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Output stage, Folded cascode, OTA, OPAMP circuits, 
Sample & hold

28-9-05L-14



3Dr. Navakanta Bhat

Output stage requirement
Capable of providing high output current to drive large loads

However, the DC bias current should be low to avoid
Static power dissipation

Class AB NMOS and PMOS source follower 
(push-pull) stage is a preferred configuration

The output impedance should be very low

Source follower can serve the purpose
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Output stage class AB
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VGG1 and VGG2 are set such that
M1B and M2B are biased just
above Vt to avoid cross over
distortion
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Biasing the output stage
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M3B and M4B are diode connected
NMOS and PMOS respectivel

X
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Vxy = Vgs3b + Vgs4b

Vxy = Vtn3b + Vtp4b+2∆V

M6

M7

Choose the sizes of M3B and M4B
such that Vxy is just above the 
the two Vts of M1B and M2B to
avoid cross over distortion
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Folded Cascode
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The differential current due to inputs are folded through
M1-M3 and M2-M4 pairs
The gain will be comparable to 2 stage OPAMP due to 
cascoding of the load transistor
The load capacitance itself acts as compensation capacitance
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Folded cascode gain
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Assuming all gm and ro are identical

The dominant pole is associated with the output

CL provides frequency compensation 

Increasing CL improves phase margin 
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OTA and OPAMP Circuits
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Operational Transconductance Amplifier

OTA is essentially an OPAMP without an output buffer

An OTA without output buffer can drive only capacitive loads

OTA is an amplifier where all nodes except I/O are low
impedance nodes. Hence the two stage OPAMP configuration
minus buffer is NOT an OTA since the drain of M4 is high
impedance node

As the name suggests, the quantity of interest in OTA is
not the voltage gain, but it is
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The basic OTA circuit configuration

vi1 - +vi2M1 M2
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Gm expression

gm1=gm2 and (W/L)3= (W/L) 4 = (W/L) 8  

Assumptions

(W/L)6= K(W/L) 4  and (W/L)7= K(W/L) 9

Then
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Transconductance Gm
Gm can be set by appropriate  K
For a given K (i.e. after design) Gm can still be varied
by setting an appropriate bias current, IS

i.e. Filters made using OTA can be tuned by changing IS

Output pole is the only dominant pole! 
i.e. capacitive loads improve the phase margin
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The symbol for OTA
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Simple Low pass filter
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Single pole low pass filter with a cut off frequency of

ωp=Gm/C
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Simple High pass filter
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ωp=Gm/C
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General biquadratic (biquad) configuration

+
-

C2

vo+
-

v1

C1

v3

v2

v1= vi , v2 = 0 ,v3 = vi Band-reject

v1= 0, v2 = vi ,v3 = 0Band-pass

v1= 0, v2 = 0 ,v3 = viHigh-pass

v1= vi , v2 = 0 ,v3 = 0Low-pass
Transfer functionInput ConditionFilter
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Inverting and  Noninverting amplifier

-

+
Av

vi vo

R2

R1

-

+
Av

vi

vo

R2

R1

1

2

R
R

v
v

i

o −=

1

21
R
R

v
v

i

o +=

Inverting

Non inverting



17Dr. Navakanta Bhat

Integrator and Differentiator
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Log and Antilog Amplifier
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Sample and Hold Circuit
This is an essential requirement for discrete time systems
(sampled data systems)

Applications:

ADCs,

Switched capacitor filters

Comparators etc.

Requirement of discrete time operation:
1.Switches to perform sampling
2.High input impedance to sense the charge without corrupting

(ideally suited for CMOS and not for BJT)



20Dr. Navakanta Bhat

Requirements for S/H circuit

ϕ

Vo
(ideal)

Advantages of MOSFET 
over BJT as a switch
1. ON but zero current
2. S/D voltages are not 

pinned to gate voltage
3. Conducts well in both

the directions
But it is still does NOT perform
Ideal Sampling function!
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MOSFET switch issues
Finite acquisition time

Finite bandwidth in sample mode

DC offset in sample mode (Vos1)

Finite aperture delay (∆t)

Pedestal error (Vos2) : (Charge injection and Clock feed through)

Droop in Hold mode

)()()( 21 tVVVttVtV ososHio ∆+++∆+=
For t > tH+∆T
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MOSFET sampling

CH

ϕ

Vi

ϕ

ϕL

ϕH

t

Acquisition time τ = RonCH (RC time constant of channel)
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Bandwidth in sample mode = 1/τ

Vos1=0 provided MOSFET is in linear region (i.e. Vin < ϕH – Vt)
Otherwise Vo≠Vin instead Vo = ϕH – Vt
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Channel charge injection

CH

ϕ

Vi

When switch is ON, channel charge is

Qc=WLCox(ϕH-Vi-Vt)
When ϕ goes low, the switch turns off
and the channel charge must exit out

The fraction that goes to output node is a complex function of parameters such as 
impedance seen at each node to the ground, clock transition time etc.
(ex: if clock makes slow transition all the charge could be absorbed at input)

An approximation is, 50% of this charge
Goes to the out put node
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Effect of charge injection
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Interesting trade-off!
Depends only on L and is independent of transistor width 
and the value of the sampling capacitance
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Clock feedthrough
When the switch is being turned off, the clock transition
capacitively couples to the output
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Note: If clock makes slow transition (quasi static)
Then the clock feed through error is significantly less
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Example for error values
W=10µm, L=2µm, Vt=0.7V, Cox=1.38fF/µm2, 
Cov=3fF, CH=1pF, ϕH=5V, ϕH=0V 

Gain error = 1.1%

Charge injection offset = 47mV

Clock feed through offset = 15mV

Total offset = 62mV
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kT/C noise
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VoT (rms)=64.3µV

The lowest limit!
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Offset cancellation  with dummy switch
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Vi Vo
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M1 M2

∆Q1 ∆Q2 We need to ensure that ∆Q1
injected by M1 should be 
picked up by M2 (∆Q2)

∆Q1=0.5W1L1Cox(VDD-Vi-Vt) ∆Q2=W2L2Cox(VDD-Vi-Vt)

Choose L1=L2 and W2= W1/2 to cancel the charge injection

Note that the clock feed through error is also cancelled
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