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In the first years of microwave development the Rectangular Waveguide become the 

dominant waveguide structure largely because high-quality components could be 
designed using it. One of the main issues was its narrow bandwidth due to the cut-off 
frequency characteristic. 
Later, researchers try to find components that could provide greater bandwidth and 
possible miniaturization, and therefore they examined other waveguide types.  

Ridge Waveguide offered a step in that direction, having one or more longitudinal 

internal ridges that serve primarily to increase transmission bandwidth by lowering the 

cut-off frequency.  

Coaxial Line was very suitable, since it possessed a dominant mode with zero cut-off 

frequency, providing two important characteristics: very wide bandwidth, and the 

capability of miniaturization. The lack of a longitudinal component of field, made it more 

difficult to create components using it, although various novel suggestions were put forth. 

In addition, those components would be expensive to fabricate.  

In an attempt to overcome these fabrication difficulties, the center conductor of the 
coaxial line was flattened into a strip and the outer conductor was changed into a 
rectangular box, and then fitted with connectors for use with regular coaxial line. 

At about the same time, Robert M. Barrett when working for the Air Force Cambridge 
Research Center in 1950s took a much bolder step. He removed the side walls 
altogether, and extended the top and bottom walls sideways.  
The result was called strip transmission line, or Stripline.  

Like coaxial cable, Stripline it is non-dispersive, and has no cut-off frequency. 
Different methods were used to support the center strip, but in all cases the region 
between the two outer plates was filled with only one single medium, either dielectric 
material or air.  

A modification that emerged almost in the same time involved removing the top plate 
leaving only the strip and the bottom plate with a dielectric layer between them to support 
the strip. That structure was named Microstrip. 

The first Microstrip developments were done shortly after the appearance of Barrett‟s 
article, in 1952 by D.D. Grieg and H.F. Engelmann from the Federal 
Telecommunications Laboratories of ITT, presented as a competing printed circuit line. 

Because of the symmetry unbalance in Microstrip, all discontinuity elements possess 
some resistive content and therefore make the line to radiate to some extent. 
At that time, regarding this radiation issue, additional remark was attempted to undermine 
the value of Microstrip line as the basis for microwave components.   
So, the Microstrip line was compared to an antenna, and it wasn‟t until about 15 years 
later, when the Microstrip Patch Antenna was proposed, which was based on precisely 
the same concept. 
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Types of Transverse Modes of Electromagnetic Waves 
 

 TE, Transverse Electric waves, also referred as H-waves, are characterized by  
Ez = 0 and Hz ≠ 0 (no Electric field in the direction of the propagation).  
TE waves can be supported inside closed conductors, as well as between two or 
more conductors. 

 TM, Transverse Magnetic waves, also referred as E-waves, are characterized by  
Ez ≠ 0 and Hz = 0 (no Magnetic field in the direction of the propagation).  
Same as TE the TM waves can be supported inside closed conductors, as well as 
between two or more conductors. 

 TEM means Transverse Electromagnetic mode since both Electric and Magnetic 
fields are transverse (perpendicular) to the direction of propagation. Ez = Hz = 0 

TEM mode is also termed a differential mode, because the signal current flowing on the 
inner conductor is directed opposite to the ground current flowing on the outer conductor.  

The TEM mode has several unique characteristics:  
- At least two unconnected conductors and a single insulating material are required 
for it to exist.  
- Its cut-off frequency is 0 Hz.  
- It has only two field components (E and H) aligned with the transverse 
coordinates, no longitudinal (z-directed) Electric or Magnetic field component. 
- Its propagation constant is the wavenumber in vacuum multiplied with the square 
root of the relative dielectric constant Er of the insulator. 
- In TEM mode, because of the symmetry of the structure, all discontinuity elements 
in the plane of the center strip are purely reactive.  

  Quasi-TEM (Hybrid mode) has non-zero Electric and Magnetic fields in the 
direction of propagation.  
Hybrid modes are higher order modes with cut-off frequencies different from DC   
(0 Hz) and are undesirable. These modes are a combination of both, the transverse 
electric (TE) and transverse magnetic (TM) modes and thus have the longitudinal 
components of both, the electric and the magnetic fields.  
The wave propagates in two different medias (air and dielectric) in a hybrid mode. 

 
Planar Transmission Lines 
 

One of the most commonly used transmission lines are the planar types which can 
be constructed precisely using low-cost printed circuit board materials and processes.  
A number of these open, multiconductor transmission lines comprise a solid dielectric 
substrate having one or two layers of metallization, with the signal and ground currents 
flowing on separate conductors.  

Planar transmission lines used in microwave frequencies can be broadly divided 
into two categories: those that can support a TEM (or Quasi-TEM) mode of propagation, 
and those that cannot. For TEM (or Quasi-TEM) modes the determination of 
characteristic impedance and phase velocity of single and coupled lines reduces to 
finding the capacitances associated with the structure, and also the conductor loss can 
be determined in terms of variation of the characteristic impedance. 
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Skin Depth of Planar Conductors 
 

At high frequencies, the current flowing in a conductor tends to get confined near the 
outer surface of the conductor. The higher the frequency, the greater the tendency for 
this effect to occur. 

 The skin depth of a conductor is defined as the distance in the conductor (along the 
direction of the normal to the surface) in which the current density drops to 37% of 
its value at the surface (the current decays to a negligible value in a distance of 
about 4 to 5 skin depths). 

 The skin depth of perfect inductor (with Conductivity σ = ∞) is zero.  

 The conductivity of normal metals (which are used in conductors) is high, although 
finite, so the skin depth is therefore very small at microwave frequencies. 

 The frequency where the skin effect just starts to limit the effective cross sectional 
area of the conductor (equal to half the thickness of the trace) is called the 
crossover frequency. 

 Skin depth is inversely proportional to the square root of the frequency. 

 Skin depth does not depend on the shape of the conductor. Skin depth is a 
distance measured in from the surface of the conductor toward the center of the 
conductor. 

 If skin depth is deeper than the center of the conductor, the current is not limited by 
the skin effect and the current is flowing uniformly throughout the entire cross 
sectional area of the conductor. Therefore, a thicker conductor is limited by the skin 
effect at a lower frequency than is a thinner conductor. 

 The skin effect, by changing the effective cross sectional area of a conductor, 
causes the effective resistance of the conductor to change with frequency. 

 The skin effect is one of the two primary causes of losses in lossy planar 
transmission lines (the other is dielectric losses.) 

 

Stripline Design 
 

Stripline requires three layers of conductors where the internal conductor is 
commonly called the “hot conductor,” while the other two, always connected at signal 
ground, are called “cold” or “ground” conductors.  
The hot conductor is embedded in a homogeneous and isotropic dielectric, of dielectric 

constant “εr”. So, unlike the case of Microstrip, the word “substrate” is not appropriate 

since the dielectric completely surrounds the hot conductor. 

   
                           Section in a Stripline                                    Electric E and Magnetic H Fields 
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The Electric-E and Magnetic-H field lines for the fundamental TEM mode in Stripline are 
indicated above in a defined cross-section and a defined time.  
 

 Because the region between the two outer plates of Stripline contains only a single 
medium, the phase velocity and the characteristic impedance of the dominant 
mode TEM do not vary with frequency.  

 In the fundamental mode the hot conductor is equipotential (every point in it is at 
the same potential). 

 
Stripline is often required for multilayer circuit boards because it can be routed 

between the layers, but grounding the Stripline requires some care. If the top and bottom 
ground planes are not at the same potential, a parallel-plate mode can propagate 
between them.  
If excited, this mode will not remain confined to the region near the strip, but will be able 
to propagate wherever the two ground planes exist. 

 Stripline is more insensitive than Microstrip to lateral ground planes of a metallic 
enclosure, since the electromagnetic field is strongly contained near the center 
conductor and the top–bottom ground planes. 

 As can be seen from the figure, in a Stripline the return current path for a high 
frequency signal trace is located directly above and below the signal trace on the 
ground planes. The high frequency signal is thus contained entirely inside the PCB, 
minimizing emissions, and providing natural shielding against incoming spurious 
signals. 

In the figure below, the parallel-plate mode is suppressed with metalized via holes 
connecting the two ground planes. The vias should be placed closely; a spacing “s” of 
one-eighth of a wavelength in the dielectric is recommended to prevent a potential 
difference from forming between the ground planes. In addition, such vias form a cage 
around the strip, in essence making it a basic coaxial line. 

 
 When the vias are placed too close to the edge of the strip, they can perturb its 

characteristic impedance.  

 The vias separation “w” should be a minimum of 3 strip widths, and 5 is preferable. 

 If the via separation is too great, a pseudo rectangular waveguide mode can be 
excited. This mode has a cut-off frequency given by c/(2*w), where c is the speed 
of light in the dielectric. Thus, at the highest frequency of operation, fmax, the via 
separation w should be less than c/(2*fmax). 
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 Any practical Stripline has three Sources of Attenuation, due to: 
- Finite conductivity of its conductors. 
- Finite resistivity and dumping phenomena of the dielectric. 
- Magnetic resonances. 
 

 Total power losses per unit axial length are the sum of dielectric loss and the 
conductor ohmic skin loss.  

 The dielectric loss is proportional to frequency, and it is the dominant loss factor at 
higher frequencies. 

 The ohmic skin losses in the strip conductor and the ground plane, depend on the 
conductivity of the metal conductors and on any surface roughness may be caused 
in fabrication of the transmission line. 
Conductor losses dominate over dielectric losses for loss tangent (tanδ) less than 

0.001 (for f = 10 GHz) and less than 0.003 (for f = 1 GHz). 
 
The Characteristic Impedance Z0 of the Stripline depends on the dielectric constant and 
on the cross-sectional geometry of the strip center-conductor and ground planes. 

 Characteristic impedance is very sensitive to the ratio of center-conductor width to 
dielectric thickness and relatively insensitive to the ratio of center-conductor 
thickness to dielectric thickness.  

 Mechanical tolerances would be most critical for relatively thin dielectrics or 
relatively narrow center conductors. Any vertical asymmetry in the Stripline 
structure could couple to waveguide-type modes bounded by the ground planes 
and the side walls. 

 
The following is a simple equation that approximates Stripline impedance with 1% 
accuracy: 
 

 
where We is the effective width of the center strip conductor given by: 

 
 It is seen that the characteristic impedance of the Stripline decreases as the strip 

width W increases. 

 The Propagation Delay for a given length in a Stripline is only function of the 

dielectric εr: 
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Microstrip Design 
 

The Microstrip line it has become the best known and most widely used planar 
transmission line for RF and Microwave circuits. This popularity and widespread use are 
due to its planar nature, ease of fabrication using various processes, easy integration 
with solid-state devices, good heat sinking, and good mechanical support. 

 
 In simple terms, Microstrip is the printed circuit version of a wire over a ground 

plane, and thus it tends to radiate as the spacing between the ground plane and 
the strip increases. A substrate thickness of a few percent of a wavelength (or less) 
minimizes radiation without forcing the strip width to be too narrow. 

 In contrast to Stripline, the two-media nature (substrate discontinuity) of Microstrip 
causes its dominant mode to be hybrid (Quasi-TEM) not TEM, with the result that 
the phase velocity, characteristic impedance, and field variation in the guide cross 
section all become mildly frequency dependent. 

 The Microstrip line is dispersive. With increasing frequency, the effective dielectric 
constant gradually climbs towards that of the substrate, so that the phase velocity 
gradually decreases. This is true even with a non-dispersive substrate material (the 
substrate dielectric constant will usually fall with increasing frequency). 

 In Microstrip development a new concept of Effective Dielectric Constant  εeff 
was introduced, which takes into account that most of the electric fields are 
constrained within the substrate, but a fraction of the total energy exists within the 
air above the board.  

 The Effective Dielectric Constant εeff varies with the free-space wavelength λ0.  

The dispersion becomes more pronounced with the decreasing ratio of strip width 
to substrate thickness, W/h. Dispersion is less pronounced as the strip width 
becomes relatively wider, and the Microstrip line physically starts to approach an 

ideal parallel-plate capacitor. In this case we get:  εr ~ εeff 

 The Effective Dielectric Constant εeff  is expected to be greater than the dielectric 

constant of air (ε = 1) and less than that of the dielectric substrate. 

 
In this expression shielding is assumed to be far enough from the Microstrip line. 
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Electric E and Magnetic H field lines for fundamental Quasi-TEM in Microstrip 

 

 Effective Dielectric εeff  can be obtained by static capacitance measurements. 

o If the static capacitance per unit length is C with partial dielectric filing, and Co 

with dielectric removed, we get εeff = C/Co. 

 Guided Wavelength in Microstrips is given by:  
λ0 / √ εeff                   where λ0  is the wavelength in free space 

 The same as in Stripline case, in Microstrip fundamental mode the hot conductor is 
equipotential (every point in it is at the same potential). 

 A simple but accurate equation for Microstrip Charateristic Impedance is: 

 
 The characteristic impedance of the Microstrip line changes slightly with frequency 

(even with a non-dispersive substrate material).  
The characteristic impedance of non-TEM modes is not uniquely defined, and 
depending on the precise definition used, the impedance of Microstrip either rises, 
falls, or falls then rises with increasing frequency.  
The low-frequency limit of the characteristic impedance is referred to as the Quasi-
static Characteristic Impedance, and is the same for all definitions of 
characteristic impedance. 

 Microstrip frequency limitation is given mainly by the lowest order transverse 
resonance, which occurs when width of the line (plus fringing field component) 
approaches a half-wavelength in the dielectric. Have to avoid using wide lines. 

 For very wide lines, the fields are almost all in the substrate, while narrower lines 
will have proportionally more field energy in air. 

 Propagation Delay for a given length in a Microstrip line is only function of εr: 

 
 Any practical Microstrip line has following Sources of Attenuation, due to: 

o Finite conductibility of the line conductors. 
o Finite resistivity of the substrate and its dumping phenomena. 
o Radiation effects. 
o Magnetic loss plays a role only for magnetic substrates, such as ferrites. 
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 Waveguides and Striplines have no radiation losses, while in Microstrip case (since 
the Microstrip is an open transmission line) radiation effects are present at any 
discontinuity section.  

 For Microstrip using high dielectric materials εr and accurate conductor shape and 

matching, conductor and dielectric losses are predominant in relation to the 
radiation losses. 

 In practice, it has been found that the Microstrip impedance with finite ground plane 
width (Zo) is practically equal to the impedance value with infinite width ground 
plane (Zi), if the ground width Wg is at least greater than 3*W.  

  
Microstrip‟s primary advantages of low cost and compact size are offset by its tendency 
to be more lossy than Coaxial Line, Waveguide, and Stripline.  
 

 Radiation Losses depend on the dielectric constant, substrate thickness, and the 
circuit geometry. 

 The lower the dielectric constant, the less the concentration of energy in the 
substrate region, and, hence, the greater the radiation losses.  

 The real benefit in having a higher dielectric constant is not only reducing radiation 
losses but also that the package size decreases by approximately the square root 
of the dielectric constant. 

 

 One way to lower the loss of Microstrip line is to suspend the substrate over the air: 

  
The air between the bottom of the substrate and the ground plane contains the bulk of 
the electromagnetic field. The insertion loss of the Microstrip is reduced because, air 
essentially has no dielectric loss compared to standard circuit board substrates, and in 
addition, the width of the Microstrip line increases because of the lower effective 
dielectric constant. Wider lines have lower current density, and thus, lower ohmic loss.  

 Suspending Microstrip means that the separation between the signal and ground 
paths increases, and so does the Microstrip‟s tendency to radiate, particularly at 
discontinuities such as corners. From this reason, suspended Microstrip mostly is 
used only up to a few GHz.  
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 In a Microstrip line, conductor losses increase with increasing characteristic 
impedance due to the greater resistance of narrow strips. Conductor losses follow a 
trend that is opposite to radiation loss with respect to W/h. 

 Important to remember, a smaller strip width leads to higher losses. 
 

 Very simple method for measuring the Dielectric Attenuation constant is based on 
the Comparison Technique.  
- Two Microstrip lines with identical electrical characteristics but different lengths 

are used.  
- Their insertion losses are measured.  
- The difference between two values of insertion loss is used to evaluate the 

dielectric attenuation constant.  
- This procedure avoids the systematic errors caused by radiation and coaxial-to-

microstrip transitions. 
 

 Dielectric loss can be reduced by using substrates with a low dielectric loss.  
To minimize radiation loss, the number of discontinuities, such as bends and         
T-junctions, should be made as small as possible. 

 Radiation from a curved microstrip line is much smaller compared to radiation from 
a right-angled bend.  

 At very high frequencies, to reduce radiation loss in a feed network, the width of the 
microstrip line should be less than λ/8. 

 Conductor loss may be minimized by designing the feed network length per 
wavelength as short as possible. By using a multilayer feed network design, the 
feed network length per wavelength is minimized considerably. 

 Gold plating of the microstrip lines decreases conductor losses. 
 

 The Power Handling capacity of a Microstrip is limited by heating caused because 
of ohmic and dielectric losses and by dielectric breakdown.  
An increase in temperature due to conductor and dielectric losses limits the 
Average Power of the Microstrip line, while the breakdown between the strip 
conductor and ground plane limits the Peak Power. 

 
A metallic enclosure is normally required for most Microstrip circuit applications, such 

as Microstrip Filters. The presence of conducting top and side walls will affect both, the 
characteristic impedance Zc and the effective dielectric constant εeff.  

 In practice, a rule of thumb may be applied in the Microstrip Filter design to reduce 
the effect of metallic enclosure: the height up to the cover should be more than 
eight times the substrate thickness, and the distance to walls more than five times 
the substrate thickness.  
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Coplanar Waveguide (CPW) Design 
 
Coplanar Waveguide (CPW) is an alternative to Microstrip and Stripline that place both, 
the signal and ground currents on the same layer.  

 Cheng P. Wen is the inventor of Coplanar Waveguide in 1969, when working at 
RCA's Sarnoff Laboratories. The initial paper he published was: "Coplanar 
Waveguide: a surface strip transmission line suitable for nonreciprocal 
gyromagnetic device applications". 

 The conductors formed a center strip separated by a narrow gap from two ground 
planes on either side. The dimensions of the center strip, the gap, the thickness 
and permittivity of the dielectric substrate determined the effective dielectric 
constant, characteristic impedance and the attenuation of the line. 

 The gap in the coplanar waveguide is usually very small and supports electric fields 
primarily concentrated in the dielectric. With little fringing field in the air space, the 
coplanar waveguide exhibits low dispersion. In order to concentrate the fields in the 
substrate area and to minimize radiation, the dielectric substrate thickness is 
usually set equal to about twice the gap width. 

 CPW has a zero cut-off frequency (suitable for wideband), but its low order 
propagation mode is indicated with Quasi-TEM because it is not a real TEM mode. 
At higher frequencies, the field becomes less-TEM, and more TE in nature.  
The CPW magnetic field is elliptically polarized. 

 CPW it is a printed circuit analogs of the three-wire transmission lines. 
  

     
CPW Electric-E and Magnetic-H field distribution 

 

 Like Stripline, CPW has two ground planes, which must be maintained at the same 
potential to prevent unwanted modes from propagating.  

 If the grounds are at different potentials, the CPW mode will become uneven, with 
a higher field in one gap than the other.  

 In the CPW two fundamental modes are supported: the coplanar mode, and the 
parasitic slotline mode. Air bridges between ground planes have to be applied to 
suppress the undesired slotline mode. 

 If bond wires are used to connect the ground planes the wires should be spaced 
one quarter wavelength apart or less. 

Sergio Carrato
Evidenzia

Sergio Carrato
Evidenzia

Sergio Carrato
Evidenzia

Sergio Carrato
Evidenzia

Sergio Carrato
Evidenzia

Sergio Carrato
Evidenzia

Sergio Carrato
Rettangolo



 
 

 In the CPW, the effective dielectric constant is approximately independent of 
geometry, and simply equal to the average of dielectric constants of air and the 
dielectric substrate.  

 Frequency dispersion for CPW is generally small, but there is a mild dependence 
on line dimensions, and narrow lines are less frequency dispersive than wide lines. 

 Grounded Coplanar Waveguide (GCPW) is used on printed circuit boards as an 
alternative to Microstrip line. The gap s between the strip and ground is usually 
more than the thickness h of the substrate, so the GCPW field is concentrated 
between the strip and the substrate ground plane, and GCPW behaves like 
Microstrip. With vias connecting the ground planes, GCPW is less prone to radiate 
and has higher isolation than Microstrip.  

 
 Since the number of the electric and magnetic field lines in the air is higher than the 

number of the same lines in the Microstrip case, the effective dielectric constant εeff 

of CPW is typically 15% lower than the εeff for Microstrip, so the maximum 
reachable characteristic impedance values are higher than the Microstrip values.  

 The effect of finite dielectric substrate is almost ignorable if h exceeds 2b = W+2s. 

 In addition, to avoid field radiation in the air, it is very important to use substrates 
with a high dielectric constant, with recommended values greater than 10, so that 
the electromagnetic field is mainly concentrated inside the dielectric. 

 In CPW a ground plane exists between any two adjacent lines, hence cross talk 
effects between adjacent lines are very week. As a result, CPW circuits can be 
made denser than conventional Microstrip circuits.  
 

As other planar transmission lines the CPW losses are due to multiple causes: 
- Non-perfect conductivity of the conductors, or “conductor loss”. 
- Dielectric nonzero conductivity and dumping phenomena. 
- Substrate magnetic loss, if the substrate is a ferromagnetic material. 
- Radiation. 

 CPW is not very sensitive to substrate thickness and allows a wide range of 
impedance values (20Ω -250Ω) on relatively thick substrates. 

 Upper metal cover has no effect upon characteristic impedance if space H > 2h.  
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When this limit is exceeded, the effect of the cover will be to lower characteristic 
impedance. 

 Spurious modes (notably the Microstrip mode) can easily be generated if the 
separation between the CPW structure and the backing metallization is too close 
(resulting in field lines between the CPW and the backing metallization). 

 In CPW the characteristic impedance is determined by the ratio of the centre strip 
width W to the gap width s, so size reduction is possible without limit, the only 
penalty being higher losses. This makes the design of a CPW line with particular 
impedance unique because an infinite range of W and s values will result in a 
specific impedance requirement. 

 For given characteristic impedance Z0 and substrate thickness, the strip width W 
will always be significantly less than for the corresponding Microstrip, in order to 
maintain the same capacitance to ground. Therefore, the resistive loss for the CPW 
line can exceed that of the corresponding Microstrip. 

 
Microstrip Discontinuities 

 
Surface waves are electromagnetic waves that propagate on the dielectric interface layer 
of the Microstrip.  The propagation modes of surface waves are practically TE and TM. 
Due to the practical homogeneity of the Stripline dielectric, this phenomenon can be 
neglected in Stripline devices and so, this section is pertinent to Microstrip lines only.  
 

 Surface waves are generated at any discontinuity of the Microstrip.  
Once generated, they travel and radiate, coupling with other Microstrip of the 
circuit, decreasing isolation between different networks and signal attenuation. 
Surface waves are a cause of crosstalk, coupling, and attenuation in a multi-
microstrip circuit. For these reasons the surface waves are always an undesired 
phenomenon.  

 Surface wave propagation may be reduced by cutting slots into the substrate 
surface just in front of an open-circuit. 

 Similar to the case of radiation, surface waves are not guided by the Microstrip.  

 Various techniques may be adopted to reduce radiation: 
- Metallic shielding or „screening. 
- The introduction of a small specimen of lossy (i.e. absorbent) material near any 

radiative discontinuity. 
- The utilization of compact, planar inherently enclosed circuits (spurline filter). 
- Reduce the current densities flowing in the outer edges of any metal sections 

and concentrate currents towards the centre and in the middle of the Microstrip. 
- Possibly shape the discontinuity in some way to reduce the radiative efficiency. 
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 A discontinuity in a Microstrip is caused by an abrupt change in geometry of the 
strip conductor, and electric and magnetic field distributions are modified near the 
discontinuity. The altered electric field distribution gives rise to a change in 
capacitance, and the changed magnetic field distribution to a change in inductance. 

 
Discontinuities commonly encountered in the layout of practical Microstrip circuits are: 

Steps, Open-Ends, Bends, Gaps, and Junctions. 

 
Typical Microstrip Discontinuities 

 

 It is possible to reduce the parasitic effects associated with Open-Ends, Steps, 
Bends, and Junctions by using constant impedance tapers. 

 
a) Bends are the most frequently encountered discontinuities. 

The simplest bend is the 90° bend. This bend doesn‟t work well above few GHz, 

due to a high VSWR. The same holds true for bends with angles α greater than 90°.  

                        
                                             90° Bend                                                Equivalent Circuit   
               

A T-network is the equivalent circuit for a short line length. However, because of the 
excess capacitance at a square corner the characteristic impedance value will be lower 
than that of the uniform connecting lines.  

 The Bend Discontinuity Effect it will increase with frequency, with the number of 
bends used in cascade, and with the line width. 

Compensation for Microstrip corner bend can use either, increased inductance or 
decrease capacitance techniques. 
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                                    Increased Inductance                    Decreased Capacitance 
 

 Experiments on various bends have proven that a decrease in the input reflection 
coefficients can be achieved if the corner is chamfered (mitered). 

 
Six different configurations for compensated right-angled bends – W is the width of the line 

 

The above configurations are applicable for: 2.5 ≤ εr ≤ 25, and W/h ≥ 0.25 

 Curving a line is frequently a better option than mitering it.  

 
When the curving radius is larger than twice the width of the line, the main parasitic effect 
is a change in the effective line length. The effective length of the curve (3 < R/W < 7) can 
be estimated by assuming the effective radius to be: 

 
Curving a line also has the advantage that the direction of the line can be changed with 
any arbitrary angle. 

 For both, the curved and mitered bends, the electrical length is somewhat shorter 
than the physical path-length of the Microstrip line. 

 
b) Open-Ends are encountered any time a Microstrip is open terminated.  

Typical devices where open ends are encountered are Microstrip Filters and 
Matching Stubs. 

 At the Open-End of a Microstrip line with a width of w, the fields do not stop 
abruptly, but extend slightly further because of the effect of fringing field. 
This effect can be modeled either with an equivalent shunt capacitance C, or with 

an equivalent length of transmission line Δl. 
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     Microstrip Low Pass Filter                       Open End Microstrip line and the Equivalent Circuits 

 

 The simplest way to compensate for the increase in line length is to reduce the 
length of the designed line by the correct amount. 

 A distance of at least the equivalent line length should be allowed between the end 
of an open-ended stub and the substrate edge. 

 For thicker substrates and for wider Microstrip lines, radiation from an Open-End 
discontinuity becomes significant. 

 
c) Gap Coupling is a type of discontinuity is can be found in Microstrip Filters and in 

DC blocks. 

         
              Microstrip Filter                                 Gap in a Microstrip line and the Equivalent Circuit 
 

 A Gap in a Microstrip line can be equivalently represented as a π capacitor circuit.  

This circuit between the two reference planes P1 and P2 at each end of the gap 
consists of a series coupling capacitance Cg, and two parallel fringing capacitances 
Ch1 and Ch2 between the conductor open ends and the ground. 

 For narrow gaps, Ch1 and Ch2 approaches zero and Cg increases. Practical series 
capacitance values are approximately 0.01pF to 0.5pF.  

 For a very large gap, the capacitance values Cg approach zero and this 
discontinuity becomes equivalent to an open-end circuit. 

 
d) Step Width Junction discontinuity can be found in many devices: Matching 

Networks,   λ/4 Transformers, multistep λ/4 Directional Couplers, 
Dividers/Combiners, and Microstrip Filters. 

 The parasitic effect of a Step Junction is similar to that of an Open-End.  

 The effect of the fringing capacitance associated with the wider line of the step 
discontinuity is similar to an increase in the length of that line. 

 The phase shift associated with a step discontinuity will always be less than that 
caused by an Open-End in a line with the lower characteristic impedance 

                     
          Step in Width Discontinuity                    Equivalent Lumped Circuit         Fringing Electric Field 

 



 In terms of distributed elements, the discontinuity capacitance C has the effect of 
an increase in length of the wide line w1, and an equal decrease in length of the 
narrow line w2. 

 To compensate for the excess capacitance, can make the wider line w1 to be 
electrically longer by a length Δl.  

 Also there is a tapering technique (figure below) applied to reduce the discontinuity 
effects associated with a step width junction. 
 

 
 

e) T-Junction discontinuity is perhaps the most important discontinuity as it is found 
in circuits as Impedance Matching Networks, Stub Filters, and Directional Couplers 
as “Branch-Line” and “Rat-Race”. 

                       
                                         T-Junction discontinuity and the Equivalent Circuit 
 

 T-Junctions can be compensated easily for the reference plane offsets by simply 
adjusting the lengths of the different lines. The offset in the main line is usually very 
small, and the main effect is on the length of the stub. 

 

    
 

Types of T-Junction discontinuity compensation and minimization of the effect 

 

 The best solution to the transformer effect is to keep the width of the stub (W2) 
narrow enough for the transforming effect to be negligible. 

 

f) Cross-Junction discontinuity is mainly found in Matching Networks and Microstrip 
Notch Filters. 

 As a first order approximation a cross can be considered to bet two T-Junctions in 
parallel. 



                                                  
   Microstrip Notch Filter using Cross-Junctions                                 Cross-Junction discontinuity 
 

 One of the most common of Cross-Junction is for the realization of low impedance 
stubs. When impedance stub has a strip width large enough to sustain transverse 
resonance modes, one of the possible solutions is to employ two stubs in parallel, 
connected on either side of the main line. The impedance of each of the equivalent 
stubs is equal to twice the impedance of the simulated stub. 

 
Lumped Microstrip Components 
 
Lumped components have the advantage of small size, low cost, and wide-band 
characteristics, but have lower Q and lower power handling than distributed elements.  
 

 To function well as a lumped element at microwave frequencies, the length of the 
equivalent inductor and capacitor elements should not be longer than 12% (30°) of 
a wavelength λ, or they will begin to lose their lumped equivalency effect. 
 Some authors recommend the length should be less than λ/20. 

 Lumped inductors and capacitors circuits will only function for that particular 
dielectric constant, board thickness, and frequency used in the original equivalency 
calculations. 

 Due to Microstrip‟s electromagnetic field leakage, when shielding Microstrip lumped 
equivalent capacitors and inductors (as well any Microstrip‟s transmission lines), 
the RF shield should be kept at least five substrate thicknesses above the copper, 
or a disruption within the field, with resulting impedance variations, can occur. 

 
a) Microstrip Inductors 

 

 The inductance value of a Microstrip inductor is determined from the total length, 
the number of turns, spacing, and line width. 

 Narrow tracks are more inductive but carry less current, so there is a trade-off 
between them.  

 Spiral track inductors have more inductance because the magnetic fields from each 
turn of the spiral add up, creating a larger field through the middle of the spiral and 
mutual inductance between all the turns. 
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Types of Microstrip Inductors 

            
High-impedance line   Meander line      Circular spiral      Square spiral     Octagonal spiral   Single turn   

 
 

 The high-impedance, Straight-line section is the simplest form of an inductor, used 
for low inductance values (typically up to 3 nH), while the spiral inductor (circular or 
rectangular) can provide higher inductance values, typically up to 10 nH. 

o The inductance of an isolated (no ground plane), flat, ribbon inductor (or Strip 
Inductor) is given approximately by: 
 

 
where w is the width of the ribbon, t is the metal thickness, and l is length. 
 

o The inductance of a strip inductor is decreased by the presence of a ground plane. 
The effective inductance of a strip inductor using a ground plane is: 
 

       

where h is the substrate height. 
 

 The Meander-line Inductor is used to reduce the area occupied by the element.  
o In the meander inductor, adjacent conductors have equal and opposite current 

flows, which reduce the total inductance.  
o Mutual coupling effects are usually small if the spacing is greater than three strip 

widths. The strip width is much smaller than the substrate thickness. 
o Meander-line inductors have the advantage of lower eddy current resistance, but 

they have lower inductance and lower SRF (self-resonant frequency) than spiral 
inductors. 

 
Many different types of Spiral Inductors are used in Microstrip development, such as 
circular (or square) air bridge cross inductor, octagonal spirals, single-turn spiral, etc. 
 
 

 Some Characteristics and Requirements for Microstrip Spiral Inductors: 
- The resistance of spiral inductors depends on frequency because of the skin 

effect.  
- The Q-factor of an inductor depends directly on the inductance.  
- The two most important geometric parameters affecting Q are the conductor 

width-to-spacing ratio and the inductor outside diameter.  
- The Q-factor increases with an increase in the outside diameter.  
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- For minimum losses, the outer diameter of a spiral inductor should be 
approximately five times the inner diameter. This ratio of diameters optimizes 
the Q value, but not the maximum inductance value. 

- The Q-factor increases as the square root of the frequency due to the skin effect 
- The effect of Eddy Currents can be minimized by making the line widths of the 

inner turns of the inductor narrower than the outer turns. In this structure the 
improvement in Q-value is more pronounced at higher than lower frequencies, 
because the effect of Eddy Currents is more severe at high frequencies. 

- The Q-enhancement of planar spiral inductors can also be achieved by using 
the differential excitation technique. The Q-factor of such inductors is enhanced 
because of smaller substrate loss and is maintained over a broader bandwidth 
compared to the single-ended configuration. 

- The Q of an inductor can be further enhanced by reducing the conductor 
resistance using thick copper metal. 

- Circular spiral inductors have higher Q than rectangular inductors; however, they 
also have lower inductance for an equivalent area.  

- Parasitic capacitances will cause a spiral inductor to get a self-resonance SRF.  
The most basic parasitic capacitance is that which is created by the coupling 
between the turns of the inductor. When a ground plane is under the spiral 
inductor, we have additional parasitic capacitance between spiral and ground. 
Introducing a large air gap between the substrate and spiral coils reduce the 
effect of the substrate on SRF and Q-factor, and also will reduce the winding 
capacitance by spatially separating the spiral coils from the central return lead. 
This separation is obtained by the air (not by the dielectric material) and the 
parasitic capacitance can be minimized. 

- The self-resonant frequency SRF must be at least twice the maximum operating 
frequency for the inductance to have a constant value. 

- To realize high-quality inductors, thicker metal with higher conductivity           
(e.g., copper and gold) can be used to overcome the series resistive loss. 

- The spiral inductor should have the widest possible line, while keeping the 
overall diameter small. This implies that the separation between the turns should 
be as small as possible.  

- The ideal case of the inductor is in free space with no ground plane. Have to 
take into account the effect of the ground plane, which tends to decrease the 
inductance value as the ground plane is brought nearer. 

- The inductance of one single-turn of spiral inductor is less (because of the 
proximity effect) than the inductance of a straight line with the same length and 
width. 

 
b) Microstrip Capacitors 

 

 Capacitors are lumped circuit elements that store energy by virtue of electric fields. 
 
 
 



Microstrip Capacitors 

      
               Gap Capacitor and Equivalency         Interdigital Capacitor                       MIM Capacitor 

 

 The Gap Capacitor can be described as two coupled open-ended Microstrip lines.  
The capacitance C refers to the open-end capacitance and the series gap 
capacitance Cg describes the electrical coupling.  
Up to approximately 20 GHz, the frequency dependence of the equivalent 
capacitances is negligible.  
The series gap interrupts the conductive strip of the Microstrip line, and the DC 
power cannot be transmitted. RF power transfer is accomplished by electrical field 
coupling.  
A Gap Capacitor can provide a series capacitance of 0.05pF to 0.5pF. 
 

 The Interdigital Capacitor relies on the strip-to-strip capacitance of parallel 
conducting fingers on a substrate and it‟s suitable for applications where low values 
of capacitance (less than 1pF) are required. 

o The finger width W must equal the space s to achieve maximum capacitance 
density, and the substrate thickness h should be much larger than the finger width. 

o The Interdigital Capacitor relies on the fringing capacitance between the long 
common edge areas of the metal fingers which are separated by very small 
spacing depending on the minimum gap allowed by the foundry. 
The fringing capacitance is fairly low, and as was stated, the capacitors are able to 
reach small capacitance values, up to 1pF. 

o The Interdigital Capacitor size can be reduced by reducing the dimensions of the 
structure or by using a high dielectric constant value substrate.  
Increasing the dielectric constant of the medium a hundred-fold will reduce the 
component dimensions by a factor of 10. 

o The Q-factor of Interdigital Capacitors can be enhanced by using high-conductivity 
conductors and low-loss tangent dielectric materials. Other Q enhancement 
techniques include suspended substrate, multilayer structure, and micromachining. 

o By selecting the proper substrate thickness and air spacing between the substrate 
and ground plane, one can reduce the capacitor loss by a factor of 25% to 50%. 

o The micromachining approach reduces the parasitic capacitance by a factor of εr 
and results in better millimeter-wave circuits. 

o The parasitics associated with Interdigital Capacitors can be ignored as long as the 
Capacitance x Frequency product is smaller than 2x10-3 

 

 Fundamental Parallel-Plate Capacitors consisting of a pair of parallel planar 
metallic surfaces separated by a dielectric are available in chip forms as discrete 
components. The Metal-Insulator-Metal (MIM) Capacitor, constructed by using a 



thin layer of a low-loss dielectric (typically 0.5-μm thick) between two metal plates, 
is used to achieve higher values, for example, as tens of pF in small areas.  
The metal plates should be thicker than three skin depths to minimize conductor 
losses.   
The top plate is generally connected to other circuitry by using an air bridge that 
provides higher breakdown voltages. 

The MIM capacitance is given by the classical expression from electrostatics: 
 

 
where ε is the dielectric constant, W, l, and h are dimensions in centimeters. 
 

o When the MIM capacitor value is small, on the order of, say, 0.2 pF, the measured 
value of capacitance is always larger than the design value based on capacitance 
per unit area. This is due to the fact that the dielectric thickness along the periphery 
is thinner than at other places and this effect is more pronounced for smaller 
capacitor areas. 

 
c) Quasi-Lumped Microstrip Elements 

 

 Microstrip line short sections and stubs, whose physical lengths are smaller than 
λg/4 (quarter of guided wavelength) at which they operate, are the most common 
components for approximate microwave realization of lumped elements in 
Microstrip filter structures, and are termed Quasi-Lumped elements.  
They may also be regarded as lumped elements if their dimensions are even 
smaller, say smaller than λg/8. 

 A stub is a length of a straight transmission line that is short or open-circuited at 
one end and connected to the circuit at the opposite end. 

 
o High- and Low-Impedance Short-Line Sections 

            
High-impedance short-line element and the Equivalent circuit 

 

         
Low-impedance short-line element and the Equivalent circuit 

 
 
 
 



o Open and Short-Circuited Stubs 

                                
                             Open-Circuited Stub                                           Short-Circuited Stub 

 
The λg/4 stub can be used for many purposes, bypassing or notching certain frequencies. 

            
 

 A λg/4 stub if it is left with an open-end it can be used as a Notch Filter to attenuate 
certain frequencies. The bandwidth of a λg/4 Microstrip notch filter is about 20 %.  
The λg/4 notch filter will not only attenuate the design frequency but it will also 
attenuate the frequency band around the odd harmonics of the design frequency. 

 λg/4  Microstrip stubs can be used for designing Bias Networks to supply DC to 
microwave diodes, transistors, or RFICs.  
A bias injection network is one that is designed to combine both, microwave and 
low frequency ports.  
There should be no low frequency path to the microwave input branch, but the DC 
input port must also appear as a microwave open circuit at the junction to the 
through transmission line. 
A λg/4 shunt line stub with a short-circuit termination may be either a true short 
circuit for a DC ground return or in the form of a capacitive feed-through element. 
Important is the bandwidth performance of the circuit.  

o Higher impedance stubs (with high ratio Zstub/Z0) have broader band response. 
 

 
Frequency response of two different impedance stubs 

 

o An improved DC injection network can be made decreasing the impedance Z0 at 
the stub junction (lower the impedance, thicker the line). 



 

    
 

o Radial Stubs 
 
Radial stub is an open-circuit stub realized in radial transmission line instead of straight 
transmission line.  
 

                                                
        Radial Stub Elements          Series Radial Stub     Shunt Radial Stub             Three 60° Radial Stub 

 

 Radial stub it is a useful element, primarily for providing a clean (no spurious 
resonances) broadband short circuit, much broader than a simple open-circuit stub.  
It is special useful on bias lines at high-frequencies. 

 Radial stubs are shorter than uniform stubs, they cannot be folded or bent; 
therefore they take up a lot of substrate area. 

 There is no simple equation to describe the radial stub adequately, and practical 
experiments work better than any formula. 

 In the radial shunt configuration (butterfly radial stub), the added symmetry of 
multiple stubs may improve the bandwidth, as well in the three 60° radial stubs 
case presented in the figure above. 

 
Microstrip Resonators 
 

 A Microstrip Resonator is any structure that is able to contain at least one 
oscillating electromagnetic field. 

 
Microstrip Resonators may be classified as lumped-element or quasi-lumped-element 
resonators, and distributed-line resonators or patch resonators. 

 Lumped-Element or Quasi-Lumped-Element Resonators, formed by the lumped 

or quasi-lumped inductors and capacitors will resonate at ω0 = 1/ √ LC.  



They may resonate at some higher frequencies, at which their sizes are no longer 
much smaller than a wavelength, and by definition, are no longer lumped or quasi-
lumped elements. 

                                       
                          Lumped-Element Resonator                       Quasi-Lumped-Element Resonator 

 

 The Distributed-Line Resonators may be termed as the quarter-wavelength 
resonators, since they are λg0 / 4 long, where λg0 is the guided wavelength at the 
fundamental resonant frequency f0. They can also resonate at other higher 
frequencies. 

                                                              
λg0/4 Line Resonator (shunt-series -resonance)              λg0/4 Line Resonator (shunt-parallel resonance) 
 

 A λg0/4 short-circuited stub operate as a parallel LC, and the open-circuit stub as a 
series LC resonator. 

 Another typical Distributed-Line resonator is the Half-Wavelength Resonator, 
used in Microstrip filters implementation. 
This resonator is λg0 / 2 long at its fundamental resonant frequency, and can also 
resonate at: f ≈ nf0 for n = 2, 3, . . .. 
 

 
Half-Wavelength Resonator 

 
- The main difficulty with the use of Distributed-Line resonator is caused by the 

end effects. 
- While Microstrip conductor and dielectric dissipation may be expressed as loss 

per unit length, radiation losses may only be related to specific lengths of line.  
- The quality factors Q of λg0 / 2 resonators, which include radiation losses, 

provide a guide to the losses that occur in Microstrip.  
- Some slight increase in the quality factor is obtained by using lower εr 

substrates, tan δ being equal, with resultant larger guide wavelengths, which 
may be advantageous at higher frequencies. 

 



 The Ring Resonator is another type of Distributed-Line resonator, where r is the 
median radius of the ring. The ring will resonate at its fundamental frequency f0 

when its median circumference is: 2πr ≈ λg0. The higher resonant modes occur at: 

f ≈ nf0 for n = 2, 3, . .. 
- The Microstrip Ring Resonator is a simple transmission line in which resonator is 

excited at certain frequencies. Depending on the electrical length of the resonance 
a standing wave pattern forms around the circular path of the resonator.  
The maximum voltage of the standing wave occurs at the exciting point.  
The resonant frequencies correspond to a condition where the parameter of the 
ring is an integer multiple of the guided wavelength. 
 

           
              Ring Resonator                        End-Coupling                           Edge-Coupling        

 
- The coupling gap is an important part of the ring resonator. It is the separation of 

the feed lines from the ring that allows the structure to only support selective 
frequencies. The size of the coupling gap also affects the performance of the 
resonator. If a very small gap is used, the losses will be lower but the fields in the 
resonant structure will also be greatly affected. A larger gap results in less field 
perturbation but greater losses. It is intuitive that the larger the percentage of the 
ring circumference the coupling region occupies, the greater the effect on the ring‟s 
performance. 

 

         
Ring Resonators Enhanced Coupling Techniques 

 
- At resonant frequencies there exists a voltage maximum at πd/2 away from the 

excitation point. By placing a transmission line at this voltage maximum point, the 
field in the resonator can be probed to detect the resonance frequencies. 

- The dissipated power in the Ring Resonator includes the dielectric loss, the 
conductor loss, and the radiation loss. 

- The End-Coupling structure provides a band-pass whenever the ring is a multiple 
of wavelengths, when the Edge-Coupling technique can be seen on the reflection 
coefficient (S11) of the coupled transmission line whenever the ring is an integer 
number of wavelengths. The circuit in this case behaves like a band-reject filter, 
sometimes called a spur line filter. 

- The influence of curvature in Ring Resonators becomes large if substrate materials 
with small relative permittivity and lines with small impedances are used.  



Under these conditions the widths of the lines become large and a mean radius is 
not well-defined. If small rings are used, then the effects become even more 
dramatic because of the increased curvature. 

- The Microstrip Ring Resonator has found applications in determining optimum 
substrate thickness, discontinuity parameters, effective dielectric constant and 
dispersion, and loss and Q-measurements.  

- When the idea of a Microstrip Ring Resonator was introduced for the first time, also 
were described techniques used to measure the phase velocity and dispersive 
characteristics of a Microstrip line by observing the resonant frequency of the ring 
resonator. 
 
Determination of the Dielectric Constant using Microstrip Ring resonators: 
 
- The Microstrip Ring resonator is designed to the certain main resonance 

frequency and the design is based on an estimated value of dielectric constant. 
- Measured values of the main resonance frequency and the harmonic resonance 

frequencies will differ from designed ones, if difference between the estimated 
dielectric constant and the actual dielectric constant is appeared. 

- Based on the difference of the estimated and the actual dielectric constant, 
frequency dependent value for dielectric constant can be calculated at each 
resonance frequency. 

 
- The main advantage using Microstrip Ring resonators for dielectric and 

dispersion measurements is that, in contrast to Distributed-Line resonators, no 
end effects need to be considered. 

 

 Patch Resonators are of interest for the design of Microstrip Filters, in order to 
increase the power-handling capability, and also due to their lower conductor 
losses as compared with narrow Microstrip line resonators. 

o Because Patch resonators tend to have a stronger radiation, they are normally 
enclosed in a metal housing for filter applications so that the radiation loss can be 
minimized. 

o Depending on the applications, patches may take different shapes, such as 
Circular or Triangular. 

                                                             
            Circular Patch Resonator                                               Triangular Patch Resonator 
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