Didattica
Mathematical Optimisation
Modalità d'esame
- L'esame può essere preparato singolarmente o da un gruppo composto al massimo da due persone.
- L'esame consiste di tre parti
- Scelta di un articolo (paper) su cui realizzare il progetto.
- Il paper deve essere stato pubblicato non prima dell'anno 2020 in uno dei seguenti journals:
- Il paper deve trattare un problema per cui è proposto un modello di programmazione lineare (mista-) intera.
- Salvo indicazioni contrarie del docente, tutte le tecniche proposte nel paper, anche eventuali euristiche, devono essere incluse nel progetto.
- Il paper è a scelta dello studente/gruppo previa conferma da parte del docente, che potrà fornire indicazioni ulteriori sull'esecuzione del lavoro.
- Implementazione di un modello (o di una serie di modelli) di programmazione lineare (mista-) intera.
- Il linguaggio di programmazione da utilizzare è python. Come solver si deve utilizzare Gurobi.
- Il codice consegnato deve contenere
- un file test.py in cui vengono eseguiti tutti gli algoritmi proposti (modello + eventuali euristiche) su istanze piccole;
- un file scalability.py che deve essere quello utilizzato per l'analisi di scalabilità degli algoritmi.
- Una volta inviato il codice al docente via mail, lo studente/gruppo deve preparare una presentazione con slides del lavoro svolto la cui durata deve essere al massimo di 35 minuti.
- La presentazione verrà effettuata in presenza in una data da concordarsi con il docente.
- L'esposizione della presentazione deve coinvolgere tutti i membri del gruppo in maniera equa.
- Non c'è limite di tempo da quando si riceve l'approvazione del paper scelto a quando si invia la mail con l'implementazione.
- Nel caso (frequente) in cui dal paper non sia possibile ricavare i dati di input del modello implementato, sarà cura dello studente/gruppo creare un dataset opportuno.
- Sarà valutata l'analisi della scalabilità del modello implementato, cioè come si comporta da un punto di vista computazionale il modello all'aumentare delle dimensioni dell'istanza.
- Saranno valutati eventuali migliorie e/o estensioni del modello presente nel paper scelto.
- All'esposizione seguiranno domande del docente inerenti o legate al progetto.
- Non è possibile scegliere un paper che sia stato già assegnato (vedi di seguito).
Papers già assegnati
- Al-Shihabi, S., & AlDurgam, M. M. (2020). The contractor time–cost–credit trade-off problem: integer programming model, heuristic solution, and business insights. International Transactions in Operational Research, 27(6), 2841-2877.
- Hochbaum, D. S., Rao, X., & Sauppe, J. (2022). Network flow methods for the minimum covariate imbalance problem. European Journal of Operational Research, 300(3), 827-836.
- Zhang, S., Hua, L., & Yu, B. (2022). Peak-easing strategies for urban subway operations in the context of COVID-19 epidemic. Transportation Research Part E: Logistics and Transportation Review, 102724.
- Hughes, M. S., Lunday, B. J., Weir, J. D., & Hopkinson, K. M. (2021). The multiple shortest path problem with path deconfliction. European Journal of Operational Research, 292(3), 818-829.
- Brekkå, I., Randøy, S., Fagerholt, K., Thun, K., & Vadseth, S. T. (2022). The Fish Feed Production Routing Problem. Computers & Operations Research, 144, 105806.
- Fontaine, P. (2022). The vehicle routing problem with load-dependent travel times for cargo bicycles. European Journal of Operational Research, 300(3), 1005-1016.
- Ramos, N., de Rezende, P. J., & de Souza, C. C. (2022). Optimal area polygonization problems: Exact solutions through geometric duality. Computers & Operations Research, 105842.
- Xie, L., Thieme, N., Krenzler, R., & Li, H. (2021). Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems. European Journal of Operational Research, 288(1), 80-97.
- Kabadurmus, O., Kazançoglu, Y., Yüksel, D., & Pala, M. Ö. (2022). A circular food supply chain network model to reduce food waste. Annals of Operations Research, 1-31.
- Jamili, N., van den Berg, P. L., & de Koster, R. (2022). Quantifying the impact of sharing resources in a collaborative warehouse. European Journal of Operational Research, 302(2), 518-519.
- Xu, C., Chang, W., & Liu, W. (2022). Data-driven decision model based on local two-stage weighted ensemble learning. Annals of Operations Research, 1-34.
- dos Santos, A. G., Viana, A., & Pedroso, J. P. (2022). 2-echelon lastmile delivery with lockers and occasional couriers. Transportation Research Part E: Logistics and Transportation Review, 162, 102714.
- Li, X., Huang, Y. H., Fang, S. C., & Zhang, Y. (2020). An alternative efficient representation for the project portfolio selection problem. European Journal of Operational Research, 281(1), 100-113.
- Pottel, S., & Goel, A. (2022). Scheduling activities with time-dependent durations and resource consumptions. European Journal of Operational Research, 301(2), 445-457.
- Sun, Y., Wang, S., Shen, Y., Li, X., Ernst, A. T., & Kirley, M. (2022). Boosting ant colony optimization via solution prediction and machine learning. Computers & Operations Research, 143, 105769.
- Mancini, S., Triki, C., & Piya, S. (2022). Optimal selection of touristic packages based on user preferences during sports mega-events. European Journal of Operational Research, 302(3), 819-830.
- Pina-Pardo, J. C., Silva, D. F., & Smith, A. E. (2021). The traveling salesman problem with release dates and drone resupply. Computers & Operations Research, 129, 105170.
- Gandra, V. S., Çalik, H., Toffolo, T. A., Carvalho, M. A. M., & Berghe, G. V. (2022). The vessel swap-body routing problem. European Journal of Operational Research, 303(1), 354-369.
- Alonso, M. T., Martinez-Sykora, A., Alvarez-Valdes, R., & Parreño, F. (2022). The pallet-loading vehicle routing problem with stability constraints. European Journal of Operational Research, 302(3), 860-873.
- Bhaya, A., & Kaszkurewicz, E. (2022). The generalized cash balance problem: optimization-based one step ahead optimal control. International Transactions in Operational Research.
- Alozie, G. U., Arulselvan, A., Akartunal?, K., & Pasiliao Jr, E. L. (2021). Efficient methods for the distance-based critical node detection problem in complex networks. Computers & Operations Research, 131, 105254.
- Luo, Y., Golden, B., Poikonen, S., Wasil, E., & Zhang, R. (2023). The paired mail carrier problem. European Journal of Operational Research, 308(2), 801-817.
- Salama, M. R., & Srinivas, S. (2022). Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transportation Research Part E: Logistics and Transportation Review, 164, 102788.
- Poikonen, S., & Golden, B. (2020). Multi-visit drone routing problem. Computers & Operations Research, 113, 104802.
- Bacci, T., Mattia, S., & Ventura, P. (2020). A branch-and-cut algorithm for the restricted block relocation problem. European Journal of Operational Research, 287(2), 452-459.
- Silva, A., Coelho, L. C., Darvish, M., & Renaud, J. (2022). A cutting plane method and a parallel algorithm for packing rectangles in a circular container. European Journal of Operational Research, 303(1), 114-128.
- Zheng, J., Hong, Y., Xu, W., Li, W., & Chen, Y. (2022). An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem. Computers & Operations Research, 143, 105772.
- Salehipour, A. (2022). An Optimization Method for Characterizing Two Groups of Data. International Transactions in Operational Research.
- Ahmadian, M. M., & Salehipour, A. (2022). Heuristics for flights arrival scheduling at airports. International Transactions in Operational Research, 29(4), 2316-2345.
- Akhlaghi, V. E., & Campbell, A. M. (2022). The two-echelon island fuel distribution problem. European Journal of Operational Research, 302(3), 999-1017.
- Tönissen, D. D., & Schlicher, L. (2021). Using 3D-printing in disaster response: The two-stage stochastic 3D-printing knapsack problem. Computers & Operations Research, 133, 105356.
- Mancini, S., Gansterer, M., & Hartl, R. F. (2021). The collaborative consistent vehicle routing problem with workload balance. European Journal of Operational Research, 293(3), 955-965.
- Krutein, K. F., & Goodchild, A. (2022). The isolated community evacuation problem with mixed integer programming. Transportation Research Part E: Logistics and Transportation Review, 161, 102710.
- Che, Y., Hu, K., Zhang, Z., & Lim, A. (2021). Machine scheduling with orientation selection and two-dimensional packing for additive manufacturing. Computers & Operations Research, 130, 105245.
- Xu, M., Yan, X., & Yin, Y. (2022). Truck routing and platooning optimization considering drivers’ mandatory breaks. Transportation Research Part C: Emerging Technologies, 143, 103809.
- Demeulemeester, T., Goossens, D., Hermans, B., & Leus, R. (2023). A pessimist’s approach to one-sided matching. European Journal of Operational Research, 305(3), 1087-1099.
- Karsu, Ö., & Solyalı, O. (2023). A new formulation and an effective matheuristic for the airport gate assignment problem. Computers & Operations Research, 151, 106073.
- Morgenroth, C., Boysen, N., Schwerdfeger, S., & Weidinger, F. (2021). Scheduling taxi services for a team of car relocators. Computers & Operations Research, 128, 105188.
- Kyriakakis, N. A., Marinaki, M., Matsatsinis, N., & Marinakis, Y. (2022). A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning. European Journal of Operational Research, 300(3), 992-1004.
- Bazirha, M., Kadrani, A., & Benmansour, R. (2023). Stochastic home health care routing and scheduling problem with multiple synchronized services. Annals of Operations Research, 320(2), 573-601.
- Zhang, Y., Lin, W. H., Huang, M., & Hu, X. (2021). Multi-warehouse package consolidation for split orders in online retailing. European Journal of Operational Research, 289(3), 1040-1055.
- Luo, Y., Golden, B., Poikonen, S., & Zhang, R. (2022). A fresh look at the Traveling Salesman Problem with a Center. Computers & Operations Research, 143, 105748.
- Witteman, M., Deng, Q., & Santos, B. F. (2021). A bin packing approach to solve the aircraft maintenance task allocation problem. European Journal of Operational Research, 294(1), 365-376.
- Xu, Y., Wandelt, S., & Sun, X. (2021). Airline integrated robust scheduling with a variable neighborhood search based heuristic. Transportation Research Part B: Methodological, 149, 181-203.
- Dell'Amico, M., Montemanni, R., & Novellani, S. (2023) Pickup and Delivery with Lockers. Transportation Research Part C: Emerging Technologies, 148, 104022.
- Kurowski, K., Pecyna, T., Slysz, M., Różycki, R., Waligóra, G., & Węglarz, J. (2023). Application of quantum approximate optimization algorithm to job shop scheduling problem. European Journal of Operational Research, 310(2), 518-528.
- Yin, J., D’Ariano, A., Wang, Y., Yang, L., & Tang, T. (2021). Timetable coordination in a rail transit network with time-dependent passenger demand. European Journal of Operational Research, 295(1), 183-202.
- Baller, R., Fontaine, P., Minner, S., & Lai, Z. (2022). Optimizing automotive inbound logistics: A mixed-integer linear programming approach. Transportation Research Part E: Logistics and Transportation Review, 163, 102734.
- Liu, Q., Lin, X., Li, M., Li, L., & He, F. (2023). Coordinated lane-changing scheduling of multilane CAV platoons in heterogeneous scenarios. Transportation Research Part C: Emerging Technologies, 147, 103992.
- Shiri, D., Akbari, V., & Tozan, H. (2023). Online optimisation for ambulance routing in disaster response with partial or no information on victim conditions. Computers & Operations Research, 106314.
- Monaci, M., Pike-Burke, C., & Santini, A. (2022). Exact algorithms for the 0–1 Time-bomb Knapsack Problem. Computers & Operations Research, 145, 105848.
- De, A., Gorton, M., Hubbard, C., & Aditjandra, P. (2022). Optimization model for sustainable food supply chains: An application to Norwegian salmon. Transportation Research Part E: Logistics and Transportation Review, 161, 102723.
- Araújo, E. J., Darvish, M., & Renaud, J. (2023). The road train optimization problem with load assignment. Computers & Operations Research, 153, 106184.
- Mendes, A. B., & e Alvelos, F. P. (2023). Iterated local search for the placement of wildland fire suppression resources. European Journal of Operational Research, 304(3), 887-900.
- Cazzaro, D., Koza, D. F., & Pisinger, D. (2023). Combined layout and cable optimization of offshore wind farms. European Journal of Operational Research, 311(1), 301-315.
- Dong, Z. L., Ribeiro, C. C., Xu, F., Zamora, A., Ma, Y., & Jing, K. (2023). Dynamic scheduling of e-sports tournaments. Transportation Research Part E: Logistics and Transportation Review, 169, 102988.
- Olmez, O. B., Gultekin, C., Balcik, B., Ekici, A., & Özener, O. Ö. (2022). A variable neighborhood search based matheuristic for a waste cooking oil collection network design problem. European Journal of Operational Research, 302(1), 187-202.
- Zhang, H., Yao, S., Liu, Q., Leng, J., & Wei, L. (2023). Exact approaches for the unconstrained two-dimensional cutting problem with defects. Computers & Operations Research, 106407.
- Kloster, K., Moeini, M., Vigo, D., & Wendt, O. (2023). The multiple traveling salesman problem in presence of drone-and robot-supported packet stations. European Journal of Operational Research, 305(2), 630-643.
- Biró, P., & Gyetvai, M. (2023). Online voluntary mentoring: Optimising the assignment of students and mentors. European Journal of Operational Research, 307(1), 392-405.
- Tran, T. H., Nguyen, T. B. T., Le, H. S. T., & Phung, D. C. (2024). Formulation and solution technique for agricultural waste collection and transport network design. European Journal of Operational Research, 313(3), 1152-1169.
- Caselli, G., Delorme, M., Iori, M., & Magni, C. A. (2024). Exact algorithms for a parallel machine scheduling problem with workforce and contiguity constraints. Computers & Operations Research, 163, 106484.
- Lyu, Z., & Yu, A. J. (2023). The pickup and delivery problem with transshipments: Critical review of two existing models and a new formulation. European Journal of Operational Research, 305(1), 260-270.
- Bigler, T., Kammermann, M., & Baumann, P. (2023). A matheuristic for a customer assignment problem in direct marketing. European Journal of Operational Research, 304(2), 689-708.
- Fonseca, G. H., Figueiroa, G. B., & Toffolo, T. A. (2024). A fix-and-optimize heuristic for the Unrelated Parallel Machine Scheduling Problem. Computers & Operations Research, 163, 106504.
- Morais, R., Bulhões, T., & Subramanian, A. (2024). Exact and heuristic algorithms for minimizing the makespan on a single machine scheduling problem with sequence-dependent setup times and release dates. European Journal of Operational Research, 315(2), 442-453.
- Nguyen, M. A., Dang, G. T. H., Hà, M. H., & Pham, M. T. (2022). The min-cost parallel drone scheduling vehicle routing problem. European Journal of Operational Research, 299(3), 910-930.
- Weidinger, F., Albiński, S., & Boysen, N. (2023). Matching supply and demand for free-floating car sharing: On the value of optimization. European Journal of Operational Research, 308(3), 1380-1395.
- Faria, A. F., de Souza, S. R., & de Sa, E. M. (2021). A mixed-integer linear programming model to solve the Multidimensional Multi-Way Number Partitioning Problem. Computers & Operations Research, 127, 105133.
- Ferone, D., Festa, P., & Guerriero, F. (2022). The rainbow steiner tree problem. Computers & Operations Research, 139, 105621.
- Weiner, J., Ernst, A. T., Li, X., Sun, Y., & Deb, K. (2021). Solving the maximum edge disjoint path problem using a modified Lagrangian particle swarm optimisation hybrid. European Journal of Operational Research, 293(3), 847-862.
- Myung, Y. S., & Yu, Y. M. (2020). Freight transportation network model with bundling option. Transportation Research Part E: Logistics and Transportation Review, 133, 101827.
- Campêlo, M., & Figueiredo, T. F. (2021). Integer programming approaches to the multiple team formation problem. Computers & Operations Research, 133, 105354.
- Terán-Viadero, P., Alonso-Ayuso, A., & Martín-Campo, F. J. (2024). Mathematical optimisation in the honeycomb cardboard industry: A model for the two-dimensional variable-sized cutting stock problem. European Journal of Operational Research, 319(1), 303-315.
- Klein, N., Gnägi, M., & Trautmann, N. (2024). Mixed-integer linear programming for project scheduling under various resource constraints. European Journal of Operational Research, 319(1), 79-88.
- Hill, A., & Peuker, S. (2024). Expanding students’ social networks via optimized team assignments. Annals of Operations Research, 332(1), 1107-1131.
- Lunday, B. J. (2024). The maximal covering location disruption problem. Computers & Operations Research, 169, 106721.
- Cohen, I. R., Cohen, I., & Zaks, I. (2023). A theoretical and empirical study of job scheduling in cloud computing environments: the weighted completion time minimization problem with capacitated parallel machines. Annals of Operations Research, 1-24.
- Tirkolaee, E. B., Goli, A., Gütmen, S., Weber, G. W., & Szwedzka, K. (2023). A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms. Annals of Operations Research, 324(1), 189-214.
- Grus, J., & Hanzálek, Z. (2024). Automated placement of analog integrated circuits using priority-based constructive heuristic. Computers & Operations Research, 167, 106643.
- Pan, X., & Guo, S. (2023). Dual-objective optimization of a green closed-loop supply chain in steel industry considering quantity discount. Annals of Operations Research, 1-27.
- Cui, S., Gao, K., Yu, B., Ma, Z., & Najafi, A. (2023). Joint optimal vehicle and recharging scheduling for mixed bus fleets under limited chargers. Transportation Research Part E: Logistics and Transportation Review, 180, 103335.
- Zhu, W., Hu, X., Pei, J., & Pardalos, P. M. (2024). Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method. Transportation Research Part B: Methodological, 184, 102950.
- Sun, Z., Benlic, U., Li, M., & Wu, Q. (2022). Reinforcement learning based tabu search for the minimum load coloring problem. Computers & Operations Research, 143, 105745.
- Senna, F., Coelho, L. C., Morabito, R., & Munari, P. (2024). An exact method for a last-mile delivery routing problem with multiple deliverymen. European Journal of Operational Research, 317(2), 550-562.
- Tamke, F., & Buscher, U. (2023). The vehicle routing problem with drones and drone speed selection. Computers & Operations Research, 152, 106112.
- Tang, L., D’Ariano, A., Xu, X., Li, Y., Ding, X., & Samà, M. (2021). Scheduling local and express trains in suburban rail transit lines: Mixed–integer nonlinear programming and adaptive genetic algorithm. Computers & Operations Research, 135, 105436.
- Akhundov, N., & Ostrowski, J. (2024). Exploiting symmetry for the job sequencing and tool switching problem. European Journal of Operational Research, 316(3), 976-987.
- de Weert, Y. R., Gkiotsalitis, K., & van Berkum, E. C. (2024). Improving the scheduling of railway maintenance projects by minimizing passenger delays subject to event requests of railway operators. Computers & Operations Research, 165, 106580.
- Marzo, R. G., Melo, R. A., Ribeiro, C. C., & Santos, M. C. (2022). New formulations and branch-and-cut procedures for the longest induced path problem. Computers & Operations Research, 139, 105627.
- Durán, G., Guajardo, M., & Gutiérrez, F. (2022). Efficient referee assignment in Argentinean professional basketball leagues using operations research methods. Annals of Operations Research, 316, 1121-1139.
- Arias-Melia, P., Liu, J., & Mandania, R. (2022). The vehicle sharing and task allocation problem: MILP formulation and a heuristic solution approach. Computers & Operations Research, 147, 105929.
- Boccia, M., Mancuso, A., Masone, A., & Sterle, C. (2024). Exact and heuristic approaches for the truck–drone team logistics problem. Transportation Research Part C: Emerging Technologies, 165, 104691.
- Hao, Y., Chen, Z., Sun, X., & Tong, L. (2025). Planning of truck platooning for road-network capacitated vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 194, 103898.
- Hyder, J., & Hassini, E. (2025). Optimizing warehouse space allocation to maximize profit in the postal industry. Transportation Research Part E: Logistics and Transportation Review, 195, 103924.
- Zaidi, I., Oulamara, A., Idoumghar, L., & Basset, M. (2024). Minimizing grid capacity in preemptive electric vehicle charging orchestration: Complexity, exact and heuristic approaches. European Journal of Operational Research, 312(1), 22-37.