to decide in full
generality whether a given graph G admits such a transitive set νG [6]. The inductive proof of 1′. that will
be followed in our formalization task offered in this paper is actually a simplification of the original proof
in [5], one that also leads to a linear-time algorithm for constructing the transitive set νG [7]. Moreover,
the fact that the class of claw-free graphs is the largest class of graphs, closed under taking induced
subgraphs, with the property that every connected member G of it admits such a transitive νG (since the
claw does not admit one), makes this representation theorem rather worthy. Further evidence of the close
kinship between connected claw-free graphs and membership digraphs comes from the observation that
the transitivity property is actually crucial to obtain the two simple proofs presented in [8, 9, 10]. For
example, since the removal of an ∈-maximal element from a transitive set νG leads to another transitive
set, this representation gives an immediate hook for inductive arguments (see the details in [10]).

The proof-checking experiment embodying 1. and 2. is discussed in Section 3, after a glimpse of the
main features of the Ref system in Section 2. Then we move on to a discussion on the more engaging
experiment embodying 1′. and 2′.—also carried out with Ref—in Section 4.

The experiments on which we will report are available at http://www2.units.it/eomodeo/GraphsViaMembership.
html. They contain 30 definitions and 109 theorems, organized in 8 Theorys. The overall number of
proof lines is 1818, there are 5 proofs whose length exceeds 50 lines (the highest length being 73), and
processing the entire scenario takes approximately 15 seconds.

2 Some ingredients of our Ref scenario

While referring the interested reader to [10, Sec. 3] for more detailed information of the Ref proof
checker, here we briefly illustrate its formalism with examples taken from the experiment on which we
are reporting.

What one submits to Ref, to have its correctness verified, is a scenario: namely, a script file consisting
of definitions and of theorems endowed with their proofs; a construct, named Theory, enables one to
package definitions and theorems into reusable proofware components. A variant of the Zermelo-Fraenkel
set theory, postulating global choice, regularity, and infinity, underlies the logical armory of Ref: this is
apparent from the fifteen or so inference rules available in the proof-specification language, of which only
a few sprout directly from first-order predicate calculus, while most embody some form of set-theoretic
reasoning. Multi-level syllogistic [3] acts as a ubiquitous inference mechanism, while Theorys add a
touch of second-order reasoning ability to Ref’s overall machinery.

Our initial figures offer a glimpse of the Ref’s language. Fig. 1 shows the definitions of graph-theoretic
notions relevant to the proof-checking experiment on which we report, and introduces the notions of
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Def acyclic: [Acyclicity] Acyclic(V,D) ↔Def

〈∀w ⊆ V | w 6= ∅→ 〈∃t ∈ w | ∅= {y ∈ w | [t, y] ∈ D} 〉〉
Def xtens0: [Extensionality] Extensional(V,D) ↔Def

〈∀x ∈ V, y ∈ V,∃z | ([x, z] ∈ D↔ [y, z] ∈ D)→ x = y〉
Def xtens1: [Weak extensionality] WExtensional(V,D) ↔Def

Extensional
(
V ∩ dom(D ∩ (V×V)),D ∩ (V×V)

)
Def orien : [Orientation of a graph] Orientates(D,V,E) ↔Def

E ∩ {{x, y} : x ∈ V, y ∈ V\ {x}} =
{{

p[1], p[2]
}

: p ∈ D | p =
[
p[1], p[2]

]}
Def maps1: [Map domain, i.e. first components of pairs in map] dom(F) =Def{

x[1] : x ∈ F
}

Def maps2: [Map restriction] F|A =Def{
p ∈ F | p[1] ∈ A

}
Def maps3: [Value of single-valued function] F�X =Def

arb
(
F|{X}

)[2]

Def maps4: [Map range, i.e. second components of pairs in map] range(F) =Def{
p[2] : p ∈ F

}
Def maps5: [Map predicate] Is map(F) ↔Def

〈∀p ∈ F | p =
[
p[1], p[2]

] 〉
Def maps6: [Single-valued map] Svm(F) ↔Def

Is map(F) & 〈∀p ∈ F, q ∈ F | p[1] = q[1]→ p = q〉
Def Finite : [Finitude] Finite(F) ↔Def

〈∀g ∈ P(PF)\ {∅} ,∃m | g ∩ Pm = {m} 〉
Def HerFin: [Hereditary finitude] HerFin(S) ↔Def

Finite(S) & 〈∀x ∈ S | HerFin(x)〉

Figure 1: Four properties refer to digraphs, all others to generic sets

mapping (‘Svm’)3 and finitude, and the recursive property of hereditary finitude. This figure already
shows the salient role of set abstraction terms—called, simply, setformers—in Ref: e.g., the setformer{{

p[1], p[2]
}

: p ∈ D | p =
[
p[1], p[2]

]}
designates the set of all doubletons (or singletons) which result from

the ordered pairs in D when the positions of their components are purposely forgotten.
The first definition in Fig. 1 specifies the property of a digraph (V,D) in which every non-null set

w of vertices has a sink, namely a t ∈ w devoid of outgoing edges [t, y] with y ∈ w; if there are finitely
many edges, this amounts to forbidding cycles [x0, x1] , [x1, x2] , . . . , [xk, x0] of edges. The semantics
of Ref’s built-in arb operator, which picks from every set w 6= ∅ a t = arb(w) such that t ∈ w and
∅= {y ∈ w | y ∈ t} is analogous: in fact arb is meant to witness that membership is a well-founded
relation, thus excluding cycles x0 ∈ x1 ∈ · · · ∈ xk ∈ x0. (For definiteness, one also puts arb(∅) = ∅).

Fig. 2 collects various claims about the notions defined in Fig. 1: theorems (here reported without
proofs), which will surface again in this paper.

Fig. 3 shows the formal development, with Ref, of a proof. Each one of the nine lines forming this
proof, duly indicates which inference rule is employed to get the corresponding statement. This proof
invokes twice a Theory named finiteImage, whose interface is displayed in Fig. 4. While finiteImage does
not return any symbol, the other, subtler Theory displayed in the same figure, namely finiteInduction,
returns a symbol, finΘ, representing an ⊆-minimal set which meets P—given that at least one finite
set satisfying property P exists. Likewise, the Theory finiteAcycLabeling displayed in Fig. 5 returns
a labeling of a given acyclic digraph, thereby furnishing the technique for decorating the graph à la
Mostowski (see further on, upper part of Fig. 10).

Note that certain Theorys, e.g. the one shown in Fig. 6, are encompassed by specialized inference

3To enforce a useful distinction, we denote by G(x) the application of a global function G to an argument x (‘global’
meaning that the domain of G consists of all sets), while denoting by f�x the application to x of a map f (typically
single-valued), viewed as a set of pairs.
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Thm restr2: [Each pair in a map belongs to the shoot of an element of its domain]
P = [X,Y] →

(
P ∈ F|{Z}↔ (Z = X & [Z,Y] ∈ F)

)
Thm image4: [Meaning of application] Svm(F) & P ∈ F → P =

[
P[1],F�P[1]

]
Thm image5: [Form of a single-valued map] Svm(F) ↔ F = {[x,F�x] : x ∈ dom(F)}

Thm singletonMap3: [Transplant of singleton sub-map]
Svm(F) & [X,Y] ∈ F & Z /∈ dom(F) & G = F\ {[X,Y]} ∪ {[Z,Y]}→

Svm(G) & dom(G) =dom(F)\ {X} ∪ {Z} & range(G) = range(F)

Thm vertexInduced0: [Loop-freeness gets inherited] E⊆ {{x, y} : x ∈ V, y ∈ V\ {x}}→
E ∩ {{x, y} : x ∈ W, y ∈ W} = E ∩ {{x, y} : x ∈ W, y ∈ W\ {x}}

Thm orientation0: [Orientation does not take pseudo-edges into account] W ⊇ V →(
Orientates(D,V,E)↔ Orientates(D,V,E ∩ {{x, y} : x ∈ W, y ∈ W})

)
Thm voidgraph1: [The void has all virtues]

V ⊆ {X}→ Extensional(V, ∅) & Orientates(∅,V,E)

Thm voidgraph2: [The void has all virtues, contd.] Acyclic(V, ∅)

Figure 2: Miscellaneous theorems proved with Ref. The respective proofs consist of 11, 7, 24, 20, 5, 7, 9,
and 6 inference lines

Thm part whole0. Svm(F) →
(
Finite(F)↔ Finite(dom(F))

)
. Proof:

Suppose not(f1)⇒ Auto
Suppose⇒ Finite(f1)

APPLY 〈 〉 finiteImage
(
s0 7→ f1, f(X) 7→ X[1]

)
⇒ Finite

({
x[1] : x ∈ f1

})
Use def(dom)⇒ false

Discharge⇒ Auto

〈f1〉↪→T image5⇒ f1 = {[x, f1�x] : x ∈ dom(f1)}
APPLY 〈 〉 finiteImage

(
s0 7→ dom(f1), f(X) 7→ [x, f1�x]

)
⇒

Finite({[x, f1�x] : x ∈ dom(f1)})
EQUAL⇒ false

Discharge⇒ Qed

Figure 3: Example of a theorem proved in the Ref language

Theory finiteImage
(
s0, f(X)

)
Finite(s0)

⇒
Finite

(
{f(x) : x ∈ s0}

)
End finiteImage

Theory finiteInduction
(
s0,P(S)

)
Finite(s0) & P(s0)

⇒ (finΘ)

〈∀S | S⊆ finΘ→ Finite(S) &
(
P(S)↔ S = finΘ

)〉
End finiteInduction

Figure 4: Interfaces of two Theorys regarding finitude

Theory finAcycLabeling
(
v0, d0, h(S,X)

)
Acyclic(v0, d0) & Finite(v0)

⇒ (labΘ)
Svm(labΘ) & dom(labΘ) = v0

〈∀x ∈ v0 | labΘ�x = h
({

labΘ�p[2] : p ∈ d0|{x} | p[2] ∈ v0

}
, x
) 〉

End finAcycLabeling

Figure 5: Interface of a Theory usable to label an acyclic digraph
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rules eliminating the need to invoke them directly. In contrast, a built-in first-order Skolemization
mechanism available in Ref has a close kinship to Theorys, and hence gets invoked like them by means of
the keyword APPLY . For example, inside the Theory finiteInduction of which Fig. 4 shows the interface,
finΘ gets formalized in two steps: one proves

Thm finiteInduction0. 〈∃m | {s⊆ s0 | P(s)} ∩ Pm = {m} 〉
in the first place and then, by invoking

APPLY 〈v1Θ : finΘ〉 Skolem⇒Thm finiteInduction1. {s⊆ s0 | P(s)} ∩ PfinΘ = {finΘ} ,
assigns a name to an entity satisfying the existential claim of that theorem. Likewise, after having
constructed the Theory finiteInduction, by invoking

APPLY 〈finΘ : w1〉 finiteInduction
(
s0 7→ w2,

P(W) 7→
(
W ⊆ v0 & W 6= ∅ & ¬〈∃t ∈W | ∅= {y ∈W | [y, t] ∈ d0} 〉

))
⇒

〈∀v | v ⊆ w1→ Finite(v) &(
v ⊆ v0 & v 6= ∅ & ¬〈∃t ∈ v | ∅= {y ∈ v | [y, t] ∈ d0} 〉↔ v = w1

)〉 ,
we instantiate the constant w1 as needed inside the proof shown in Fig. 7.

Theory isSvm
(
s0, f(X),P(X)

)
⇒

Svm
(
{[x, f(x)] : x ∈ s0 | P(x)}

)
dom({[x, f(x)] : x ∈ s0 | P(x)}) = {x ∈ s0 | P(x)} & {x ∈ s0 | true} = s0

range({[x, f(x)] : x ∈ s0 | P(x)}) = {f(x) : x ∈ s0 | P(x)}
End isSvm

Figure 6: Interface of a Theory recognizing a mapping, of which it shows domain and range

Thm acyclicity3: [Local sources in an acyclic graph]
W 6= ∅ & Acyclic(V,D) & Finite(V) & V ⊇W →

〈∃t ∈ W | ∅= {y ∈ W | [y, t] ∈ D} 〉. Proof:
Suppose not(w2, v0, d0)⇒ Auto

Use def(Acyclic)⇒ Stat1 : 〈∀w ⊆ v0 | w 6= ∅→ 〈∃t ∈ w | ∅= {y ∈ w | [t, y] ∈ d0} 〉〉 &
Finite(w2)

APPLY 〈finΘ : w1〉 finiteInduction
(
s0 7→ w2,P(W) 7→(

W ⊆ v0 & W 6= ∅ & ¬〈∃t ∈ W | ∅= {y ∈ W | [y, t] ∈ d0} 〉))⇒ Stat7 :

〈∀v | v ⊆ w1→ Finite(v) &

(v ⊆ v0 & v 6= ∅ & ¬〈∃t ∈ v | ∅= {y ∈ v | [y, t] ∈ d0} 〉↔ v = w1)〉
〈w1〉↪→Stat7⇒ Stat8 : ¬〈∃t ∈ w1 | ∅= {y ∈ w1 | [y, t] ∈ d0} 〉 & w1 6= ∅ & w1 ⊆ v0

〈w1〉↪→Stat1⇒ Stat9 : 〈∃t ∈ w1 | ∅= {y ∈ w1 | [t, y] ∈ d0} 〉
〈a〉↪→Stat9⇒ Stat10 : {y ∈ w1 | [a, y] ∈ d0} = ∅ & a ∈ w1

Suppose⇒ w1 = {a}
〈a〉↪→Stat8⇒ Stat11 : {y ∈ w1 | [y, a] ∈ d0} 6= ∅
〈c〉↪→Stat11⇒ [a, a] ∈ d0

〈a〉↪→Stat10⇒ false
Discharge⇒ Auto

〈w1\ {a} 〉↪→Stat7⇒ Stat14 : 〈∃t ∈ w1\ {a} | ∅= {y ∈ w1\ {a} | [y, t] ∈ d0} 〉
〈t0〉↪→Stat14⇒ {y ∈ w1\ {a} | [y, t0] ∈ d0} = ∅ & t0 ∈ w1\ {a}
〈t0〉↪→Stat8⇒ Stat16 : {y ∈ w1 | [y, t0] ∈ d0} 6= ∅
〈b〉↪→Stat16⇒ Stat17 : b /∈ {y ∈ w1\ {a} | [y, t0] ∈ d0} & [b, t0] ∈ d0 & b ∈ w1

〈b〉↪→Stat17⇒ [a, t0] ∈ d0

〈t0〉↪→Stat10⇒ false; Discharge⇒ Qed

Figure 7: Another example of a theorem proved in the Ref language

Proving the claim of the theorem in Fig. 7 amounts, in practice, to showing that the ‘converse’ of
the acyclic digraph under consideration, namely the digraph where the direction of each edge has been
inverted, is also acyclic: straightforward changes to this proof, with only two additional inference lines,
would in fact lead to a proof of
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t0

a

w1

v0

w1\{a}

Figure 8: A graphical representation of the proof of Thm acyclicity3 from Fig. 7

Acyclic(V,D) & Finite(V)→ Acyclic(V,
{[

p[2], p[1]
]

: p ∈ D | p =
[
p[1], p[2]

]}
).

The eighteen lines shown in Fig. 7 form an argument by contradiction, which goes as follows (cf. Fig. 8).
Suppose that the acyclic digraph (v0, d0) and a non-null set w2 of its vertices make a counterexample
to the claim; use finite induction to get a minimal w1 constituting in its turn, in combination with
(v0, d0), a counter-example. Hence, v0 ⊇ w1, w1 6= ∅, and each t ∈ w1 has at least one entering edge
[y, t] ∈ d0 with y ∈ w1. On the other hand, acyclicity ensures us that there is an a ∈ w1 devoid of
outgoing edges [a, y] with y ∈ w1; which implies w1 6= {a}, else we would readily get the contradiction
[a, a] ∈ d0 & [a, a] /∈ d0. Thanks to the minimality of w1, we know there is a t0 ∈ w1 \ {a} devoid of
entering edges [a, y] with y ∈ w1\{a}; but then [a, t0] must be the edge entering t0 in w1, which leads us to
the sought contradiction. As the reader will perceive at once from Fig. 7, the formal counterpart of this
argument resorts extensively to substitutions of new constants for existential variables and of suitably
chosen terms for universal variables; but notice: these classical inference mechanisms are enabled, in Ref,
to also interact with setformers.

As illustrated by Fig. 1, it is often expedient to formulate definitions in rather liberal terms. For
example, the short comments associated with the definitions maps1 through maps4 suggest that the
argument F of the dom, restriction, application, and range operations is typically a map, viz. a set of
pairs; but it would be pedantry to constrain in this sense the formal definitions, causing more complicated
theorem statements and, consequently, unduly cumbersome proofs. Likewise, the notions of acyclicity
and extensionality are usually referred to a pair (V,D) where D (representing the set of edges of a digraph)
is included in the Cartesian square of the set V of vertices, which in its turn is typically finite. But we
feel no need to enforce this: for, it proves at times useful, in inductive arguments about graphs (cf. the
proof in Fig. 7), to consider a smaller and smaller subset of an initial set of vertices without bothering
to narrow the set of edges correspondingly. Then it will go without saying that we are considering
vertex-induced subgraphs of the initial graph.

Still in Fig. 1, when it comes to specifying an orientation D of a graph (V, E), we neither insist that
E must be included in the set

{
{x, y} : x ∈ V, y ∈ V\ {x}

}
of doubletons, nor that D must consist of

pairs. More simply, we choose to ignore the part of E which is not formed by the said doubletons and
the part of D which is not a map.

Occasionally it pays off to extend this liberal attitude to the higher Theory level: in Fig. 5, for
example, we are not putting the condition d0 ⊆ v0 × v0 among the assumptions of finAcycLabeling,
even though it will be met in typical applications of this Theory . However, the type-free set-theoretic
foundation of Ref will not prevent us from choosing, in specific situations, a less liberal attitude. Cau-
tiousness will emerge later on, as shown by the assumptions of the Theorys in Fig. 10; and the finitude
assumption of the just cited Theory finAcycLabeling already offers an instance of it. That assumption,
in fact, while reflecting a customary way of looking at graphs, goes against a habit of set-theorists, who
primarily speculate about infinite entities (cf. [2]).

Before ending this section, we want to stress that it is often unnecessary to package a group of
theorems into an autonomous Theory : recourse to a Theory is appropriate when (as in the cases
described in Figures 4 and 5) either the proofs of a group of statements depend on some common global
function or predicate, or there is a rationale for concealing the details of the definition of some new
symbol. When the cohesion of a group of theorems only lies in the fact that they concern the same
notions, cf. e.g. Figures 9 and 16, then proving them consecutively inside the same scenario (viz. in the
same proof-script file) should be enough to ensure their convenient usability.
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Thm acyclicity0: [Adjunction of an outer vertex to a digraph cannot disrupt acyclicity]
V×V ⊇ D & X /∈ V & V ⊇ S & Acyclic(V,D) → Acyclic

(
V ∪ {X} ,D ∪ ({X} ×S)

)
Thm acyclicity1: [Reduction of the set of edges of a digraph preserves its acyclicity]

Acyclic(V,D) & V′ ⊆ V & D′ ⊆ D → Acyclic(V′,D′)

Thm acyclicity2: [Acyclic digraphs are devoid of self-loops and of symmetrical arcs]
Acyclic(V,D) & {Y,X} ⊆ V & [X,Y] ∈ D → [Y,X] /∈ D & X 6= Y

Thm acyclicity4: [Every acyclic graph has sinks and sources]
Acyclic(V,D) & Finite(V) & V 6= ∅→

〈∃s ∈ V, t ∈ V | ∅= {y ∈ V | [s, y] ∈ D ∨ [y, t] ∈ D} 〉
Thm acyclicity5: [No triangle inside an acyclic digraph]

Acyclic(V,D) & {X,Y,Z} ⊆ V & {[X,Y] , [Y,Z]} ⊆ D → [Z,X] /∈ D

Thm acyclicity6: [Adjunction of an inner vertex to a digraph cannot disrupt acyclicity]
V×V ⊇ D & X /∈ V & V ⊇ S & Acyclic(V,D) → Acyclic

(
V ∪ {X} ,D ∪ (S× {X})

)

Figure 9: Properties enjoyed by acyclicity

Theory finMostowskiDecoration(v0, d0)
v0× v0 ⊇ d0 & v0 6= ∅ & Finite(v0) & Acyclic(v0, d0) & WExtensional(v0, d0)
⇒ (mskiΘ)

Svm(mskiΘ) & dom(mskiΘ) = v0

〈∀w | w ∈ dom(d0)→ mskiΘ�w =
{

mskiΘ�p[2] : p ∈ d0|{w}
}

& mskiΘ�w 6= ∅〉
∅ ∈ range(mskiΘ) & 〈∀y | y ∈ range(mskiΘ)→ Finite(y)〉
〈∀x, y | {x, y} ⊆ v0 & mskiΘ�x = mskiΘ�y→ x = y〉
〈∀y | y ∈ v0→ (mskiΘ�y ∈ mskiΘ�x↔ [x, y] ∈ d0)〉

End finMostowskiDecoration

Theory finGraphRepr(v0, e0)
e0 ⊆ {{x, y} : x ∈ v0, y ∈ v0\ {x}} & v0 6= ∅ & Finite(v0)
⇒ (wskiΘ)

Svm(wskiΘ) & dom(wskiΘ) = v0 & ∅ ∈ range(wskiΘ)

〈∀y | y ∈ range(wskiΘ)→ Finite(y)〉
〈∀x, y | {x, y} ⊆ v0 & wskiΘ�x = wskiΘ�y→ x = y〉
〈∀x, y | {x, y} ⊆ v0→

(
(wskiΘ�y ∈ wskiΘ�x ∨ wskiΘ�x ∈ wskiΘ�y)↔ {x, y} ∈ e0

)〉
〈∀x | wskiΘ�x ∩ range(wskiΘ) 6= ∅→ wskiΘ�x⊆ range(wskiΘ)〉

End finGraphRepr

Figure 10: Theorys on Mostowski’s decoration and on graph representation

3 Basic edge-to-membership translation

As said in the introduction, our first experiment amounts to showing how:

(1) to convert an arbitrary undirected graph into a weakly extensional acyclic digraph,

(2) to decorate the digraph resulting from (1) by sets, so that its edges mirror membership.

This overall formalization task, and its subtask (2), culminate in the two Theorys shown in Fig. 10. In
particular, the Theory finMostowskiDecoration implements (2); while the key theorem, corresponding
to (1), which makes the Theory finGraphRepr easily obtainable from the other one is stated in Ref as
follows:

Thm xtensionalization0. Finite(V) & S ∈ V→
〈∃d | Orientates(d,V,E) & Acyclic(V, d) & WExtensional(V, d) & S /∈ range(d)〉.

In view of its centrality in our scenario, we wish to briefly sketch the proof of the orientability
theorem xtensionalization0 cited above, whose specification in Ref required 71 proof lines. Arguing by
contradiction, suppose that there is a counterexample; then, exploiting the finiteness hypothesis, take
a minimal counterexample v1, s1, e0. We are supposing that there is no acyclic, weakly extensional
orientation of the graph

(
v1, e0∩

{
{x, y} : x ∈ v1, y ∈ v1 \{x}

})
having s1 as a source; whereas, for every

v0 ( v1, one can orient
(
v0, e0 ∩

{
{x, y} : x ∈ v0, y ∈ v0 \ {x}

})
by an acyclic and weakly extensional
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d0 ⊆ v0 × v0, for any vertex t ∈ v0, so that t plays the role of a source. Let, in particular, v0 = v1 \ {s1}.
Unless s1 is an isolated vertex, an acyclic and weakly extensional orientation of v0 exists that has as a
source a chosen neighbor t1 of s1 (see Fig. 11). However, that orientation could trivially be extended
into a weakly extensional acyclic orientation of the graph with vertices v1 so that s1 becomes a source;
this contradiction shows that s1 cannot have neighbors in v1, which is also untenable: any orientation for
v0, in fact, works also as an orientation for v1 and, as such, has each isolated vertex of v1—in particular
s1—as a source.

s1

t1

v0

v1

Figure 11: Extending a weakly extensional acyclic orientation of
(
v0, e0∩

{
{x, y} : x ∈ v0, y ∈ v0 \{x}

})
in which a neighbor t1 of s1 acts as a source, by making s1 a source

Alongside with the issue of getting a weakly extensional orientation of any given graph, another
important issue is how to construct, inside the Theory finMostowskiDecoration, the labeling mskiΘ of the
given acyclic, weakly extensional digraph (v0, d0) so that it meets the desired conditions (e.g., injectivity
over v0). To clarify what will follow, let us see how to express certain properties that a vertex s can
enjoy in any digraph (v0 , d0), i.e. simply under assumption that d0 ⊆ v0× v0:

s is a source: s ∈ v0 \ range(d0) ,
s is a sink: s ∈ v0 \ dom(d0) ,
s is an out-neighbor of x: s ∈

{
p[2] : p ∈ d0|{x}

}
(= range(d0|{x})) .

The construction of mskiΘ can be carried out in many ways, and we have opted for the following
rather simple technique (see Fig. 12). Consider the global functions

lbl(W) =

 if W ∈ dom(d0) ∪ {arb(v0\dom(d0))}
then ∅
else {{v0} ∪ (v0\ {W})} fi ,

h(S,X) = S ∪ lbl(X) ,

and use this h to instantiate the third parameter of finAcycLabeling. Putting mskiΘ = labΘ will automat-
ically enforce the condition (stated with a slight redundancy)

mskiΘ�x =
{

mskiΘ�p[2] : p ∈ d0|{x} | p[2] ∈ v0

}
∪ lbl(x)

for all x ∈ v0; moreover, mskiΘ readily turns out to be a function sending each vertex to a finite set and
sending the sink arb(v0\dom(d0)) to ∅.

a b c

d

e

∅ lbl(b) lbl(c)

{∅, lbl(b), lbl(c)}

{{∅, lbl(b), lbl(c)}}

lbl(b) = {{a, b, c, d, e}, a, c, d, e}

lbl(c) = {{a, b, c, d, e}, a, b, d, e}

Figure 12: Injective labeling of a weakly extensional acyclic digraph with vertex set v0 = {a, b, c, d, e}

The injectivity of mskiΘ is obvious over the set v0\dom(d0) of all sinks (because, there, lbl is injective
and mskiΘ and lbl take the same values); from the sinks it easily extends to all other vertices: cardinality
considerations (see below) show in fact that a value-collision between a sink and an internal vertex is
impossible, and the weak extensionality assumption prevents collisions to occur between internal vertices.
Still inside finMostowskiDecoration, one derives from the injectivity of mskiΘ that u ∈ mskiΘ�x is satisfied
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if and only if either u = mskiΘ�y and [x, y] ∈ d0, or u is the set—if any—satisfying {u} = lbl(x). Note
that the second case of this alternative vanishes when the digraph has just one sink, i.e. it is extensional.

Let us take a closer look at the ‘cardinality considerations’ which we have just alluded to. For the
purposes of the Ref scenario on which we are reporting, we do not need a theory of cardinals of any
sophistication: instead, since we mostly deal with finite sets, we can rely on various facts on finitude
such as

Thm fin0. Y ⊇ X & Finite(Y)→ Finite(X) ,
Thm fin1. Finite(F)→ Finite(F ∪ {X}) ,
Thm fin2. Finite({X}) & Finite(∅) ,
Thm part whole0. Svm(F)→

(
Finite(F)↔ Finite(dom(F))

)
,

Thm part whole1. Svm(H) & Finite(H) & range(H)⊇ dom(H)→ range(H) =dom(H) ,

the last of which (which costs us just a 25-line Ref proof) states that ‘the part is smaller than the whole’.
These—especially Thm part whole1—, as we will now see, enable suppression of any explicit reference

to the notion of cardinality from the proof of

Thm finMostowskiDecoration7. {X,Y} ⊆ v0 & mskiΘ�Y ∈ mskiΘ�X→ X ∈ dom(d0) ,

whose claim means that the label of a vertex never belongs to the label of a sink. This statement, inside
the Theory finMostowskiDecoration, shall be exploited in its turn to prove the important injectivity and
isomorphism claims

Thm finMostowskiDecoration9. {X,Y} ⊆ v0 & mskiΘ�X = mskiΘ�Y→ X = Y ,

Thm finMostowskiDecoration10. Y ∈ v0→ (mskiΘ�Y ∈ mskiΘ�X↔ [X,Y] ∈ d0) .

The proof of Thm finMostowskiDecoration7 roughly goes as follows. Arguing by contradiction, assume
that mskiΘ�w1 ∈ mskiΘ�w0, where w0,w1 are a sink and a vertex of (v0, d0). Since w0 is a sink, we have
mskiΘ�w0 = lbl(w0) = {{v0} ∪ (v0\ {w0})}; therefore mskiΘ�w1 = {v0} ∪ (v0\ {w0}), and w1 cannot
be a sink. Thus mskiΘ�w1 =

{
mskiΘ�p[2] : p ∈ d0|{w1}

}
. A contradiction, here, lies in the fact that

{v0} ∪ (v0\ {w0}) has a cardinality—the same as v0—which
{

mskiΘ�p[2] : p ∈ d0|{w1}
}

cannot reach:

this is because range(d0|{w1})—where p[2] takes its values—is a strict subset of v0, since Acyclic(v0, d0)
implies w1 ∈ v0 \ range(d0|{w1}), by Thm acyclicity2 (cf. Fig. 9).

Within our Ref scenario we have managed to formalize the ending of the above argument-by-contradiction
in the following slicker (albeit slightly less intuitive) terms, taking advantage of Thm part whole1 to avoid
talking about cardinalities.

Put h0 =
{

[y,mskiΘ�y] : y ∈ range(d0|{w1})
}

, so that h0 is single-valued, dom(h0) = range(d0|{w1}) ⊆
v0, range(h0) =

{
mskiΘ�p[2] : p ∈ d0|{w1}

}
= {v0} ∪ (v0\ {w0}), and hence v0 ∈ range(h0).

Momentarily suppose that w0 /∈ dom(h0); then dom(h0)⊆ range(h0) and we can resort to Thm part whole1

to get range(h0) =dom(h0); but then v0 ∈ range(h0) = dom(h0)⊆ v0 must hold, whence a contra-
diction readily arises, because v /∈ v holds for any v. On the other hand, if w0 ∈ dom(h0) then we can
retouch h0 by replacing its pair [w0, h0�w0] by [w1, h0�w0]. Since w1 /∈ range(d0|{w1}), we get in this man-
ner a single-valued map h1 which has the same range as the original h0 and is still finite. It will satisfy
dom(h1)⊆ range(h1), enabling derivation of v0 ∈ range(h1) = dom(h1)⊆ v0 via Thm part whole1,
hence leading us to a contradiction again.

Fig. 13 shows the formal counterpart of the proof just outlined. Note that the keyword Proof which
normally precedes the beginning of a Ref’s proof is here boosted by a suffixed ‘+’ sign, which activates
the behind-the-scenes type-inference mechanism discussed in [11, pp. 122-127] and in [12, Section 4.3.7].
That mechanism exempts us from having to explicitly cite any of the Thms fin0, fin1, and part whole0

cited above. Similarly, the inference rule TELEM hides exploitation of the Theory isSvm seen in Fig. 6,
while SIMPLF has a certain ability to unravel setformers, and Set monot to detect inclusions between
them. Besides the already mentioned part whole1 and some of the Thms displayed in Fig. 2, the proof
under discussion cites the following:

Thm finMostowskiDecoration1: [No self-loops in an acyclic digraph] W /∈ range(d0|{W}) ,

Thm finMostowskiDecoration3: [Images of internal vertices under Mostowski’s decoration]

W ∈ dom(d0)→mskiΘ�W =
{

mskiΘ�p[2] : p ∈ d0|{W}

}
& mskiΘ�W 6= ∅ ,

Thm finMostowskiDecoration4: [Images of sinks under Mostowski’s decoration]

W ∈ v0\dom(d0)→mskiΘ�W = lbl(W) & mskiΘ�W /∈ {{v0} ∪ (v0\ {∅})} .
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Thm finMostowskiDecoration7. {X,Y} ⊆ v0 & mskiΘ�Y ∈ mskiΘ�X → X ∈ dom(d0). Proof+:
Suppose not(w0,w1)⇒ Auto

Use def
(
lbl(w0)

)
⇒ Auto

〈w0〉↪→TfinMostowskiDecoration4(?)⇒ w1 ∈ v0 & mskiΘ�w1 = {v0} ∪ (v0\ {w0})
Suppose⇒ w1 /∈ dom(d0)

〈w1〉↪→TfinMostowskiDecoration4⇒ lbl(w1) = {v0} ∪ (v0\ {w0})

Use def
(
lbl(w1)

)
⇒ Auto

Discharge⇒ Auto

〈w1〉↪→TfinMostowskiDecoration3⇒{
mskiΘ�p[2] : p ∈ d0|{w1}

}
= {v0} ∪ (v0\ {w0}) & w1 ∈ dom(d0)

Loc def ⇒ h0 =
{

[y,mskiΘ�y] : y ∈ range(d0|{w1})
}

TELEM⇒ Svm(
{

[y,mskiΘ�y] : y ∈ range(d0|{w1})
}

) &

range(
{

[y,mskiΘ�y] : y ∈ range(d0|{w1})
}

) =
{

mskiΘ�y : y ∈ range(d0|{w1})
}

&

dom(
{

[y,mskiΘ�y] : y ∈ range(d0|{w1})
}

) = range(d0|{w1})

Use def(range)⇒ range(d0|{w1}) =
{

p[2] : p ∈ d0|{w1}
}

SIMPLF⇒
{

mskiΘ�y : y ∈
{

p[2] : p ∈ d0|{w1}
}}

=
{

mskiΘ�p[2] : p ∈ d0|{w1}
}

Assump⇒ Finite(v0) & Acyclic(v0, d0) & v0 6= ∅ & v0× v0 ⊇ d0

Suppose⇒ range(d0|{w1}) 6⊆ v0

Use def(|)⇒
{

p[2] : p ∈
{

q ∈ d0 | q[1] ∈ {w1}
}}
6⊆ v0

Set monot⇒
{
q[2] : q ∈ d0 | q[1] ∈ {w1}

}
⊆
{
q[2] : q ∈ d0 | q[1] ∈ v0× v0

}
Use def(× )⇒

{
q[2] : q ∈ d0 | q[1] ∈ {w1}

}
⊆
{
q[2] : q ∈ {[x, y] : x ∈ v0, y ∈ v0}

}
SIMPLF⇒ Stat1 :

{
[x, y][2] : x ∈ v0, y ∈ v0

}
6⊆ v0

〈y1〉↪→Stat1⇒ Stat2 : y1 ∈
{

[x, y][2] : x ∈ v0, y ∈ v0

}
& y1 /∈ v0

〈x′, y′〉↪→Stat2⇒ false
Discharge⇒ Stat3 : range(d0|{w1})⊆ v0

EQUAL⇒ Svm(h0) & range(h0) = {v0} ∪ (v0\ {w0}) & dom(h0)⊆ v0 & Finite(h0)
Use def(dom(h0))⇒ Auto

〈h0〉↪→Tpart whole1⇒ Stat6 : w0 ∈
{

p[1] : p ∈ h0

}
〈p0〉↪→Stat6⇒ p0 ∈ h0 & w0 = p0

[1]

〈h0, p0〉↪→T image4⇒ p0 =
[
p0

[1], h0�p0
[1]
]

Loc def ⇒ Stat7 : y0 = h0�p0
[1] & h1 = h0\ {[w0, y0]} ∪ {[w1, y0]}

EQUAL⇒ [w0, y0] ∈ h0 & Finite(h1) & dom(h0) = range(d0|{w1})

〈w1〉↪→TfinMostowskiDecoration1⇒ w1 ∈ v0\{w0}\dom(h0)

〈h0,w0, y0,w1, h1〉↪→T singletonMap3(Stat3?)⇒
Svm(h1) & dom(h1)⊆ v0\ {w0} & range(h1) = {v0} ∪ (v0\ {w0})

〈h1〉↪→Tpart whole1(Stat7?)⇒ false; Discharge⇒ Qed

Figure 13: Formalized proof of a major theorem needed to prove our decoration injective

4 Representing connected claw-free graphs as membership di-
graphs

Our richer construction must associate with each connected claw-free graph G = (V,E) an injection f
from V onto a transitive, hereditarily finite set νG so that {x, y} ∈ E if and only if either f x ∈ f y or
f y ∈ f x.

The new notions entering into play are rendered formally as follows:

ClawFreeG(V,E) ↔Def 〈∀w, x, y, z | {w, x, y, z} ⊆ V & {{w, y} , {y, x} , {y, z}} ⊆ E →
(x = z ∨ w ∈ {z, x} ∨ {x, z} ∈ E ∨ {z,w} ∈ E ∨ {w, x} ∈ E)〉 ,

Connected(E) ↔Def E 6⊆ {∅} ∧ {b⊆ E |
⋃

b ∩
⋃

(E \ b) = ∅} ⊆ {∅,E} .

Here, the first definiens requires that no subgraph of (V,E) induced by four vertices has the shape of a
‘Y’ (see Fig. 14). The second one requires that the set E of edges can nohow be partitioned into multiple
vertex-disjoint blocks.

A fact that we will need is that every connected graph has a vertex whose removal (along with all
edges incident to it) does not disrupt connectivity; for example, each white vertex in Fig. 15 enjoys this
property. The existence of such a non-cut vertex is proved with relative ease for a tree—nevertheless
the proof of this fact, as formulated in Thm tree1 of Fig. 16, turned out to be the longest in our scenario.
So, in order to cheaply achieve our goal, we define4

4Concerning the notion of hank, generalizing the notion of cycle, cf. [10, Sec. 4.4].
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w

y

x z

Figure 14: The claw K1,3

b
c

Figure 15: A partition of the set of edges of a connected graph; b and c, the blocks of this partition, are
not vertex-disjoint

HankFree(T) ↔Def 〈∀e ⊆ T | e = ∅ ∨ 〈∃ a ∈ e | a 6⊆
⋃

(e \ {a})〉〉 ,
Is tree(T) ↔Def Connected(T) ∧ HankFree(T) ,

and recast, to then use it in the Theory shown in Fig. 17, the connectivity assumption as the equivalent
one that (v0, e0) has a ‘spanning tree’:

HasSpanningTree(V, E) ↔Def 〈∃t | Is tree(t) &
⋃

t = V & (V = {arb(V)} ∨ t⊆ E)〉 .
This eases things: for, any vertex with fewer than 2 incident edges in the spanning tree of a connected
graph easily turns out to be a non-cut vertex of the graph, as summarized by Thm connectivity2 of
Fig. 16.

Thm tree0: [A tree cannot be null or have a null edge] Is tree(T) →∅ /∈ T ∪ {T}

Thm tree1: [Non-singleton trees can be pruned]
Is tree(T) & T 6= {arb(T)} & T⊆ {{x, y} : p ∈ T, x ∈ p, y ∈ p}→
〈∃e ∈ T, u ∈ e | {a ∈ T | u /∈ a} = T\ {e} & Is tree(T\ {e})〉

Thm tree2: [Every singleton other than {∅} is a tree] A 6= ∅↔ Is tree({A})

Thm tree4: [In a tree obtained by removing an edge from a tree, only one vertex gets lost]
Is tree(T) & {X,Y} = A & A ∈ T & Is tree(T\ {A}) & {e ∈ T | X /∈ e} = T\ {A}→⋃

(T\ {A}) =
⋃

T\ {X}

Thm connectivity1: [No vertex is isolated in a graph endowed with a spanning tree]
HasSpanningTree(V,E) & E⊆ {{x, y} : x ∈ Z, y ∈ Z\ {x}} & U ∈ V & V\ {U} 6= ∅→
〈∃w ∈ V\ {U} | {U,w} ∈ E〉

Thm connectivity2: [Every graph endowed with a spanning tree has a non-cut vertex]
HasSpanningTree(V,E) & E⊆ {{x, y} : x ∈ V, y ∈ V\ {x}} & V 6= {arb(V)}→
〈∃u ∈ V | HasSpanningTree(V\ {u} , {a ∈ E | u /∈ a})〉

Figure 16: Properties enjoyed by trees and, respectively, by graphs endowed with spanning trees. Thm
tree1, implying that trees have non-cut vertices, called for a 90-line Ref proof

We now aim at getting the analogue, shown in Fig. 17, of the Theory finGraphRepr discussed in
Section 3 (cf. Fig. 10). For that, we must again exploit the Theory finMostowskiDecoration; in addition,
a key theorem will ensure the acyclic extensional orientability of a connected and claw-free graph:

Thm cClawFreeG2. Finite(V) & HasSpanningTree(V,E) &

ClawFreeG(V,E) & E⊆ {{x, y} : x ∈ V, y ∈ V\ {x}}→
〈∃d⊆ V×V | Orientates(d,V,E) & Acyclic(V, d) & Extensional(V, d)〉.
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Theory herfinCCFGraphRepr(v0, e0)
e0 ⊆ {{x, y} : x ∈ v0, y ∈ v0\ {x}} & Finite(v0)
HasSpanningTree(v0, e0) & ClawFreeG(v0, e0)

⇒ (transΘ)
Svm(transΘ) & dom(transΘ) = v0

〈∀x, y | {X,Y} ⊆ v0 & transΘ�X = transΘ�Y→ X = Y〉
〈∀x, y | {X,Y} ⊆ v0→

(transΘ�Y ∈ transΘ�X ∨ transΘ�X ∈ transΘ�Y↔ {X,Y} ∈ e0)〉
{y ∈ range(transΘ) | y 6⊆ range(transΘ)} = ∅
range(transΘ) 6= ∅ & HerFin(range(transΘ))

End herfinCCFGraphRepr

Figure 17: Theory on representing a connected claw-free graph via membership

Let us outline the proof of this Thm, whose Ref formalization is shown in appendix. Arguing by con-
tradiction, we assume that there is a counterexample (v2, e2) to the claim. Then, thanks to the finiteness
hypothesis, we can take a minimal counterexample (v1, e1) with v1 ⊆ v2 and e1 = e2 ∩ {{x, y} : x ∈ v1, y ∈ v1}.
Note that v1 cannot be a singleton, else a contradiction would arise: the null set of edges would in fact
be an extensional, acyclic orientation of (v1, e1).

Since v1 is not a singleton we can, thanks to Thm connectivity2 of Fig. 16, consider a non-cut vertex
x0 of (v1, e1). Now consider the graph (v0, e0) induced by (v1, e1) on the strict subset v1\ {x0} of the set
of vertices. This graph inherits the claw-freeness property, due to the easy

Thm cClawFreeG0. ClawFreeG(V,E) & W ⊆ V→ ClawFreeG(W, {a ∈ E | a⊆W}) ;

therefore, the minimality assumption concerning v1 ensures us that we can obtain an extensional acyclic
orientation d0 of this induced graph.

We first deal with the case when the sink of the acyclic digraph (v1\ {x0} , d0) it not adjacent to x0

through e1 (see Fig. 18, left). In this case, as suggested by the Thm cClawFreeG1 shown below (which
has a Ref proof of 73 lines), we orient the edges incident to x0 as out-going from x0, to get an extensional
acyclic orientation d1 for (v1, e1). Note that the neighbors of x0 through e1 are {t ∈ v1 | {x0, t} ∈ e1},
and hence d1 = d0 ∪ ({x0} × {t ∈ v1 | {x0, t} ∈ e1}).

Let us briefly digress to give clues about the proof of the auxiliary lemma

Thm cClawFreeG1. W = V ∪ {U} & U /∈ V &
{

s ∈ V | D|{s} = ∅ & {s,U} ∈ E
}
= ∅ &

E⊆ {{x, y} : x ∈ Z, y ∈ Z\ {x}} & ClawFreeG(W,E) & HasSpanningTree(W,E) &

Orientates(D,V,E) & Acyclic(V,D) & Extensional(V,D) & D⊆ V×V &

D′ = D ∪ ({U} × {t ∈ V | {U, t} ∈ E})→
Orientates(D′,W,E) & Acyclic(W,D′) & Extensional(W,D′) & D′ ⊆W×W

as instantiated for the purposes of the case at hand, namely with W = v1, V = v1 \ {x0}, U = x0,
D = d0, E = e1, Z = v2, and D′ = d1. Consider the digraph in which we orient all edges incident to x0

as out-going from x0; this is acyclic, by Thm acyclicity0 (cf. Fig. 9). Assume for a contradiction that
there exists an x1 ∈ v1\ {x0} having the same out-neighborhood as x0. Since, by Thm connectivity1, x0

is not an isolated vertex, the set {t ∈ v1 | {x0, t} ∈ e1} of neighbors of x1 through e1 is non-null. Since
Acyclic(v1\ {x0} , d0) holds, we can consider a vertex y0 ∈ {t ∈ v1 | {x0, t} ∈ e1} having no successors in
common with x0. Vertex y0 is not a sink of (v1\ {x0} , d0) by our initial assumption, thus there exists
a successor z0 of y0 which is neither adjacent to x0 nor to x1, in consequence of the choice of y0, of the
fact that x0 and x1 have the same out-neighbors, and of Thm acyclicity5. Since also x0 and x1 are not
adjacent, by Thm acyclicity2, it follows that the set {x0, x1, y0, z0} is a claw of (v1, e2), a contradiction.

x0

x1

y0 z0

v0

v1
x0

s1

v0

v1

Figure 18: The main cases in the proof of Thm cClawFreeG2. On the left, the acyclic digraph
(v1\ {x0} , d0) has no sink adjacent to x0 through e1; on the right, the complementary case
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Next we deal with the case when the sink s1 of (v1\ {x0} , d0) is adjacent to x0 through e1 (see Fig. 18,
right). Here we resort to the auxiliary lemma

Thm xtensionalization2. W = V ∪ {U} & U /∈ V & S ∈ V & {y ∈ V | [S, y] ∈ D} = ∅ &

S ∈ {t ∈W | {U, t} ∈ E} & E⊆ {{x, y} : x ∈ Z, y ∈ Z\ {x}} &

Orientates(D,V,E) & Acyclic(V,D) & Extensional(V,D) & D⊆ V×V→
〈∃d⊆W×W | Orientates(d,W,E) & Acyclic(W, d) & Extensional(W, d)〉

which, for our purposes, gets instantiated with W = v1, V = v1 \ {x0}, U = x0, S = s1, D = d0, E = e2,
and Z = v2.

The construction of d carried out inside the (51-line) proof of this Thm simply consists in orienting
all edges incident to x0 as in-coming to x0: thus an acyclic d results, by Thm acyclicity6 (cf. Fig. 9), and
d has x0 as its unique sink; moreover, d is extensional because s1 has x0 as its sole out-neighbor, whereas
every other vertex in v1\ {x0} has at least one other vertex in v1\ {x0} as out-neighbor.

Conclusions

The formalization experiment on which we have reported in Section 4 responds to a referee of our previous
paper [10], who expressed the wish to see a Ref-checked proof of the representation theorem for connected
claw-free graphs. We gladly accepted the challenge because, as we claimed in the introductory section of
[10], it is precisely in the light of the said representation theorem that the change of perspective proposed
there (with claw-free sets in place of claw-free graphs) acquires its full significance. The new Ref scenario
hence is a due companion to our former one.

Thanks to plain definitions of various graph-theoretic definitions, e.g. acyclicity, we were able to
implement most proofs without a big effort (the proofs of the six claims in Fig. 9, for example, required
30, 7, 7, 25, 15, and 27 inference lines). Yet, since the present bottleneck is the proof of Thm tree1 (cf.
Fig. 16), we feel obliged to deepen the formalization—which could have not belonged to this paper—of
graph connectivity.

As reported in Section 3, we have also proved with Ref a representation result referring to a graph
whatsoever, whose formal verification had been promised in [9]. This other result lies at a more fun-
damental level than the representation, through membership digraphs, of graphs belonging to special
classes (connected claw-free graphs, graphs endowed with a Hamiltonian path, cf. [5]). Its experimental
set up and the proof techniques involved are pretty much the same as for the other case study, but
the intermediate acyclic digraph now turns out to be weakly extensional instead of just extensional;
hence it would be modeled more naturally through a set with atoms than through one belonging to von
Neumann’s renowned cumulative hierarchy [14]. However, cf. [1, p. 54]:

Even in this case, one might still wish to prevent the existence of unrestricted atoms. In
any case, for the “genuine” sets, Extensionality holds and the other sets are merely harmless
curiosities.

To get rid of such ‘harmless curiosities’ as atoms, we had to design a technique which, in the end, would
remain hidden inside our Theory finMostowskiDecoration. Nevertheless we wanted our technique to be
as light as possible, because sooner or later we will need similar techniques to handle more challenging
situations, involving—as we expect—infinite graphs. The reader will judge whether we have achieved
our goal, at least so far, parsimoniously enough.

Our representation theorems exploit sets demandingly: not only have we gone beyond the conventional
view that the edges of a graph / digraph simply are doubletons / ordered pairs, but also, as just recalled,
we have eliminated atoms from our sets. Also, we have required that the set representing a claw-free
graph be transitive. Putting heavy restraints in the formulation of representation theorems is essential
in order that a verifier well versed only about first principles can indeed serve as a proof assistant in
specific domains.

Proof-verification can highly benefit from representation theorems of the kind illustrated in this
paper. On the human side, such results disclose new insights by shedding light on a discipline from
unusual angles; on the technological side, they enable the transfer of proof methods from one realm of
mathematics to another. This opinion made us invest, in parallel with the studies reported above, in
the celebrated theorem about representing Boolean algebras through Stone spaces. Reporting about
graphs deserved priority, though, because we see issues regarding them as pre-algorithmic and, as such,
application-oriented. Even the two propositions on the orientability of graphs discussed above are based
on two algorithms of which, in a very definite sense, they prove the correctness.
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c 6= ∅ ↔ b = c〉
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A Ref proof on connected claw-free graphs

Acyclic extensional orientability of a connected, claw-free graph

Thm cClawFreeG2.
Finite(V) & HasSpanningTree(V,E) & E⊆ {{x, y} : x ∈ V, y ∈ V\ {x}} & ClawFreeG(V,E) →

〈∃d⊆ V×V | Orientates(d,V,E) & Acyclic(V, d) & Extensional(V, d)〉. Proof:
1 Suppose not(v2, e2)⇒ Auto∥∥∥∥∥

Arguing by contradiction, suppose that there is a counterexample v2, e2 to the
claim. Then, thanks to the finiteness hypothesis, we can take a minimal coun-
terexample v1, e1 with v1 ⊆ v2 and e1 = e2 ∩ {{x, y} : x ∈ v1, y ∈ v1}.

2 〈e2, v2, v2〉↪→T vertexInduced0⇒ e2 ∩ {{x, y} : x ∈ v2, y ∈ v2} = e2 & e2 = e2 ∩ {{x, y} : x ∈ v2, y ∈ v2\ {x}}
3 EQUAL⇒ HasSpanningTree(v2, e2 ∩ {{x, y} : x ∈ v2, y ∈ v2}) &

ClawFreeG(v2, e2 ∩ {{x, y} : x ∈ v2, y ∈ v2}) &

¬〈∃d⊆ v2× v2 | Orientates(d, v2, e2) & Acyclic(v2, d) & Extensional(v2, d)〉
4 APPLY 〈finΘ : v1〉 finiteInduction

(
s0 7→ v2,P(S) 7→

(
HasSpanningTree(S, e2 ∩ {{x, y} : x ∈ S, y ∈ S}) &
ClawFreeG(S, e2 ∩ {{x, y} : x ∈ S, y ∈ S}) &

¬〈∃d⊆ S× S | Orientates(d, S, e2) & Acyclic(S, d) & Extensional(S, d)〉))⇒
Stat3 : 〈∀S | S⊆ v1→ Finite(S) &

(
HasSpanningTree(S, e2 ∩ {{x, y} : x ∈ S, y ∈ S}) &

ClawFreeG(S, e2 ∩ {{x, y} : x ∈ S, y ∈ S}) &

¬〈∃d⊆ S×S | Orientates(d, S, e2) & Acyclic(S, d) & Extensional(S, d)〉↔ S = v1

)〉
5 〈v1〉↪→Stat3⇒ HasSpanningTree(v1, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1}) &

ClawFreeG(v1, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1}) &

Stat4 :¬〈∃d⊆ v1× v1 | Orientates(d, v1, e2) & Acyclic(v1, d) & Extensional(v1, d)〉∥∥∥∥We exclude that v1 can be a singleton, else a contradiction would arise. In this
case, in fact, an extensional acyclic orientation of v1, e1 is the null set of edges.

6 Suppose⇒ v1 = {arb(v1)}
7 〈∅〉↪→Stat4⇒ Auto

8 〈v1,arb(v1) , e2〉↪→T voidgraph1⇒ Auto

9 〈v1〉↪→T voidgraph2⇒ Auto

10 Discharge⇒ Auto∥∥∥∥ Since v1 is not a singleton, thanks to Thm connectivity2, we can consider a non-cut
vertex x0 of v1, e1.

11 〈e2, v2, v1〉↪→T vertexInduced0⇒ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} ⊆ {{x, y} : x ∈ v1, y ∈ v1\ {x}}
12 〈v1, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} 〉↪→T connectivity2⇒ Stat10 : 〈∃u ∈ v1 |

HasSpanningTree(v1\ {u} , {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | u /∈ a})〉
13 〈x0〉↪→Stat10⇒ x0 ∈ v1 &

HasSpanningTree(v1\ {x0} , {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a})
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Acyclic extensional orientability of a connected, claw-free graph (contd.)

∥∥∥∥∥∥∥∥∥
Now consider the graph v0, e0 induced by v1, e1 on the strict subset v1\ {x0} of
the set of vertices. Before we can utilize the induction hypothesis, which trivially
applies to this subgraph, in order to get an acyclic and extensional orientation d0

of its vertices, we must specify the set of edges of the induced subgraph in two
convenient, equivalent ways.

14 Suppose⇒ Stat11 : {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a} 6=
e2 ∩ {{x, y} : x ∈ v1\ {x0} , y ∈ v1\ {x0}}

15 〈a1〉↪→Stat11⇒ Auto

16 Suppose⇒ Stat12 : a1 ∈ {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a}
17 〈 〉↪→Stat12⇒ Stat13 : a1 ∈ {{x, y} : x ∈ v1, y ∈ v1} &

a1 /∈ {{x, y} : x ∈ v1\ {x0} , y ∈ v1\ {x0}} & x0 /∈ a1

18 〈x4, y4, x4, y4〉↪→Stat13⇒ false

19 Discharge⇒ Stat14 : a1 ∈ {{x, y} : x ∈ v1\ {x0} , y ∈ v1\ {x0}} &
a1 /∈ {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a} & a1 ∈ e2

20 〈x5, y5, {x5, y5} 〉↪→Stat14⇒ Stat15 : {x5, y5} /∈ {{x, y} : x ∈ v1, y ∈ v1} & x5, y5 ∈ v1\ {x0}
21 〈x5, y5〉↪→Stat15⇒ false

22 Discharge⇒ {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a} =
e2 ∩ {{x, y} : x ∈ v1\ {x0} , y ∈ v1\ {x0}}

23 Suppose⇒ Stat16 : {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a} 6=
{a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | a⊆ v1\ {x0}}

24 〈a3〉↪→Stat16⇒ Stat17 : a3 ∈ {{x, y} : x ∈ v1, y ∈ v1} & x0 /∈ a3 & a3 6⊆ v1\ {x0}
25 〈x6, y6〉↪→Stat17⇒ false

26 Discharge⇒ {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | x0 /∈ a} =
{a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | a⊆ v1\ {x0}}

27 Suppose⇒¬
(
HasSpanningTree(v1\ {x0} , e2 ∩ {{x, y} : x ∈ v1\ {x0} , y ∈ v1\ {x0}})&

ClawFreeG(v1\ {x0} , e2 ∩ {{x, y} : x ∈ v1\ {x0} , y ∈ v1\ {x0}})
)

28 〈v1, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} , v1\ {x0} 〉↪→T cClawFreeG0⇒
ClawFreeG(v1\ {x0} , {a ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} | a⊆ v1\ {x0}})

29 EQUAL⇒ false
30 Discharge⇒ Auto

31 〈v1\ {x0} 〉↪→Stat3⇒ Stat18 : 〈∃d⊆ (v1\ {x0})× (v1\ {x0}) |
Orientates(d, v1\ {x0} , e2) & Acyclic(v1\ {x0} , d) & Extensional(v1\ {x0} , d)〉

32 〈d0〉↪→Stat18⇒ Orientates(d0, v1\ {x0} , e2) & Acyclic(v1\ {x0} , d0) &
Extensional(v1\ {x0} , d0) & d0 ⊆ (v1\ {x0})× (v1\ {x0})∥∥∥∥∥∥∥∥∥∥∥

We first deal with the case when the acyclic, extensional digraph v1\ {x0} , d0 has
no sink adjacent to x0 through e1 In this case, as suggested by Thm cClawFreeG1,
we orient the edges incident to x0 as out-going from x0, to obtain an exten-
sional acyclic orientation for v1, e1. Note that the neighbors of x0 through e1 are
{t ∈ v1 | {x0, t} ∈ e1}, hence d1 = d0 ∪ ({x0} × {t ∈ v1 | {x0, t} ∈ e1}), although
our specification of d1 will not be so transparent.

33 Suppose⇒
{

s ∈ v1\ {x0} | d0|{s} = ∅ & {s, x0} ∈ e2 ∩ {{x, y} : x ∈ v1, y ∈ v1}
}
= ∅

34 〈v1, v1\ {x0} , d0, e2〉↪→Torientation0⇒ Orientates(d0, v1\ {x0} , e2 ∩ {{x, y} : x ∈ v1, y ∈ v1})

35 Loc def ⇒ d1 = d0∪({x0}× {t ∈ v1\ {x0} | {x0, t} ∈ e2∩ {{x, y} : x ∈ v1, y ∈ v1}})
36 ELEM⇒ e2 ⊆ {{x, y} : x ∈ v2, y ∈ v2\ {x}} & v1 = v1\ {x0} ∪ {x0}
37 〈v1, v1\ {x0} , x0, d0, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1} , v2, d1〉↪→T cClawFreeG1(?)⇒

Stat21 : d1 ⊆ v1× v1 & Orientates(d1, v1, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1}) &
Acyclic(v1, d1) & Extensional(v1, d1)

38 〈v1, v1, d1, e2〉↪→Torientation0⇒
Orientates(d1, v1, e2) ↔ Orientates(d1, v1, e2 ∩ {{x, y} : x ∈ v1, y ∈ v1})

39 〈d1〉↪→Stat4⇒ false

40 Discharge⇒Stat22 :
{

s∈v1\ {x0} |d0|{s}= ∅ &{s, x0}∈e2∩{{x, y} : x ∈ v1, y ∈ v1}
}
6= ∅
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Acyclic extensional orientability of a connected, claw-free graph (contd.)

∥∥∥∥∥Next we deal with the case when the acyclic, extensional digraph v1\ {x0} , d0

has its sink s1 adjacent to x0 through e1. In this case, as suggested by Thm
xtensionalization2, we orient the edges incident to x0 as in-coming to x0.

41 〈s1〉↪→Stat22⇒ Stat23 : {s1, x0} ∈ e2 & s1 ∈ v1\ {x0} & d0|{s1} = ∅
42 Suppose⇒ Stat24 : s1 /∈ {t ∈ v1 | {x0, t} ∈ e2}
43 〈s1〉↪→Stat24⇒ false;

44 Discharge⇒ Auto

45 〈v1, v1\ {x0} , x0, s1, d0, e2, v2〉↪→T xtensionalization2⇒
Stat25 : {y ∈ v1\ {x0} | [s1, y] ∈ d0} 6= ∅

46 〈y7〉↪→Stat25⇒ y7 ∈ v1\ {x0} & [s1, y7] ∈ d0

47 〈 [s1, y7] , s1, y7, d0, s1〉↪→T restr2⇒ false; Discharge⇒ Qed
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